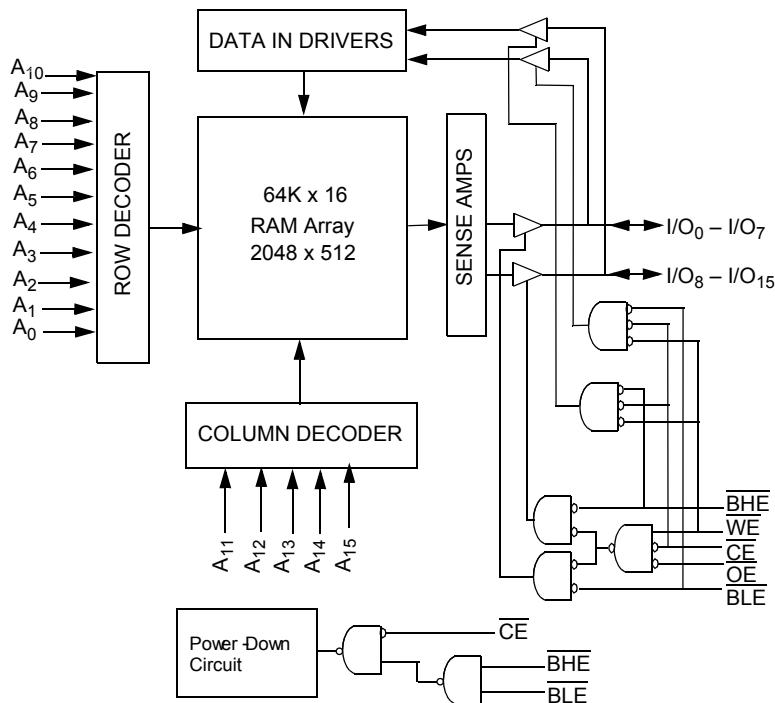


Features

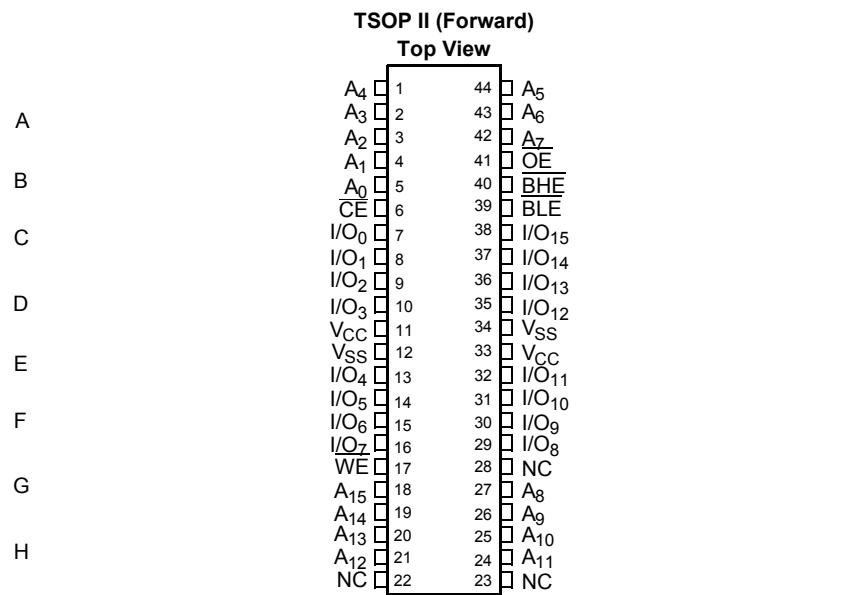
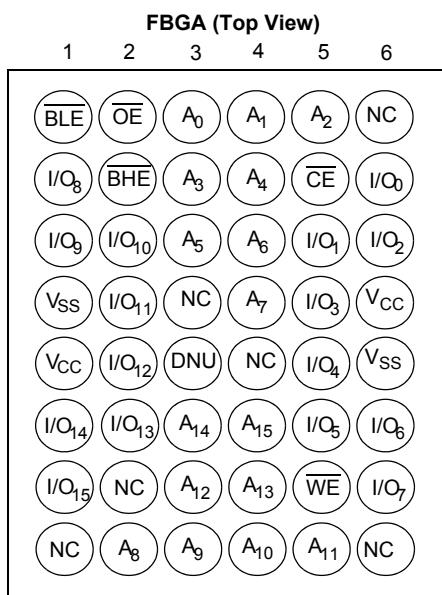
- **Very high speed: 45 ns**
- **Wide voltage range: 2.2V to 3.6V**
- **Pin compatible with CY62127BV**
- **Ultra-low active power**
 - **Typical active current: 0.85 mA @ $f = 1$ MHz**
 - **Typical active current: 5 mA @ $f = f_{MAX}$**
- **Ultra-low standby power**
- **Easy memory expansion with \overline{CE} and \overline{OE} features**
- **Automatic power-down when deselected**
- **Packages offered in a 48-ball FBGA and a 44-lead TSOP Type II**
- **Also available in Lead-Free 48-ball FBGA, and 44-lead TSOP Type II packages**

Functional Description^[1]


The CY62127DV30 is a high-performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device

also has an automatic power-down feature that significantly reduces power consumption by 90% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected (\overline{CE} HIGH or both \overline{BHE} and \overline{BLE} are HIGH). The input/output pins (I/O_0 through I/O_{15}) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH) or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O_0 through I/O_7), is written into the location specified on the address pins (A_0 through A_{15}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O_8 through I/O_{15}) is written into the location specified on the address pins (A_0 through A_{15}).



Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of read and write modes.

Logic Block Diagram

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on <http://www.cypress.com>.

Pin Configuration^[2, 3]

Product Portfolio

Product	V _{CC} Range (V)			Speed (ns)	Power Dissipation					
					Operating, I _{CC} (mA)		Standby, I _{SB2} (μA)			
	Min.	Typ.	Max.		f = 1 MHz		f = f _{MAX}		Typ. ^[4]	Max.
CY62127DV30L	2.2	3.0	3.6	45	0.85	1.5	6.5	13	1.5	5
CY62127DV30LL				45	0.85	1.5	6.5	13	1.5	4
CY62127DV30L	2.2	3.0	3.6	55	0.85	1.5	5	10	1.5	5
CY62127DV30LL				55	0.85	1.5	5	10	1.5	4
CY62127DV30L	2.2	3.0	3.6	70	0.85	1.5	5	10	1.5	5
CY62127DV30LL				70	0.85	1.5	5	10	1.5	4

Notes:

2. NC pins are not connected to the die.
3. E3 (DNU) can be left as NC or Vss to ensure proper operation. (Expansion Pins on FBGA Package: E4 - 2M, D3 - 4M, H1 - 8M, G2 - 16M, H6 - 32M).
4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.3V to 3.9V

DC Voltage Applied to Outputs in High-Z State^[5] -0.3V to $\text{V}_{\text{CC}} + 0.3\text{V}$

DC Input Voltage^[5] -0.3V to $\text{V}_{\text{CC}} + 0.3\text{V}$

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage $> 2001\text{V}$
(per MIL-STD-883, Method 3015)

Latch-up Current $> 200\text{ mA}$

Operating Range

Range	Ambient Temperature (T_A)	$\text{V}_{\text{CC}}^{[6]}$
Industrial	-40°C to $+85^{\circ}\text{C}$	2.2V to 3.6V

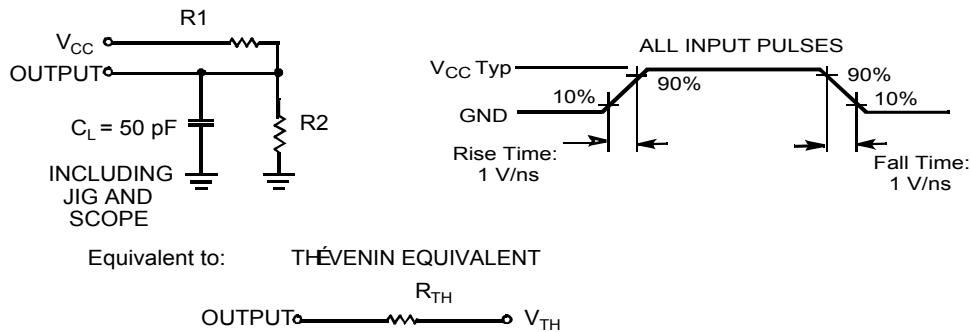
DC Electrical Characteristics (Over the Operating Range)

