

16-Mbit (1M x 16) Static RAM

Features

· Very high speed: 55 ns

• Wide voltage range: 2.20V - 3.60V

· Ultra-low active power

Typical active current: 2 mA @ f = 1 MHz
 Typical active current: 15 mA @ f = f_{max}

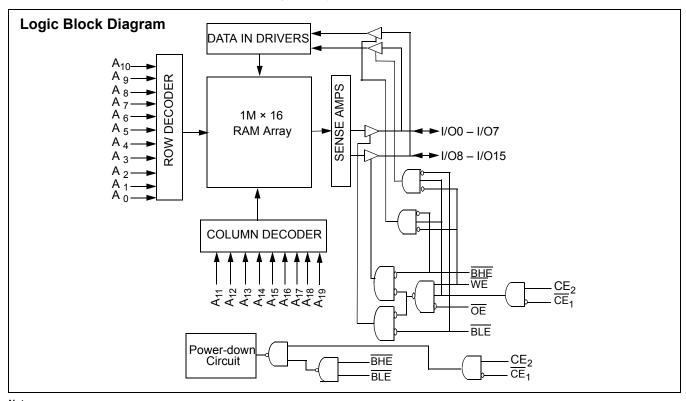
· Ultra-low standby power

Easy memory expansion with CE₁, CE₂, and OE features

· Automatic power-down when deselected

CMOS for optimum speed/power

Packages offered in a 48-ball BGA and 48-pin TSOPI

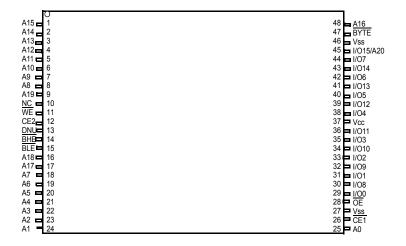

Functional Description[1]

The CY62167DV30 is a high-performance CMOS static RAM organized as 1M words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly

reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW or both BHE and BLE are HIGH). The input/output pins (I/O0 through I/O15) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a Write operation ($\overline{\text{CE}}_1$ LOW, $\overline{\text{CE}}_2$ HIGH and WE LOW).

Writing to the device is accomplished by taking Chip Enables (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and Write Enable (\overline{WE}) input LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A_0 through A_{19}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{19}).

Reading from the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of Read and Write modes.


Note

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3, 4, 5]

FBGA Top View 2 1 5 6 3 4 BLE OE A_1 A_2 CE_2 A_0 Α I/O₈ BHE A_4 I/O_0 A_3 CE. В A_6 С I/Q₉ I/O₁₀ A_5 I/O 1/02 A₇ Vcc V_{SS} 1/O₁₁ A₁₇ I/O₃ D A₁₆ DNU Vss I/O₄ V_CC I/O₁₂ Ε 1/05 I/O₆ F 1/O₁₃ A₁₄ 1/O₁₄ A_{15} A₁₉ A₁₂ 1/O₁₅ A_{13} WE 1/07 G A₈ A_9 A_{10} A_{11} DNU A₁₈ Н

48TSOPI (Forward) **Top View**

Notes:

- NC pins are not connected on the die.
 DNU pins have to be left floating.
 The BYTE pin in the 48-TSOPI package has to be tied HIGH to use the device as a 1M × 16 SRAM. The 48-TSOPI package can also be used as a 2M × 8 SRAM by tying the BYTE signal LOW. For 2M × 8 Functionality, please refer to the CY62168DV30 datasheet. In the 2M × 8 configuration, Pin 45 is A20.
 Ball H6 for the FBGA package can be used to upgrade to a 32M density.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied –55°C to + 125°C Supply Voltage to Ground Potential-0.2V to $V_{CC} + 0.3V$ DC Voltage Applied to Outputs in High-Z State $^{[6,\ 7]}$ -0.2V to V $_{CC}$ + 0.3V

DC Input Voltage^[6, 7]-0.2V to V_{CC} + 0.3V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V cc ^[8]
CY62167DV30L	Industrial	–40°C to +85°C	2.20V to
CY62167DV30LL			3.60V

Product Portfolio

							Power D	issipatio	1	
						Operating	g I _{CC} (mA)			
	V	CC Range (V)	Speed	f = 1	MHz	f = 1	max	Standby	I _{SB2} (μ A)
Product	Min.	Typ . ^[9]	Max.	(ns)	Typ . ^[9]	Max.	Typ. ^[9]	Max.	Typ . ^[9]	Max.
CY62167DV30L	2.20	3.0	3.60	55	2	4	15	30	2.5	30
				70			12	25		
CY62167DV30LL				55	2	4	15	30	2.5	22
				70			12	25		

Electrical Characteristics Over the Operating Range

					CY6	2167DV	30-55	CY62	2167DV	30-70	
Parameter	Description	Test Condit	ions		Min.	Typ. ^[9]	Max.	Min.	Typ. ^[9]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{CC} = 2.20$	V	2.0			2.0			V
		I _{OH} = -1.0 mA	$V_{CC} = 2.70$	V	2.4			2.4			V
V_{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20\	V			0.4			0.4	V
		I _{OL} = 2.1mA	$V_{CC} = 2.70$	V			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V			1.8		V _{CC} +0.3V	1.8		V _{CC} +0.3V	V
		V _{CC} = 2.7V to 3.6V	V _{CC} = 2.7V to 3.6V				V _{CC} +0.3V	2.2		V _{CC} +0.3V	V
V_{IL}	Input LOW Voltage	V _{CC} = 2.2V to 2.7V	V _{CC} = 2.2V to 2.7V		-0.3		0.6	-0.3		0.6	V
		V _{CC} = 2.7V to 3.6V			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$			-1		+1	– 1		+1	μА
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output	Disabled		– 1		+1	– 1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCr}$	max		15	30		12	25	mΑ
	Current	f = 1 MHz	I _{OUT} = 0 m/ CMOS leve	4		2	4		2	4	mA
I _{SB1}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$ or \overline{CE}_2		L		2.5	30		2.5	25	μА
	Power-down Current — CMOS	$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2$ f = f_{MAX} (Address and Data	2V) a Only)	LL		2.5	22		2.5	22	
	Inputs	f = 0 (OE, WE, BHE, BLE),	V _{CC} =3.60V								
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$ or \overline{CE}		L		2.5	30		2.5	30	μА
	Power-down Current — CMOS	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN}$ f = 0, V_{CC} = 3.60V	<u><</u> 0.2V,								1
	Inputs	1 - 0, v _{CC} - 3.00v	Ē	LL		2.5	22		2.5	22	1

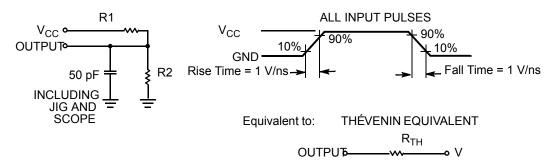
Notes:

6. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.

7. V_{IH(Max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.

8. Full Device AC operation requires linear V_{CC} ramp from 0 to V_{CC(min.)}> = 500 μs.

9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.


Capacitance^[10, 11]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance

Parameter	Description	Test Conditions	BGA	TSOP I	Unit
Θ_{JA}	[40]	Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	55	60	°C/W
ΘJC	Thermal Resistance (Junction to Case) ^[10]		16	4.3	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[9]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	<u>V_{CC}</u> = 1.5V	L			15	μΑ
			LL			10	
t _{CDR} ^[10]	Chip Deselect to Data Retention Time			0			ns
t _R ^[12]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[13]

- 10. Tested initially and after any design or process changes that may affect these parameters.
- 11. This applies for all packages.
- 12. <u>Full device</u> operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

 13. <u>BHE.BLE</u> is the AND of both <u>BHE</u> and <u>BLE</u>. Chip can be deselected by either disabling the chip enable signals or by disabling both <u>BHE</u> and <u>BLE</u>.

