INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT245Octal bus transceiver; 3-state

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT245

FEATURES

- · Octal bidirectional bus interface
- · Non-inverting 3-state outputs
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTIONS

The 74HC/HCT245 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT245 are octal transceivers featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The "245" features an output enable (\overline{OE}) input for easy cascading and a send/receive (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated. The "245" is similar to the "640" but has true (non-inverting) outputs.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	7	10	ns	
Cı	input capacitance		3.5	3.5	pF	
C _I / _O	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	30	30	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

f_o = output frequency in MHz

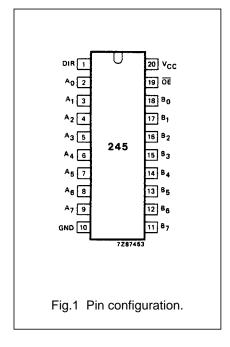
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

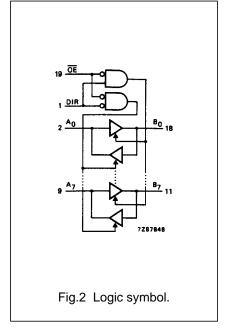
C_L = output load capacitance in pF

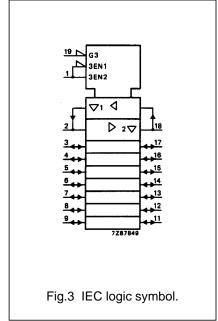
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

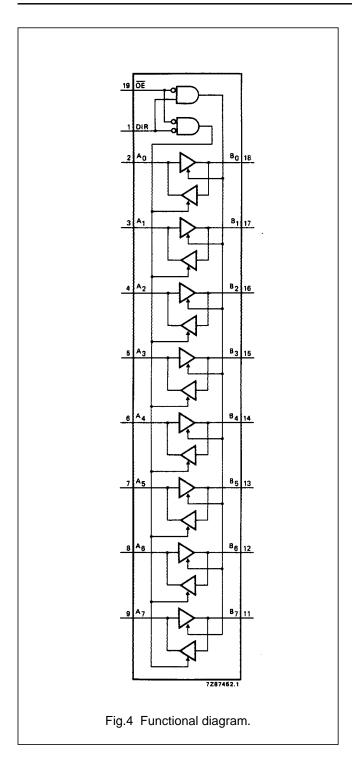
For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT245

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION				
1	DIR	direction control				
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs				
10	GND	ground (0 V)				
18, 17, 16, 15, 14, 13, 12, 11	B ₀ to B ₇	data inputs/outputs				
19	ŌĒ	output enable input (active LOW)				
20	V _{CC}	positive supply voltage				

74HC/HCT245

FUNCTION TABLE

INP	UTS	INPUTS/OUTPUTS					
ŌĒ	DIR	A _n	B _n				
L	L	A = B	inputs				
L	Н	inputs	B = A				
Н	Χ	Z	Z				

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors Product specification

Octal bus transceiver; 3-state

74HC/HCT245

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC							UNIT		WAVEFORMS
		+25			-40 to +85		-40 to +125		ONII	V _{CC} (V)	VIAVEI ORINO
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay A _n to B _{n;} B _n to A _n		25 9 7	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PZH} / t _{PZL}	3-state output enable time OE to A _{n;} OE to B _n signalname DIR		30 11 9	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHZ} / t _{PLZ}	3-state output disable time OE to A _{n;} OE to B _n signalname DIR		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5

74HC/HCT245

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

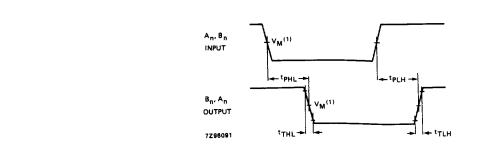
Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

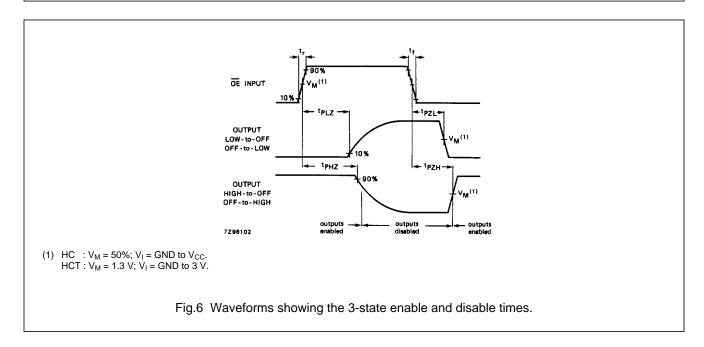
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT							
An	0.40							
B _n	0.40							
OE	1.50							
DIR	0.90							


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF}$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HCT									WAVEFORMS
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	VVAVEI OKIIIS	
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n		12	22		28		33	ns	4.5	Fig.5
t _{PZH} / t _{PZL}	3-state output enable time OE to A _{n;} OE to B _n signalname DIR		16	30		38		45	ns	4.5	Fig.6
t _{PHZ} / t _{PLZ}	3-state output disable time OE to A _{n;} OE to B _n signalname DIR		16	30		38		45	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5


74HC/HCT245

AC WAVEFORMS

 $\begin{array}{ll} \text{(1)} & \text{HC} & : V_M = 50\%; \ V_I = \text{GND to } V_{CC}. \\ & \text{HCT} : V_M = 1.3 \ V; \ V_I = \text{GND to 3 } V. \end{array}$

Fig.5 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".