Parameter	Description	Test Conditions			CY62127DV30-45			CY62127DV30-55			CY62127DV30-70			Unit
		Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	
V_{OH}	Output HIGH Voltage	$2.2 \leq \text{V}_{\text{CC}} \leq 2.7$	$\text{I}_{\text{OH}} = -0.1\text{ mA}$	2.0			2.0			2.0				V
		$2.7 \leq \text{V}_{\text{CC}} \leq 3.6$	$\text{I}_{\text{OH}} = -1.0\text{ mA}$	2.4			2.4			2.4				
V_{OL}	Output LOW Voltage	$2.2 \leq \text{V}_{\text{CC}} \leq 2.7$	$\text{I}_{\text{OL}} = 0.1\text{ mA}$			0.4			0.4			0.4		V
		$2.7 \leq \text{V}_{\text{CC}} \leq 3.6$	$\text{I}_{\text{OL}} = 2.1\text{ mA}$			0.4			0.4			0.4		
V_{IH}	Input HIGH Voltage	$2.2 \leq \text{V}_{\text{CC}} \leq 2.7$			1.8		$\text{V}_{\text{CC}} + 0.3$	1.8		$\text{V}_{\text{CC}} + 0.3$	1.8		$\text{V}_{\text{CC}} + 0.3$	V
		$2.7 \leq \text{V}_{\text{CC}} \leq 3.6$			2.2		$\text{V}_{\text{CC}} + 0.3$	2.2		$\text{V}_{\text{CC}} + 0.3$	2.2		$\text{V}_{\text{CC}} + 0.3$	
V_{IL}	Input LOW Voltage	$2.2 \leq \text{V}_{\text{CC}} \leq 2.7$			-0.3		0.6	-0.3		0.6	-0.3		0.6	V
		$2.7 \leq \text{V}_{\text{CC}} \leq 3.6$			-0.3		0.8	-0.3		0.8	-0.3		0.8	
I_{IX}	Input Leakage Current	$\text{GND} \leq \text{V}_I \leq \text{V}_{\text{CC}}$			-1		+1	-1		+1	-1		+1	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq \text{V}_O \leq \text{V}_{\text{CC}}$, Output Disabled			-1		+1	-1		+1	-1		+1	μA
I_{CC}	V_{CC} Operating Supply Current	$f = f_{\text{MAX}} = 1/\text{t}_{\text{RC}}$	$\text{V}_{\text{CC}} = 3.6\text{V}$,		6.5	13		5	10		5	10		mA
		$f = 1\text{ MHz}$	$\text{I}_{\text{OUT}} = 0\text{ mA}$, CMOS level		0.85	1.5		0.85	1.5		0.85	1.5		
I_{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\text{CE} \geq \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \leq 0.2\text{V}$, $f = f_{\text{MAX}}$ (Address and Data Only), $f = 0$ (OE, WE, BHE and BLE)			L		1.5	5		1.5	5		1.5	μA
					LL		1.5	4		1.5	4		1.5	4
I_{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\text{CE} \geq \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{IN}} \leq 0.2\text{V}$, $f = 0$, $\text{V}_{\text{CC}} = 3.6\text{V}$			L		1.5	5		1.5	5		1.5	μA
					LL		1.5	4		1.5	4		1.5	4

Notes:

5. $\text{V}_{\text{IL}(\text{min.})} = -2.0\text{V}$ for pulse durations less than 20 ns., $\text{V}_{\text{IH}(\text{max.})} = \text{V}_{\text{CC}} + 0.75\text{V}$ for pulse durations less than 20 ns.

6. Full device Operation Requires linear Ramp of V_{CC} from 0V to $\text{V}_{\text{CC}(\text{min.})}$ & V_{CC} must be stable at $\text{V}_{\text{CC}(\text{min.})}$ for 500 μs .

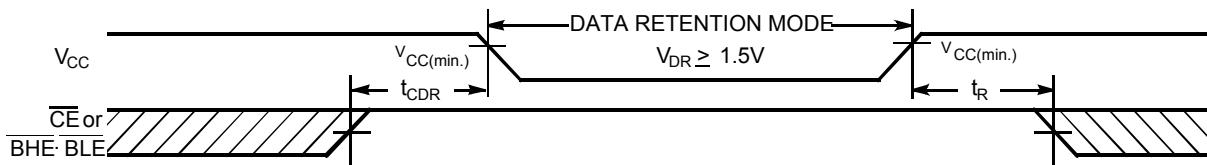

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ\text{C}$, $f = 1\text{ MHz}$ $V_{CC} = V_{CC(\text{typ})}$	8	pF
C_{OUT}	Output Capacitance		8	pF

Thermal Resistance

Parameter	Description	Test Conditions	FBGA	TSOP II	Unit
θ_{JA}	Thermal Resistance (Junction to Ambient) ^[7]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	76	°C/W
θ_{JC}	Thermal Resistance (Junction to Case) ^[7]		12	11	°C/W

AC Test Loads and Waveforms^[8]



Parameters	2.5V (2.2– 2.7V)	3.0V (2.7– 3.6V)	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R_{TH}	8000	645	Ω
V_{TH}	1.2	1.75	V

