

SOP-8

Pin Definition:

1. VIN 8. GND 2. VOUT 7. GND 3. ADJ 6. GND 4. EN 5. GND

General Description

TS2580 Series are step-down switching regulators with all required active functions. It is capable of driving 2A load with excellent line and load regulations. These devices are available for adjustable output version. TS2580 series operates at a switching frequency of 52kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. It substantially not only reduces the area of board size but also the size of heat sink, and in some cases no heat sink is required. The $\pm 4\%$ tolerance on output voltage within specified input voltages and output load conditions is guaranteed. Also, the oscillator frequency accuracy is within $\pm 10\%$. External shutdown is included. Featuring 100μ A (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- Adjustable Output Voltage Range 1.23V~38.5V
- 52kHz fixed switching frequency
- Voltage Mode Non-synchronous PWM control
- Thermal Shutdown and Current Limit Protection
- ON/OFF Shutdown Control Input
- Short Circuit Protect (SCP)
- Operating Voltage Can be up to 40V
- Output Load Current 2A
- Low Power Standby Mode

Ordering Information

Part No.	Package	Packing
TS2580CS RL	SOP-8	2.5kpcs / 13" Reel
TS2580CS RLG	SOP-8	2.5kpcs / 13" Reel

Note: "G" dénotes Halogen Free Product.

Application

- Simple High-efficiency Step down Regulator
- Charger
- Positive to Negative Converter

Absolute Maximum Rating

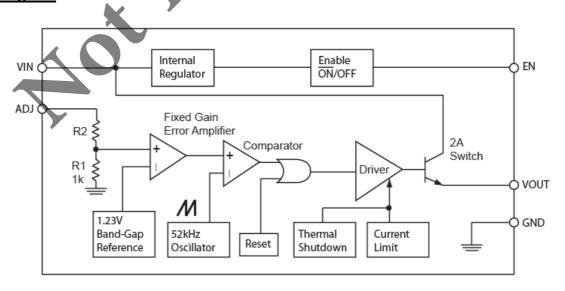
Parameter	Symbol	Limit	Unit	
Maximum Supply Voltage	V _{CC}	+45	V	
Recommend Operating Supply Voltage	V _{OP}	4.5 to 40	V	
SW, EN Pin Input Voltage	V_{SW}, V_{EN}	-0.3 to +40	V	
Feedback Pin Voltage	V_{FB}	-0.3 to +25	V	
Power Dissipation	P_{D}	Internally Limited	W	
Output Voltage to Ground	V _{OUT}	-1	V	
Storage Temperature Range	T _{ST}	-65 to +150	°C	
Operating Temperature Range	T _{OP}	-40 to +125	°C	
ESD Susceptibility (HBM)		2	kV	

Thermal Information

Parameter	Symbol	Maximum	Unit
Thermal Resistance (Junction to Case)	Θ _{JC}	20	°C/W
Thermal Resistance (Junction to Ambient)	Θ_{JA}	60	°C/W

Note1: Θ_{JA} is measured on the PCB with minimum copper area.

Note2: Θ_{JA} is measured with the PCB copper area (need connect to GROUND pins) of approximately 0.5 in²



Electrical Specifications (Ta = 25°C unless otherwise noted, V_{IN}=12V, I_{LOAD} =0.5A)

