MAATCC0009

Digital Attenuator 31.5 dB, 6-Bit, TTL Driver, DC-4.0 GHz

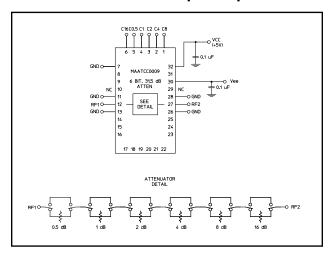
Rev. V5

Features

- Attenuation: 0.5 dB Steps to 31.5 dB
- Low DC Power Consumption
- Small Footprint, JEDEC Package
- Integral TTL Driver
- 50 ohm Impedance
- · Test Boards are Available
- Tape and Reel Packaging Available
- Lead-Free CSP-1 Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of AT90-0107

Description

M/A-COM's MAATCC0009 is a GaAs FET 6-bit digital attenuator with integral TTL driver. Step size is 0.5 dB providing a 31.5 dB total attenuation range. This device is in an PQFN plastic surface mount package. The MAATCC0009 is ideally suited for use where accuracy, fast speed, very low power consumption and low costs are required.


Ordering Information

Part Number	Package
MAATCC0009	Bulk Packaging
MAATCC0009TR	1000 piece reel
MAATCC0009-TB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Commitment to produce in volume is not guaranteed.

Schematic with Off-Chip Components

Pin Configuration²

Pin No.	Function	Pin No.	Function	
1	C8	17	NC	
2	C4	18	NC	
3	C2	19	NC	
4	C1	20	NC	
5	C0.5	21	NC	
6	C16	22	NC	
7	7 GND 23		NC	
8	NC	24	NC	
9	NC	25	NC	
10	NC ¹	26	GND	
11	GND	27	RF2	
12	12 RF1 28		GND	
13	GND	29	NC ¹	
14	NC	30	-Vee	
15	NC	31	NC	
16	NC	32	+Vcc	

- 1. Pins 10 & 29 must be isolated
- The exposed pad centered on the package bottom must be connected to RF and DC ground. (For PQFN Packages)

and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

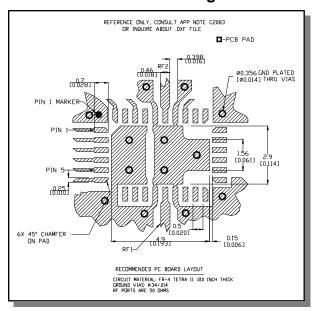
India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

MAATCC0009

Digital Attenuator 31.5 dB, 6-Bit, TTL Driver, DC-4.0 GHz

Rev. V5

Electrical Specifications: $T_A = +25$ °C, $Vee = -5 \text{ V} \pm 0.25 \text{ V}$, $Vcc = +5 \text{ V} \pm 0.25 \text{ V}$


Parameter	Test Conditions	tions Frequency		Min	Тур	Max
Insertion Loss	_	DC - 4.0 GHz	dB	_	4.5	5.1
Attenuation Accuracy	Individual Bits 0.5-1-2-4-8-16 dB Any Combination of Bits 1 to 31.5 dB	DC - 4.0 GHz DC - 4.0 GHz	dB dB	_	_	±(.3 +7% of atten setting) ±(.5 +8% of atten setting)
VSWR	Full Range	DC - 4.0 GHz	Ratio	_	2.0:1	2.2:1
Switching Speed	50% Cntl to 90%/10% RF 10% to 90% or 90% to 10%	_	ns ns	— 75 — 20		_
1 dB Compression	_ _	50 MHz 0.5 - 4.0 GHz	dBm dBm	— +21 — +24		_
Input IP ₃	Two-tone inputs up to +5 dBm	50 MHz 0.5-4.0 GHz	dBm dBm	_	+35 +48	_
V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage	_	V	0.0 2.0	_	0.8 5.0
lin (Input Leakage Current)	Vin = V _{CC} or GND	_	uA	uA -1.0		1.0
Icc (Quiescent Supply Current)	Vcntrl = V _{CC} or GND	_	uA	_	250	400
ΔIcc (Additional Supply Current Per TTL Input Pin)	V_{CC} = Max, Vcntrl = V_{CC} - 2.1 V	_	mA	_	_	1.0
lee	VEE min to max, Vin = V _{IL} or V _{IH}	_	mA	-1.0	-0.2	_
Thermal Resistance θjc	_	_	°C/W	_	15	_

Absolute Maximum Ratings ^{3,4}

Parameter	Absolute Maximum		
Max. Input Power 0.05 GHz 0.5 - 4.0 GHz	+27 dBm +34 dBm		
V _{CC}	-0.5V ≤ V _{CC} ≤ +7.0V		
V _{EE}	-8.5V ≤ V _{EE} ≤ +0.5V		
V _{CC} - V _{EE}	-0.5V ≤ V _{CC} - V _{EE} ≤ 14.5V		
Vin ⁵	-0.5V ≤ Vin ≤ V _{CC} + 0.5V		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +125°C		