Data Retention Characteristics

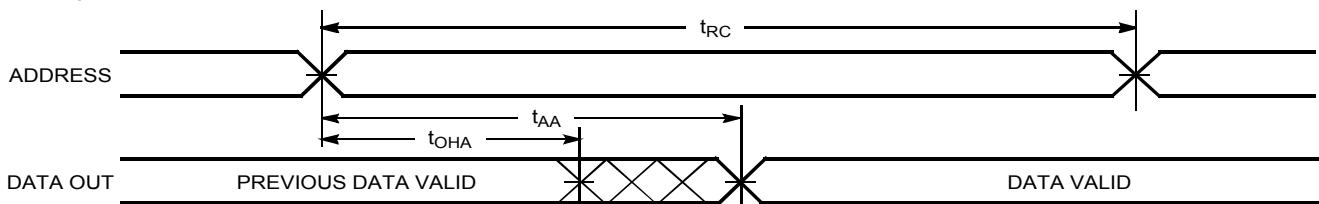
Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V_{CC} for Data Retention		1.5			V
I_{CCDR}	Data Retention Current	$V_{CC} = 1.5\text{V}$, $CE \geq V_{CC} - 0.2\text{V}$, $V_{IN} \geq V_{CC} - 0.2\text{V}$ or $V_{IN} \leq 0.2\text{V}$	L		4	μA
t_{CDR} ^[7]	Chip Deselect to Data Retention Time		LL		3	
t_R ^[9]	Operation Recovery Time		0			ns
			200			μs

Data Retention Waveform^[10]

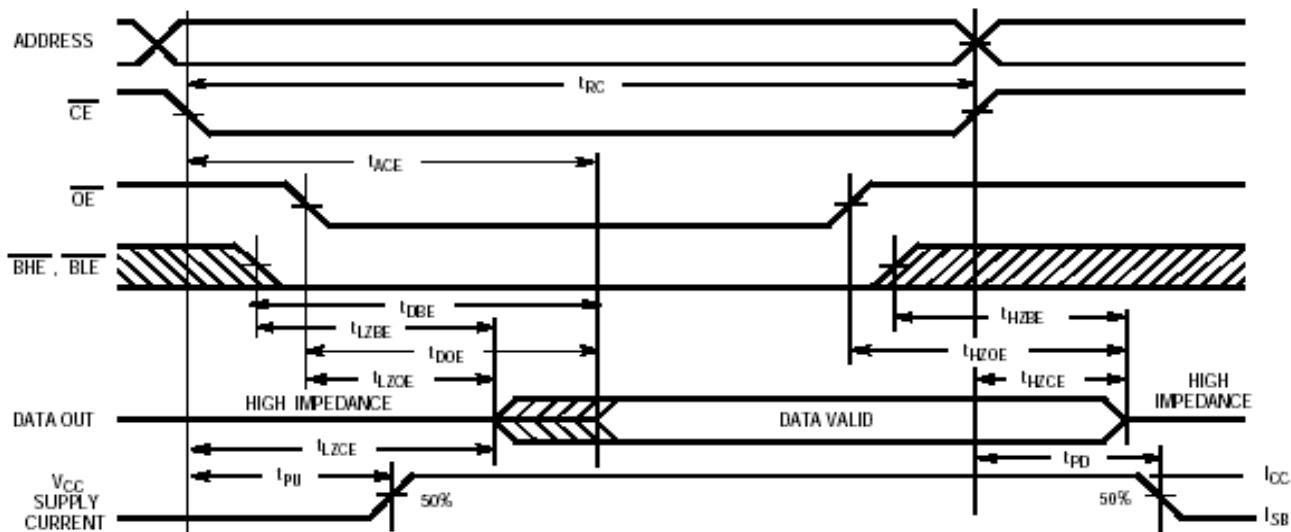
Notes:

7. Tested initially and after any design or process changes that may affect these parameters.
8. Test condition for the 45-ns part is a load capacitance of 30 pF.
9. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\text{min.})} > 200\text{ }\mu\text{s}$.
10. BHE-BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the Chip Enable signals or by disabling both.

Switching Characteristics (Over the Operating Range)^[11]


Parameter	Description	CY62127DV30-45 ^[8]		CY62127DV30-55		CY62127DV30-70		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle								
t_{RC}	Read Cycle Time	45		55		70		ns
t_{AA}	Address to Data Valid		45		55		70	ns
t_{OHA}	Data Hold from Address Change	10		10		10		ns
t_{ACE}	\overline{CE} LOW to Data Valid		45		55		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		25		25		35	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[12]	5		5		5		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[12,14]		15		20		25	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[12]	10		10		10		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[12,14]		20		20		25	ns
t_{PU}	\overline{CE} LOW to Power-up	0		0		0		ns
t_{PD}	\overline{CE} HIGH to Power-down		45		55		70	ns
t_{DBE}	$\overline{BLE/BHE}$ LOW to Data Valid		45		55		70	ns
$t_{LZBE}^{[13]}$	$\overline{BLE/BHE}$ LOW to Low Z ^[12]	5		5		5		ns
t_{HZBE}	$\overline{BLE/BHE}$ HIGH to High-Z ^[12,14]		15		20		25	ns
Write Cycle^[15]								
t_{WC}	Write Cycle Time	45		55		70		ns
t_{SCE}	\overline{CE} LOW to Write End	40		40		60		ns
t_{AW}	Address Set-up to Write End	40		40		60		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-up to Write Start	0		0		0		ns
t_{PWE}	\overline{WE} Pulse Width	35		40		50		ns
t_{BW}	$\overline{BLE/BHE}$ LOW to Write End	40		40		60		ns
t_{SD}	Data Set-up to Write End	25		25		30		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[12,14]		15		20		25	ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[12]	10		10		5		ns