Parameter	neter Symbol Test Condition		Min	Тур	Max	Unit		
Output Feedback		V_{FB}	4.5V≤ V _{IN} ≤40V	1.180	1.23	1.280	V	
- Catput i Coaback			0.2A≤ I _{LOAD} ≤3A	1.100	1.20	1.200		
Efficiency		η	$V_{IN} = 12V$, $I_{LOAD} = 3A$, $V_{OUT} = 3.3V$		78		%	
Feedback Bias Cu	ırrent	I _{FB}	V _{FB} = 1.3V (Adjustable Version)		10	50	nA	
Oscillator Frequen	ісу	Fosc		40	52	65	KHz	
Current Limit			Pear Current, no outside circuit	2.2	3		А	
Current Limit		I _{CL}	V _{FB} =0V force driver on	2.2	7			
Saturation Valtage		W	I _{OUT} =2A, No outside circuit	A (1.2	1.4	V	
Saturation Voltage	;	V_{SAT}	V _{FB} =0V force driver on			1.4	V	
ON/OFF Pin Logic	Input	V_{IL}	Low (regulator ON)		1.3	0.6	V	
Threshold Voltage		V_{IH}	High (regulator OFF)	2.0	1.3		V	
ON/OFF Pin Logic Input Current		lι	V _{LOGIC} =2.5V (OFF)		-0.1	-10	۸	
ON/OFF PIN LOGIC	input Current	I _H	V _{LOGIC} =0V (ON)		-0.01	-1	μA	
Maximum Duty Cycle (ON)			V _{FB} =0V force driver on		100			
Maximum Duty Cv	(olo (OEE)	DC	V _{FB} =1.5V for ADJ version force		0		%	
Maximum Duty Cycle (OFF)			driver off		U			
Quiescent Current		Ι _Q	V _{FB} =1.5V force driver off		4	8	mΑ	
Standby Quiescent Current		I _{STBY}	ON/OFF pin=5V		100	200	μA	
		ISIBY	V _{IN} =40V		100	200	μΛ	
SW Pin Leakage SW pin=0V			No outside circuit, V _{FB} =1.5V for			-200	uA	
Current	Ovv pin-ov	I _{SWL}	ADJ version force force driver off			-200	u/\	
	SW pin=-0.8B		V _{IN} =40V force driver off		-5		mA	

Block Diagram

Pin Function Description

VIN

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

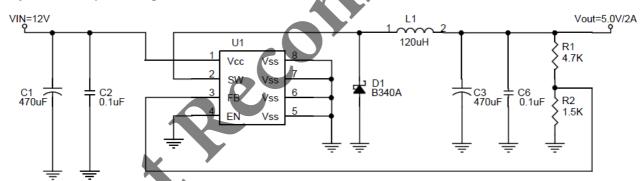
Ground

Circuit ground

SW Output

Internal switch. The voltage at this pin switches between (+Vcc – Vsat) and approximately – 0.5V, with a duty cycle of approximately Vout / Vcc. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Adjustable


Adjustment Input

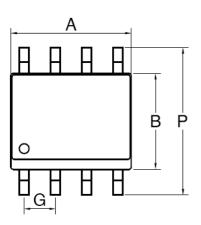
Enable

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 100uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of Vcc) shuts the regulator down. If this shutdown feature is not needed, the EN pin can be wired to the ground pin.

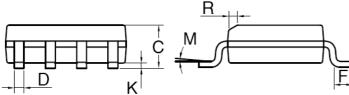
Typical Application Circuit

1. Adjustable output voltage version

Resistor select for output voltage setting


Vout	R1	R2	
5V	4.7K	1.5K	
50	5.6K	1.8K	
3.3V	2.5K	1.5K	
	3.0K	1.8K	
2.5V	1.8K	1.8K	
1.8V	0.82K	1.8K	

L1 recommend value (I _{OUT} =2A)						
Vout 2.5V 3.3V 5V 12V						
V _{IN} =12V	120uH	120uH	120uH	NA		
V _{IN} =24V 120uH 120uH 120uH 150uH						



SOP-8 Mechanical Drawing

SOP-8 DIMENSION						
DIM	MILLIM	MILLIMETERS		INCHES		
DIIVI	MIN	MAX	MIN	MAX.		
Α	4.80	5.00	0.189	0.196		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	1.27BSC		BSC		
K	0.10	0.25	0.004	0.009		
М	0°	7°	00	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

Marking Diagram

Y = Year Code
M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)

4/5

(O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

Version: B11

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor: