

FEATURES

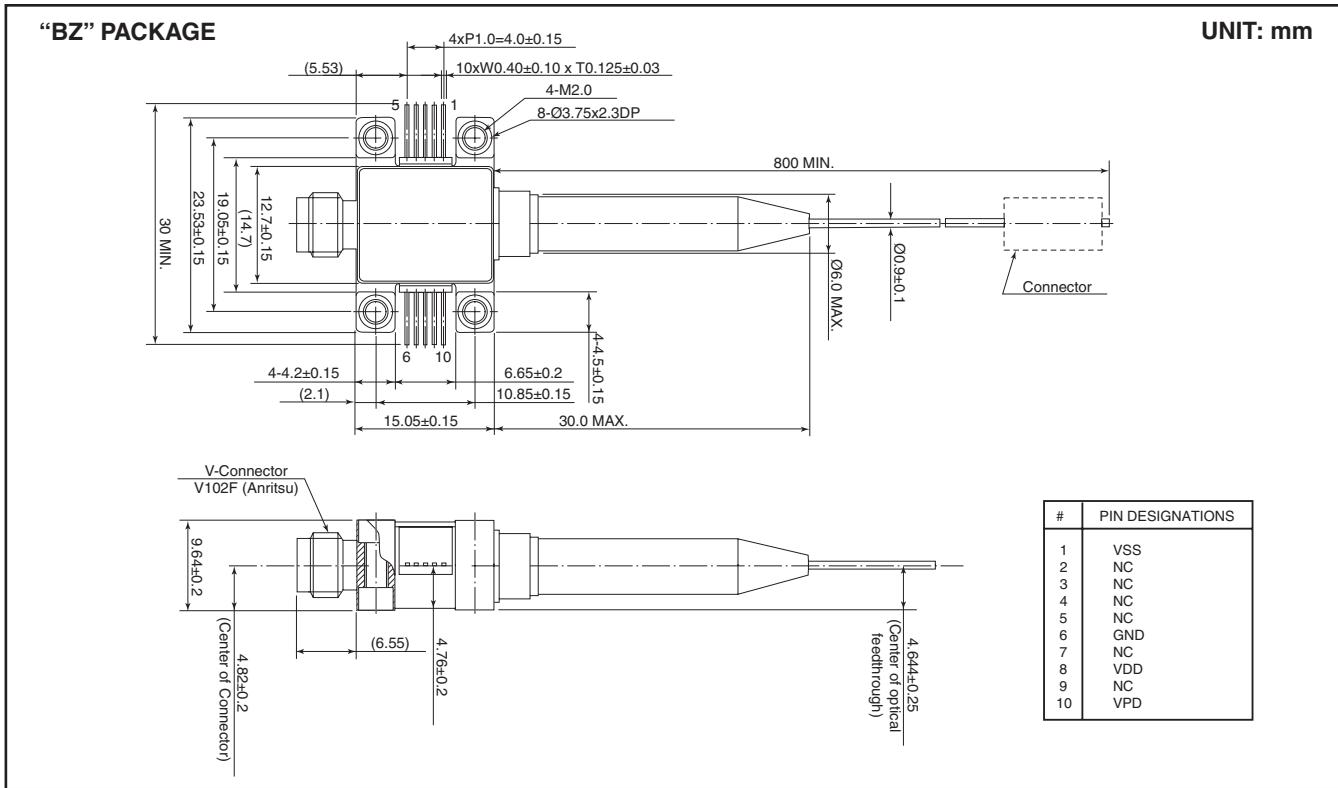
- Integrated Design optimizes Performance at High Bit Rates up to 40Gb/s
- Equivalent Input Noise Current: 30pA/ $\sqrt{\text{Hz}}$ (max.)
- Optical Return Loss (ORL): 27dB (min.)
- Package: V-Connector for Electrical Output Interface
- Simplifies Receiver Circuit Design

APPLICATIONS

This PIN with HEMT IC preamplifier is intended to function as an optical receiver for SONET, SDH, DWDM and other optical fiber systems operating at 40Gb/s. The typical transimpedance (Z_t) value of 150Ω optimizes the total bandwidth for 40Gb/s applications.