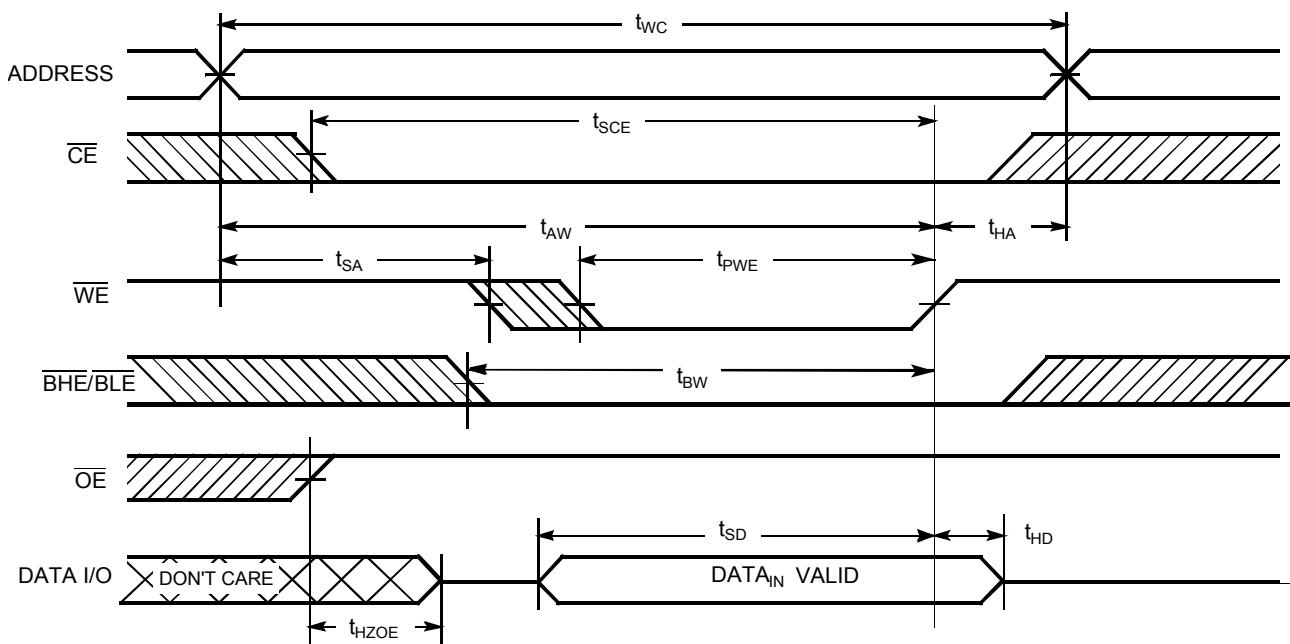
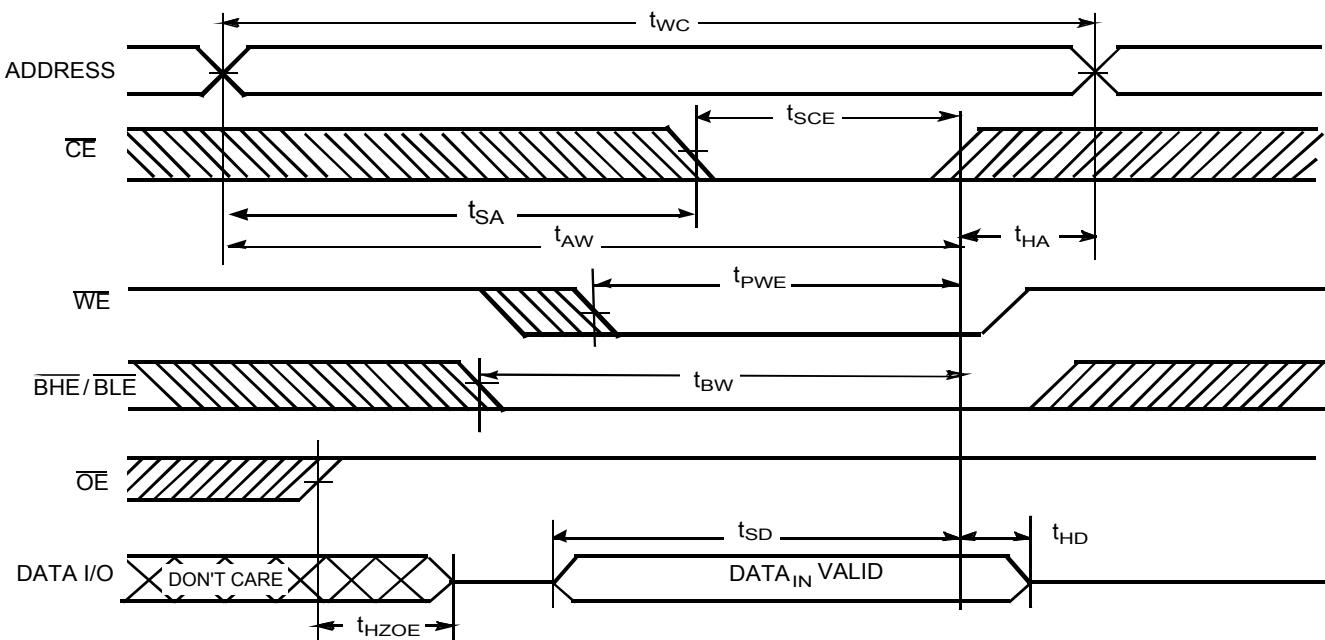
Notes:


11. Test conditions assume signal transition time of 1V/ns or less, timing reference levels of $V_{CC(\text{typ.})}/2$, input pulse levels of 0 to $V_{CC(\text{typ.})}$, and output loading of the specified I_{OL} .
12. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
13. If both byte enables are toggled together, this value is 10 ns.
14. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
15. The internal Write time of the memory is defined by the overlap of WE, $CE = V_{IL}$, BHE and/or $BLE = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[16,17]

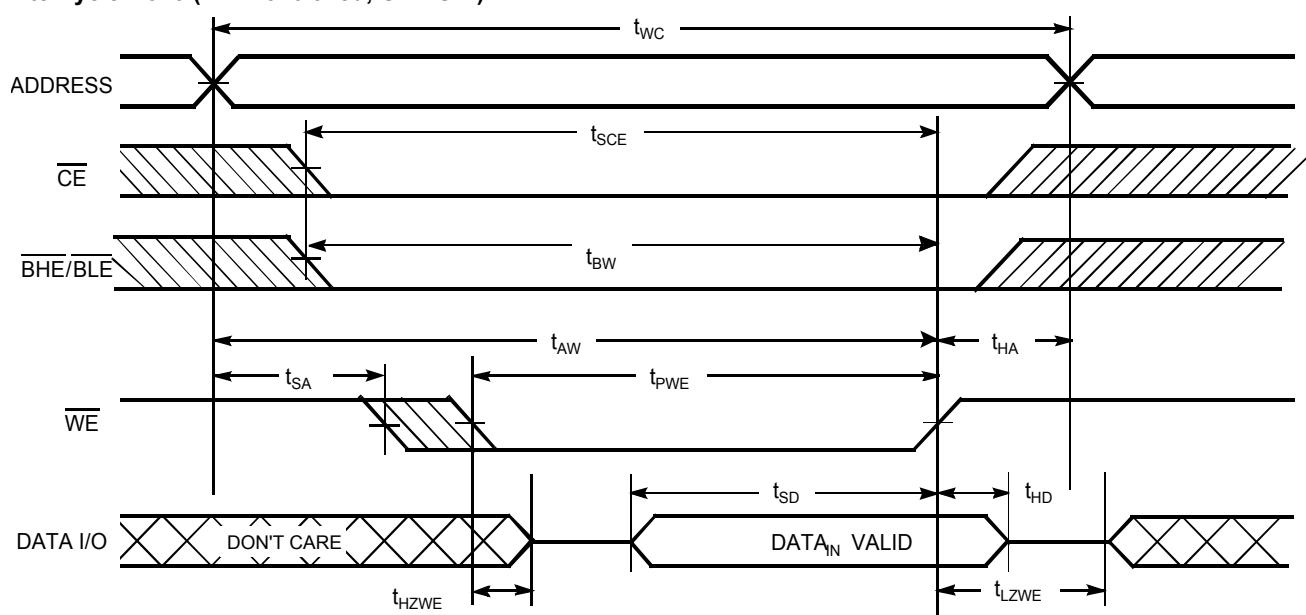
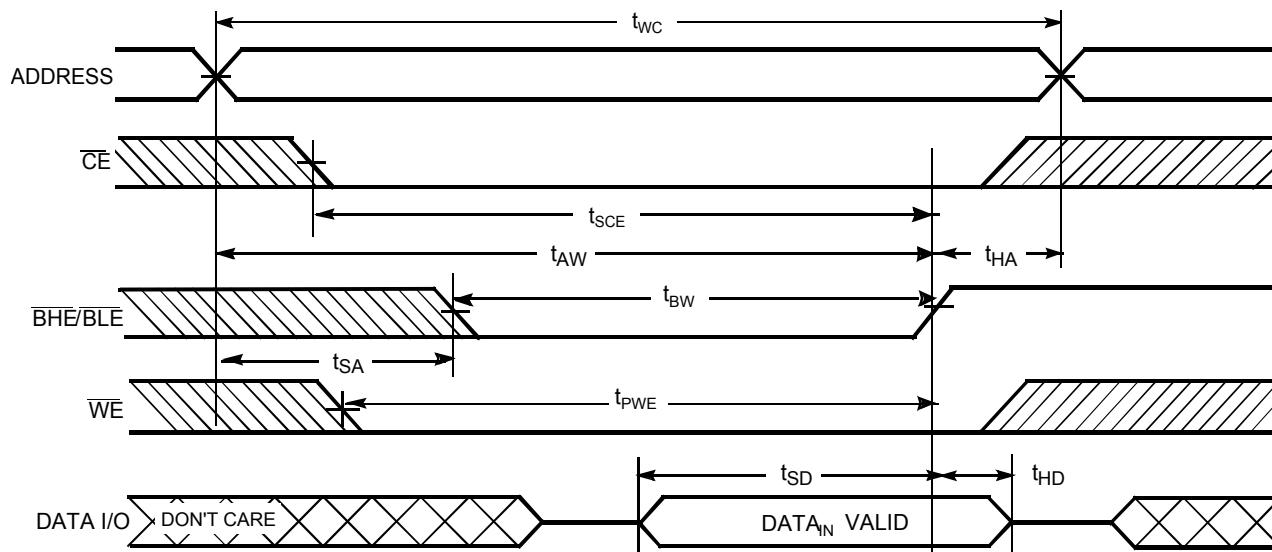
Read Cycle No. 2 (OE Controlled)^[16,17, 18]