Switching Characteristics Over the Operating Range^[14]

		55	5 ns	70	ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	·					
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to LOW Z ^[15]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[15, 16]		20		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[15]	10		10		ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[15, 16]		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	$\overline{\text{CE}}_1$ HIGH and CE_2 LOW to Power-down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[15]	10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[15, 16]		20		25	ns
Write Cycle ^[17]	·		•	•	•	•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		60		ns
t _{AW}	Address Set-Up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns
t _{BW}	BLE / BHE LOW to Write End	40		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[15, 16]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[15]	10		10		ns

Notes:

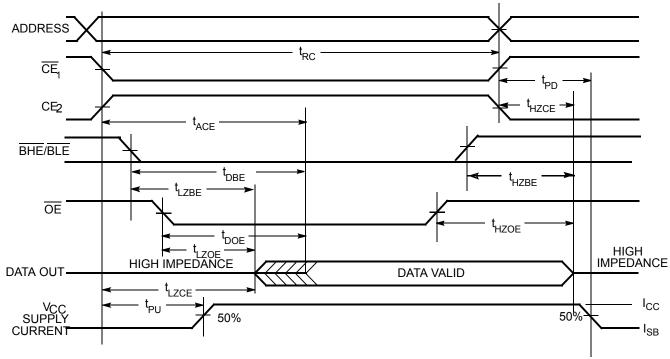
^{14.} Test conditions for all parameters other than three-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, and t_{HZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} for any given device.

^{16.} t_{HZCE}, t_{HZCE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

17. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write.

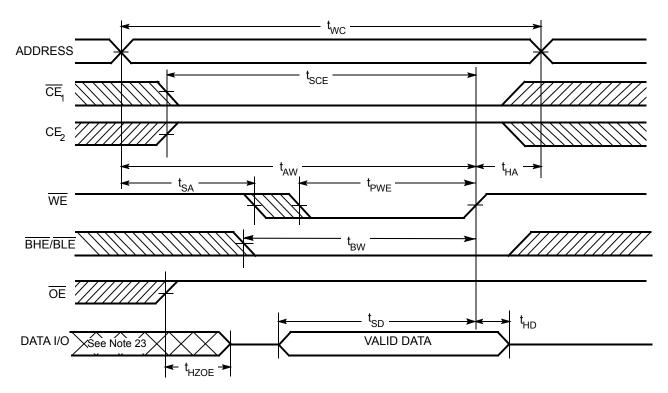
MoBL[®]



Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[18, 19]

Read Cycle 2 (OE Controlled)[19, 20]


Notes:

18. The device is continuously selected. OE, $CE_1 = V_{IL}$, BHE and/or BLE = V_{IL} , and $CE_2 = V_{IH}$. 19. WE is HIGH for read cycle.

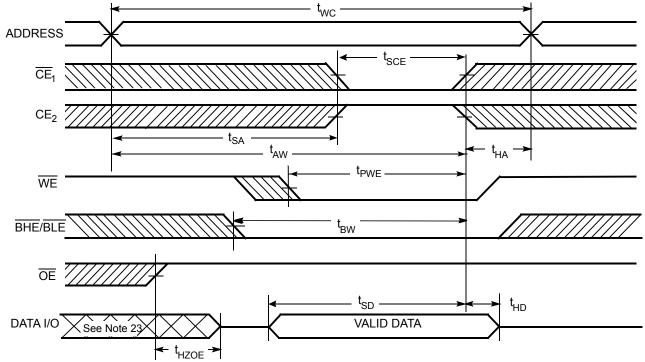
Switching Waveforms (continued)

Write Cycle 1 (WE Controlled)^[17, 21, 22, 23]

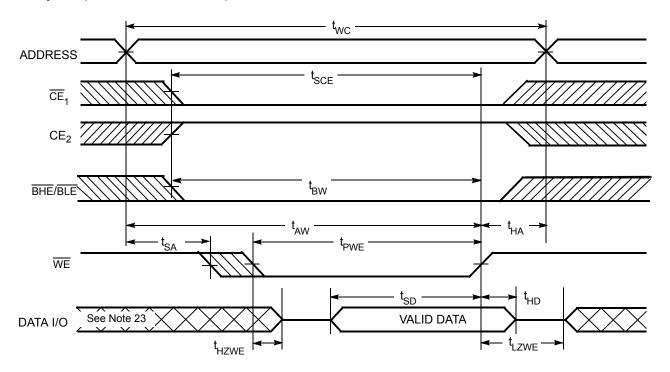
Notes:

- 20. Address valid prior to or coincident with $\overline{Ce_1}$, \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

 21. Data I/O is high-impedance if \overline{OE} = V_{IH} .

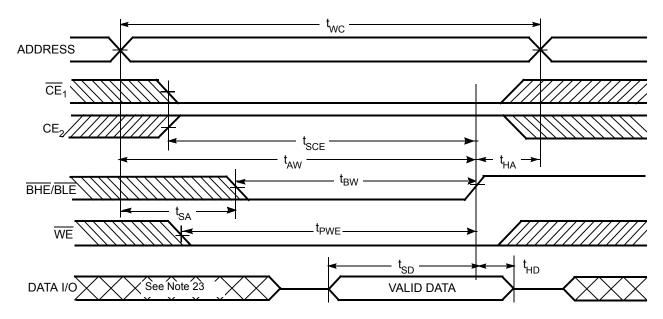

 22. If $\overline{Ce_1}$ goes HIGH and CE_2 goes LOW simultaneously with \overline{WE} = V_{IH} , the output remains in a high-impedance state.

 23. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

Write Cycle 2 (CE₁ or CE₂ Controlled)^[17, 21, 22, 23]

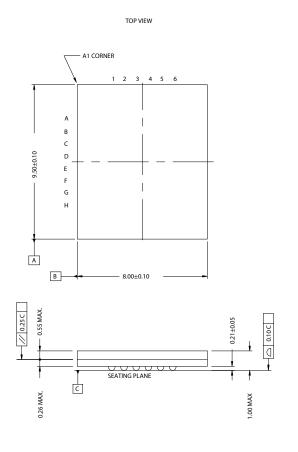

Write Cycle 3 (WE Controlled, OE LOW)^[22, 23]

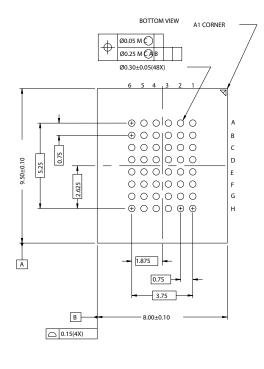
Switching Waveforms (continued)

Write Cycle 4 ($\overline{\rm BHE/BLE}$ Controlled, $\overline{\rm OE}$ LOW)[22, 23]

Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Χ	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Χ	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	Ĺ	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62167DV30L-55BVI	BV48B	48-ball Fine Pitch BGA (8 mm × 9.5mm × 1 mm)	Industrial
	CY62167DV30LL-55BVI			
55	CY62167DV30L-55ZI	Z48A	48 Pin TSOP I	Industrial
	CY62167DV30LL-55ZI			
70	CY62167DV30L-70BVI	BV48B	48-ball Fine Pitch BGA (8 mm × 9.5mm × 1 mm)	Industrial
	CY62167DV30LL-70BVI			
70	CY62167DV30L-70ZI	Z48A	48-pin TSOP I	Industrial
	CY62167DV30LL-70ZI			

Package Diagrams

48-Lead VFBGA (8 x 9.5 x 1 mm) BV48B

51-85178-**

51-85183-*A

Package Diagrams

0.004[0.10]

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

0.020[0.50]

0.010[0.25]

Document History Page

	Document Title:CY62167DV30 MoBL [®] 16-Mbit (1M x 16) Static RAM Document Number: 38-05328									
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change						
**	118408	09/30/02	GUG	New Data Sheet						
*A	123692	02/11/03	DPM	Changed Advanced to Preliminary Added package diagram						
*B	126555	04/25/03	DPM	Minor change: Changed Sunset Owner from DPM to HRT						
*C	127841	09/10/03	XRJ	Added 48 TSOP I package						
*D	205701		AJU	Changed BYTE pin usage description for 48 TSOPI package						
*E	238050	See ECN	KKV/AJU	Replaced 48-lead VFBGA package diagram; Modified Package Name in Ordering Information table from BV48A to BV48B						