

TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR

**FOR POWER AMPLIFIER AND HIGH-SPEED SWITCHING APPLICATIONS
RECOMMENDED FOR COMPLEMENTARY USE WITH TIP3055**

- 90 Watts at 25°C Case Temperature
- 15 A Rated Collector Current
- 62.5 mJ Reverse Energy Rating

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage	100 V
Collector-Emitter Voltage (See Note 1)	70 V
Emitter-Base Voltage	7 V
Continuous Collector Current	15 A
Continuous Base Current	7 A
Safe Operating Region at (or below) 25°C Case Temperature	See Figure 5
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)	90 W
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)	3.5 W
Unclamped Inductive Load Energy (See Note 4)	62.5 mJ
Operating Collector Junction Temperature Range	-65°C to 150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature 1/8 Inch from Case For 10 Seconds	260°C

NOTES: 1. This value applies when the base-emitter resistance $R_{BE} = 100 \Omega$.
 2. Derate linearly to 150°C case temperature at the rate of $0.72 \text{ W}/^\circ\text{C}$.
 3. Derate linearly to 150°C free-air temperature at the rate of $28 \text{ mW}/^\circ\text{C}$.
 4. This rating is based on the capability of the transistor to operate safely in the circuit of Figure 2. $L = 20 \text{ mH}$, $R_{BB2} = 100 \Omega$, $V_{BB2} = 0 \text{ V}$, $R_S = 0.1 \Omega$, $V_{CC} = 10 \text{ V}$. Energy $\approx I_C^2 L/2$.

TYPE TIP2955**P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR****electrical characteristics at 25°C case temperature**

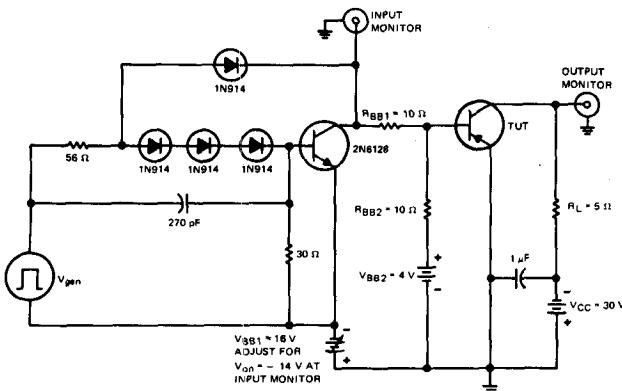
PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$V_{(BR)CEO}$ Collector-Emitter Breakdown Voltage	$I_C = -30 \text{ mA}, I_B = 0, \text{ See Note 5}$	-60	70	V
I_{CER} Collector Cutoff Current	$V_{CE} = -70 \text{ V}, R_{BE} = 100 \Omega$	-1	mA	
I_{CEO} Collector Cutoff Current	$V_{CE} = -30 \text{ V}, I_B = 0$	-0.7	mA	
I_{CEV} Collector Cutoff Current	$V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V}$	-5	mA	
I_{EBO} Emitter Cutoff Current	$V_{EB} = -7 \text{ V}, I_C = 0$	-5	mA	
h_{FE} Static Forward Current Transfer Ratio	$V_{CE} = -4 \text{ V}, I_C = -4 \text{ A}, \text{ See Notes 5 and 6}$	20	70	
V_{BE} Base-Emitter Voltage	$V_{CE} = -4 \text{ V}, I_C = -4 \text{ A}, \text{ See Notes 5 and 6}$	5		
$V_{CE(sat)}$ Collector-Emitter Saturation Voltage	$I_B = -400 \text{ mA}, I_C = -4 \text{ A}, \text{ See Notes 5 and 6}$	-1.8	V	
	$I_B = -3.3 \text{ A}, I_C = -10 \text{ A}, \text{ See Notes 5 and 6}$	-1.1		V
h_{fe} Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -4 \text{ V}, I_C = -1 \text{ A}, f = 1 \text{ kHz}$	15		
f_{hfe} Small-Signal Common-Emitter Forward Current Transfer Ratio Cutoff Frequency	$V_{CE} = -4 \text{ V}, I_C = -1 \text{ A}, \text{ See Note 7}$	10		kHz

NOTES: 5. These parameters must be measured using pulse techniques. $t_W = 300 \mu\text{s}$, duty cycle $\leq 2\%$.

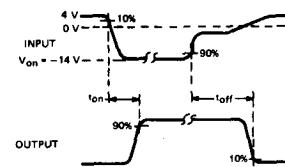
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125 inch from the device body.