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Recommended PCB Configuration⁶

6. Application Note S2083 is available on line at www.macom.com

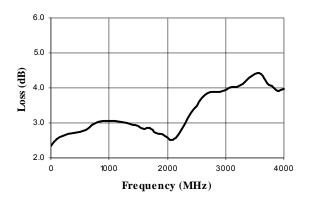
- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

Rev. V5

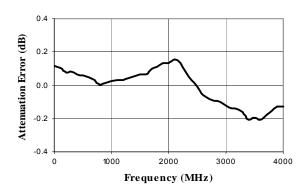
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

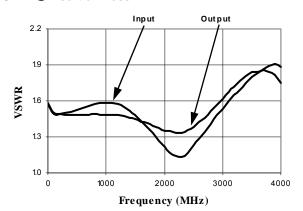
Moisture Sensitivity


The MSL rating for this part is defined as Level 2 per IPC/JEDEC J-STD-020. Parts shall be stored and/or baked as required for MSL Level 2 parts.

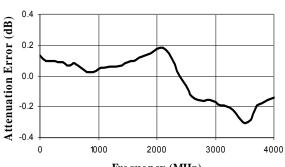
Typical Performance Curves

Insertion Loss

Attenuation Error, 0.5 dB Bit



Truth Table (Digital Attenuator)

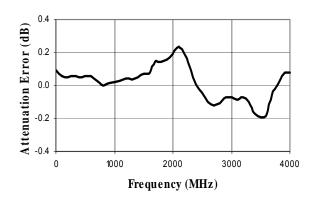

C16	C8	C4	C2	C1	C0.5	Attenuation
0	0	0	0	0	0	Loss, Reference
0	0	0	0	0	1	0.5 dB
0	0	0	0	1	0	1.0 dB
0	0	0	1	0	0	2.0 dB
0	0	1	0	0	0	4.0 dB
0	1	0	0	0	0	8.0 dB
1	0	0	0	0	0	16.0 dB
1	1	1	1	1	1	31.5 dB

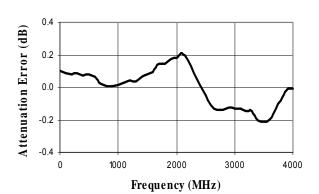
0 = TTL Low; 1 = TTL High

VSWR @ Insertion Loss

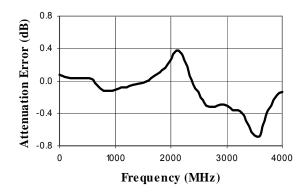
Attenuation Error, 1 dB Bit

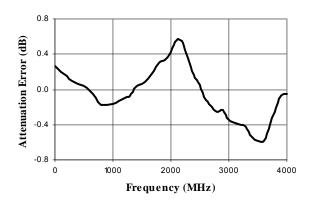
Frequency (MHz)

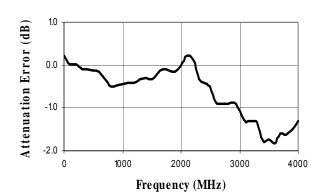

India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

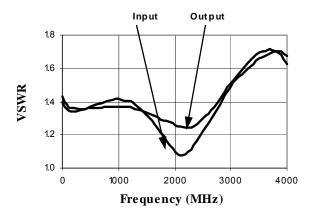

Rev. V5

Typical Performance Curves


Attenuation Error, 2 dB Bit

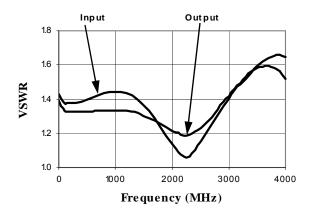

Attenuation Error, 4 dB Bit

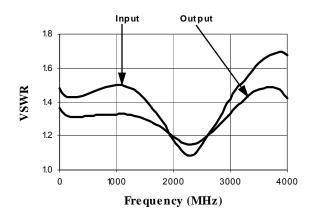

Attenuation Error, 8 dB Bit


Attenuation Error, 16 dB Bit

Attenuation Error, Max. Attenuation

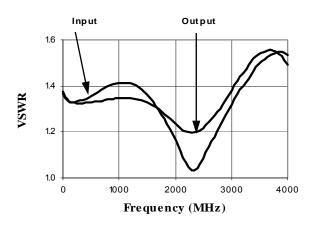
VSWR, 0.5 dB Bit

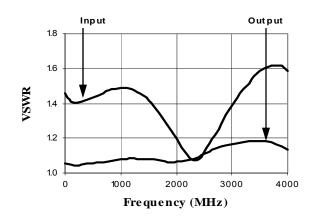

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
- PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- China Tel: +86.21.2407.1588 • India Tel: +91.80.4155721 Visit www.macomtech.com for additional data sheets and product information.