Notes:

16. Device is continuously selected. \overline{OE} , \overline{CE} = V_{IL} , \overline{BHE} , \overline{BLE} = V_{IL} .

17. \overline{WE} is HIGH for Read cycle.



18. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 (\overline{WE} Controlled)^[14, 15, 19, 20, 21]

Write Cycle No. 2 (\overline{CE} Controlled)^[14, 15, 19, 20, 21]

Notes:

19. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.

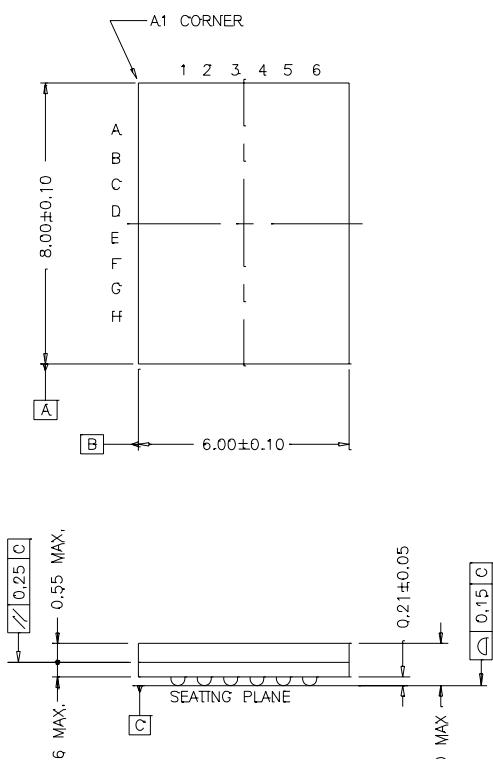
20. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

21. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

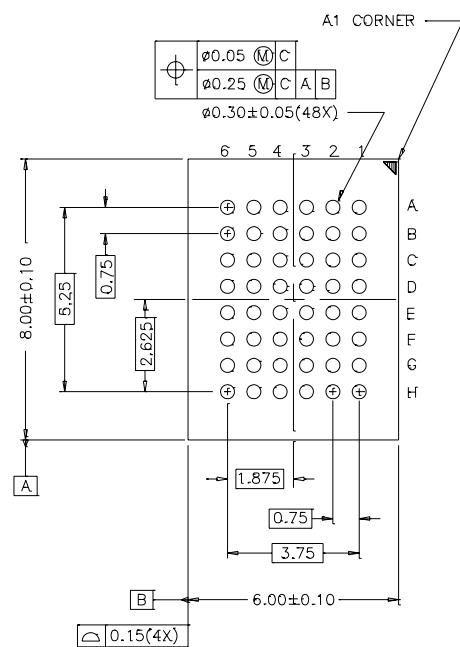
Switching Waveforms (continued)
Write Cycle No. 3 (WE Controlled, OE LOW)^[20, 21]

Write Cycle No. 4 (BHE-/BLE-controlled, OE LOW)^[20, 21]