7. f_{hfe} is the frequency at which the magnitude of the small-signal forward current transfer ratio is 0.707 of its low-frequency value. For this device, the reference measurement is made at 1 kHz.**thermal characteristics**

PARAMETER	MAX	UNIT
$R_{\theta JC}$ Junction-to-Case Thermal Resistance	1.39	°C/W
$R_{\theta JA}$ Junction-to-Free-Air Thermal Resistance	35.7	


switching characteristics at 25°C case temperature

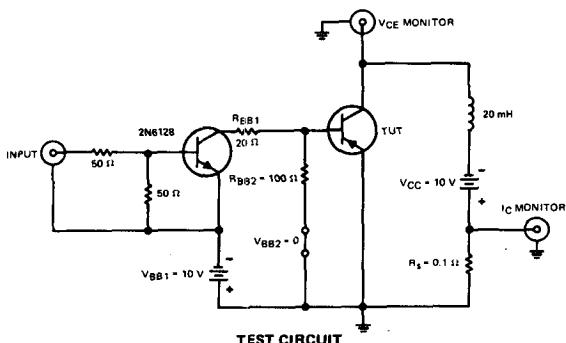
PARAMETER	TEST CONDITIONS [†]	TYP	UNIT
t_{on} Turn-On Time	$I_C = -6 \text{ A}, I_B(1) = -0.6 \text{ A}, I_B(2) = 0.6 \text{ A}, V_{BE(off)} = 4 \text{ V}, R_L = 5 \Omega, \text{ See Figure 1}$	0.4	μs
t_{off} Turn-Off Time		0.7	


[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPE TIP2955
P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT


VOLTAGE WAVEFORMS

NOTES:

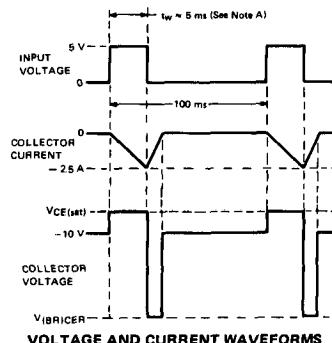

- A. V_{gen} is a 30-V pulse (from 0 V) into a 50Ω termination.
- B. The V_{gen} waveform is supplied by a generator with the following characteristics: $t_r \leq 15$ ns, $t_f \leq 15$ ns, $Z_{out} = 50\Omega$, $t_w = 20\mu s$, duty cycle $\leq 2\%$.
- C. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10 M\Omega$, $C_{in} \leq 11.5\text{ pF}$.
- D. Resistors must be noninductive types.
- E. The d-c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1

INDUCTIVE LOAD SWITCHING

TEST CIRCUIT

VOLTAGE AND CURRENT WAVEFORMS

NOTE A: Input pulse width is increased until $I_{CM} = -2.5$ A.

FIGURE 2

TEXAS INSTRUMENTS

2-277

TYPE TIP2955

P-N-P SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

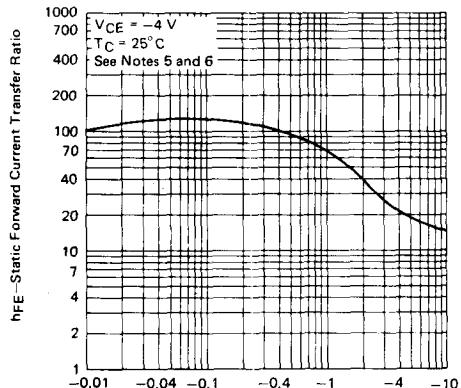


FIGURE 3

NOTES: 5. These parameters must be measured using pulse techniques. $t_W = 300 \mu\text{s}$, duty cycle $\leq 2\%$.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125 inch from the device body.

THERMAL INFORMATION

DISSIPATION DERATING CURVE

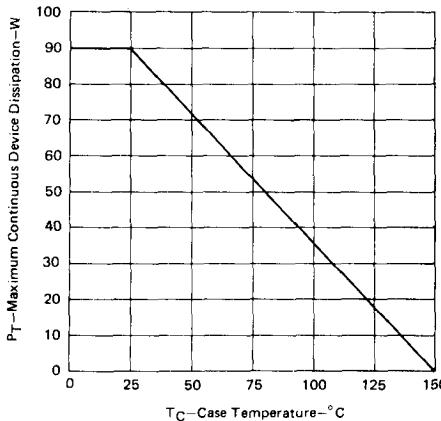


FIGURE 4

MAXIMUM SAFE OPERATING REGION

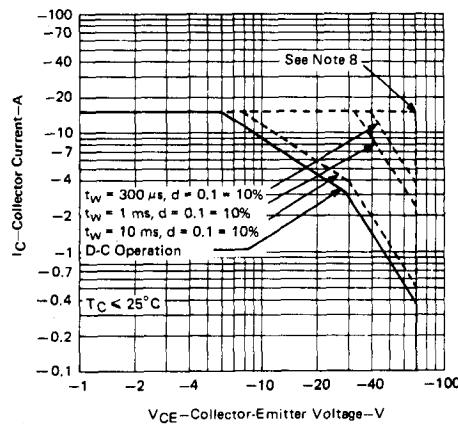


FIGURE 6

NOTE 8: This combination of maximum voltage and current may be achieved only when switching from saturation to cutoff with a clamped inductive load.