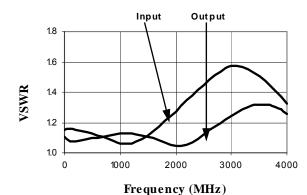

Rev. V5

Typical Performance Curves

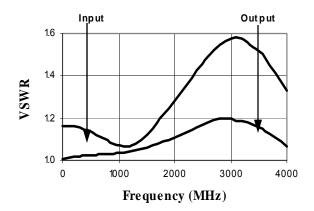
VSWR, 1 dB Bit




VSWR, 2 dB Bit

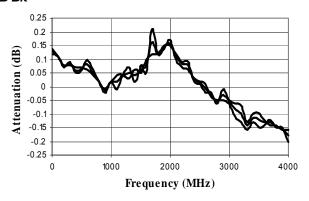

VSWR, 8 dB Bit

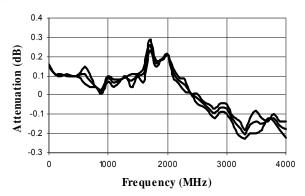
VSWR, 4 dB Bit



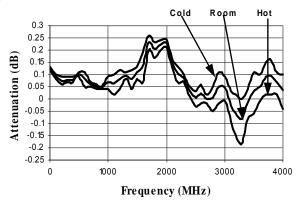
VSWR, 16 dB Bit

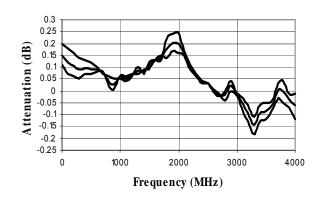
VSWR, Max. Attenuation

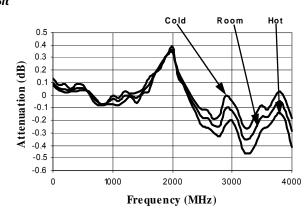

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.


Rev. V5

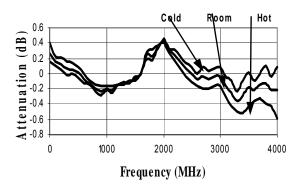
Typical Performance Curves


Typical Attenuation Deviation vs. Temperature for 0.5 dB Bit


Typical Attenuation Deviation vs. Temperature for 1 dB Bit


Typical Attenuation Deviation vs. Temperature for 2 dB Bit

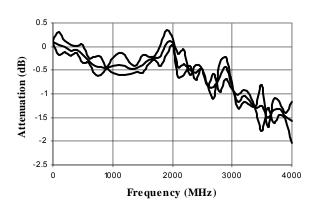
Typical Attenuation Deviation vs. Temperature for 4 dB Bit

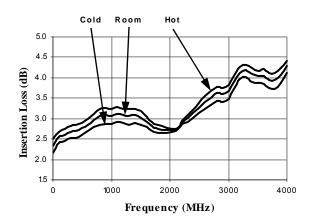


Typical Attenuation Deviation vs. Temperature for 8 dB

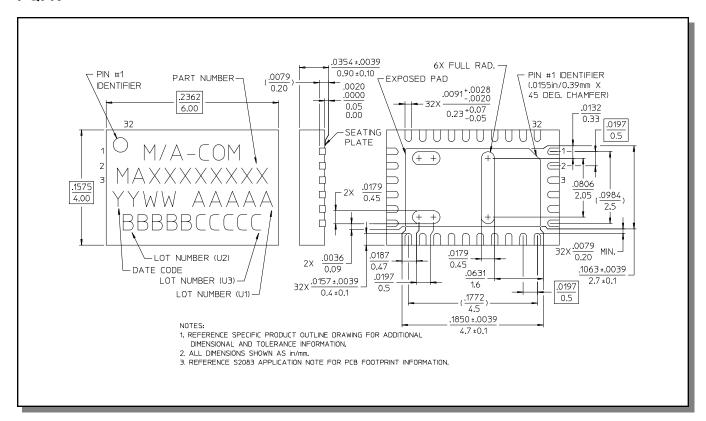
6

Typical Attenuation Deviation vs. Temperature for 16 dB Bit


- **ADVANCED:** Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
- and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.


Rev. V5

Typical Performance Curves


Typical Attenuation Deviation vs. Temperature at Maximum Atten.

Insertion Loss vs. Temperature

CSP-1, Lead-Free 4 x 6 mm, 32-lead **PQFN**[†]

Reference Application Note M538 for lead-free solder reflow recommendations.