Truth Table


CE	WE	OE	BHE	BLE	I/O₀–I/O₇	I/O₈–I/O₁₅	Mode	Power
H	X	X	X	X	High Z	High Z	Deselect/Power-down	Standby (I _{SB})
X	X	X	H	H	High Z	High Z	Deselect/Power-down	Standby (I _{SB})
L	H	L	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	H	L	H	L	Data Out	High Z	Read Lower Byte Only	Active (I _{CC})
L	H	L	L	H	High Z	Data Out	Read Upper Byte Only	Active (I _{CC})
L	H	H	L	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	H	H	H	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	H	H	L	H	High Z	High Z	Output Disabled	Active (I _{CC})
L	L	X	L	L	Data In	Data In	Write	Active (I _{CC})
L	L	X	H	L	Data In	High Z	Write Lower Byte Only	Active (I _{CC})
L	L	X	L	H	High Z	Data In	Write Upper Byte Only	Active (I _{CC})

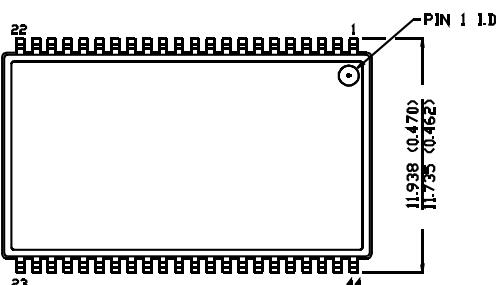
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY62127DV30LL-45BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62127DV30LL-45BVXI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm) (Pb-Free)	
	CY62127DV30LL-45ZSI	ZS44	44-lead TSOP Type II	
	CY62127DV30LL-45ZSXI	ZS44	44-lead TSOP Type II (Pb-Free)	
55	CY62127DV30L-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62127DV30LL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62127DV30LL-55BVXI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm) (Pb-Free)	
	CY62127DV30L-55ZSI	ZS44	44-lead TSOP Type II	
	CY62127DV30L-55ZSXI	ZS44	44-lead TSOP Type II (Pb-Free)	
	CY62127DV30LL-55ZSI	ZS44	44-lead TSOP Type II	
70	CY62127DV30L-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62127DV30LL-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
	CY62127DV30LL-70BVXI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm) (Pb-Free)	
	CY62127DV30L-70ZSI	ZS44	44-lead TSOP Type II	
	CY62127DV30LL-70ZSI	ZS44	44-lead TSOP Type II	

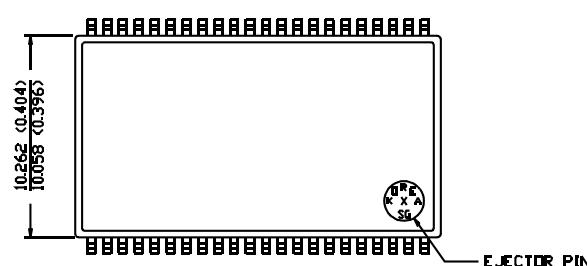
Package Diagrams
48-Lead VFBGA (6 x 8 x 1 mm) BV48A

TOP VIEW

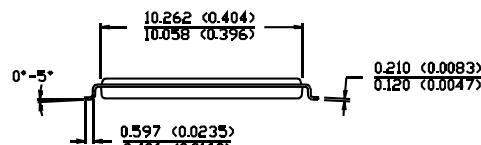
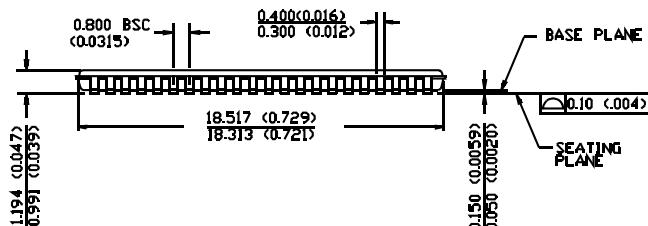
BOTTOM VIEW



51-85150-*B


Package Diagrams

44-pin TSOP II ZS44



DIMENSION IN MM (INCH)
MAX
MIN

TOP VIEW

BOTTOM VIEW

51-85087-*A

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY62127DV30 MoBL® 1 Mb (64K x 16) Static RAM Document Number: 38-05229				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	117690	08/27/02	JUI	New Data Sheet
*A	127311	06/13/03	MPR	Changed From Advanced Status to Preliminary Changed Isb2 to 5 μ A (L), 4 μ A (LL) Changed Iccdr to 4 μ A (L), 3 μ A (LL) Changed Cin from 6 pF to 8 pF
*B	128341	07/22/03	JUI	Changed from Preliminary to Final Add 70-ns speed, updated ordering information
*C	129000	08/29/03	CDY	Changed Icc 1 MHz typ from 0.5 mA to 0.85 mA
*D	316039	See ECN	PCI	Added 45-ns Speed Bin in AC, DC and Ordering Information tables Added Footnote # 8 on page #4 Added Lead-Free Package ordering information on page# 9 Changed 44-lead TSOP-II package name from Z44 to ZS44