DESCRIPTION

The FRM5L442BZ incorporates a high bandwidth InGaAs PIN photo diode, a HEMT IC amplifier in a hermetically sealed, single-ended, V-Connector type package. The PIN is processed with modern MOVPE techniques resulting in reliable performance over a wide range of operating conditions. The lens coupling system and the single mode fiber are assembled using Nd YAG welding.


ABSOLUTE MAXIMUM RATINGS ($T_c=25^\circ\text{C}$, Unless otherwise specified)

Parameter	Symbol	Condition	Limits		Unit
			Min.	Max.	
Storage Temperature	T_{stg}		-40	85	$^\circ\text{C}$
Operating Case Temperature	T_c		0	70	$^\circ\text{C}$
PIN Bias Voltage	VR		-	5	V
PIN Bias Current	IR	$VR < 5\text{V}$	0	3	mW
CW Optical Power	P_{max}	CW, $VR < 5\text{V}$	-	6	dBm

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_C=0~70°C, λ=1550nm, VR=2.85V to 3.15V, V_{SS}=-1.9V to -2.1V, V_{DD}=6.65V to 7.35V, unless otherwise specified)

Parameter	Symbol	Condition	Limit			Unit
			Min.	Typ.	Max.	
PIN Responsivity	R	λ=1550nm, T _C =25°C	0.6	0.7	-	A/W
		λ=1550 - 1610nm, T _C =0 ~ 70°C	0.4	0.6	-	
Responsivity Variation by Polarization Change	PDL	PDL=10*Log(Rmax/Rmin)	-	0.1	0.5	dB
PIN Dark Current	I _D		-	-	10	μA
Bandwidth (3dB)	BW	T _C =25°C, Reference=average from 1GHz to 10GHz	35	40	-	GHz
		T _C =0°C ~ 70°C, Reference=average from 1GHz to 10GHz	30	35	-	
Gain Flatness	GF	T _C =25°C, 100MHz - 32GHz	-	-	3	dB
		T _C =0°C ~ 70°C, 100MHz - 27GHz	-	-	3	
Group Delay Deviation	GD	1GHz - 20GHz, 10% smoothing	-5	-	5	ps
		1GHz - 40GHz, 10% smoothing	-10	-	10	
Lower Frequency Cut-off	f _{cl}	Reference=100MHz, 3dB down	-	-	100	kHz
Output Voltage Swing for Linear Operation	V _{out}	1dB compression	500	-	-	mVpp
AC Transimpedance Gain	Z _t	Average from 2GHz to 10GHz	100	150	-	Ω
Equivalent Input Noise Current Density	i _n	Average from 100MHz to 19GHz	-	-	30	pA√Hz
Output Return Loss	S22	DC - 30GHz	10	-	-	dB
		30GHz - 40GHz	7	-	-	
Optical Return Loss	ORL	λ = 1550nm	27	-	-	dB
Power Supply Current	I _{SS}		-	8	30	mA
	I _{DD}		-	80	150	
Output Impedance			-	50	-	Ω

Notes

For further information please contact:

Eudyna Devices USA Inc.

2355 Zanker Rd.
San Jose, CA 95131-1138, U.S.A.
TEL: (408) 232-9500
FAX: (408) 428-9111
www.us.eudyna.com

Eudyna Devices Europe Ltd.

Network House
Norreys Drive
Maidenhead, Berkshire SL6 4FJ
United Kingdom
TEL: +44 (0) 1628 504800
FAX: +44 (0) 1628 504888

Eudyna Devices Asia Pte Ltd.

Hong Kong Branch
Rm. 1101, Ocean Centre, 5 Canton Rd.
Tsim Sha Tsui, Kowloon, Hong Kong
TEL: +852-2377-0227
FAX: +852-2377-3921

Eudyna Devices Inc.

Sales Division
1, Kanai-cho, Sakae-ku
Yokohama, 244-0845, Japan
TEL: +81-45-853-8156
FAX: +81-45-853-8170

CAUTION

Eudyna Devices Inc. products contain **gallium arsenide (GaAs)** which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- Do not put this product into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Eudyna Devices Inc. reserves the right to change products and specifications without notice. The information does not convey any license under rights of Eudyna Devices Inc. or others.

© 2004 Eudyna Devices USA Inc.
Printed in U.S.A.