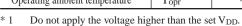
GN8062

GaAs IC

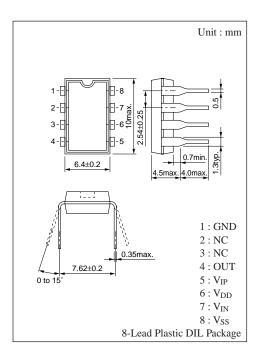
For semiconductor laser drive

■ Features


- High-speed switching
- High output

* 2

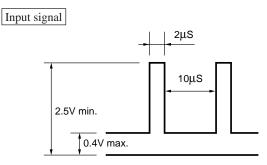
• Pulse current and DC bias current can be controlled.


■ Absolute Maximum Ratings (Ta = 25°C)

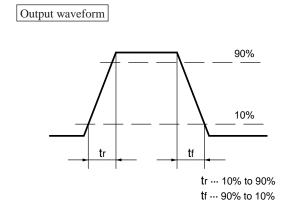
Parameter	Symbol	Rating	Unit
Power supply voltage	V_{DD}	6	V
	V _{SS}	- 6	V
Pin voltage	V _{IN}	- 0.5 to V _{DD} -1.5	V
	V _{Ip} * 5	1.5 to V _{DD}	V
	V _{OUT} * 1	V_{DD}	V
Power current	I_{DD}^{*4}	50	mA
	I _{SS}	40	mA
Output current	I _{OUT}	145	mA
Allowable power dissipation	P _D * 2	700	mW
Channel temperature	T _{ch}	150	°C
Storage temperature	T _{stg}	- 55 to +150	°C
Operating ambient temperature	Topr*3	-10 to +75	°C

Guaranteed value of the unit at Ta= 25°C. Range in which the IC circuit function operates and not the guaranteed range of electric characteristics.

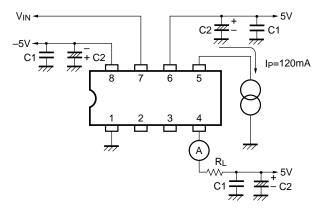
■ Electrical Characteristics (Ta = 25°C) Test circuit Parameter Symbol Condition Min Max Unit Typ V_{DD} = 5V, V_{SS} = –5V, V_{IN} = 2V, I_p =120mA, R_L =10 Ω 100 120 mAIpmax Pulse output current $V_{DD} = 5V$, $V_{SS} = -5V$, $V_{IN} = 0.4V$, $I_{D} = 120$ mA, $R_{L} = 10\Omega$ I_{pmin.} 1 1 5 mA I_{DD}^{*1} 2 $V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 0.4V$ 35 50 mASupply current 2 $I_p = 0, R_L = 10\Omega$ 25 I_{SS} 40 mA $V_{IH} \\$ 2.5 V Input voltage 0.4 V $V_{IL} \\$ 3 $V_{DD} = 5V, V_{SS} = -5V, I_p = 100 \text{mA}$ 7 Rise time t_f^{*2} 3 $R_I = 10\Omega$ 5 Fall time ns

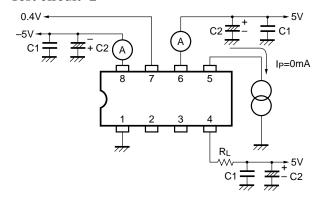

^{* 4} I_{DD} is a current when the pulse output current is zero.

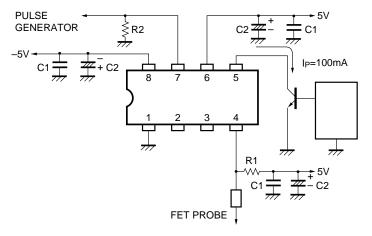
Voltage when the constant current source has been connected.


GaAs MMICs GN8062

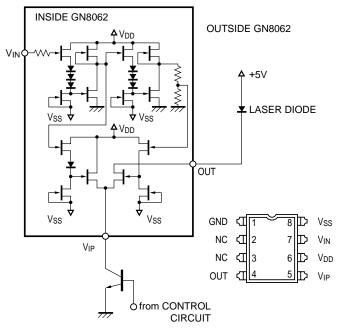
* 1 The current value to be supplied from the 5V power supply is a total sum of this value plus the pulse output current and bias output current.


* 2 Waveform of input and output signals


★ The rise/fall time of the input signal is 2ns (10 to 90%)


Test circuit 1

Test circuit 2



Test circuit 3

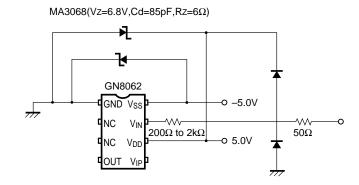
 $C_1: 0.1 \mu F$ $C_2: 3.3 \mu F$ $R_1: 10 \Omega$ $R_2: 50 \Omega$ GaAs MMICs GN8062

■ Block Diagram

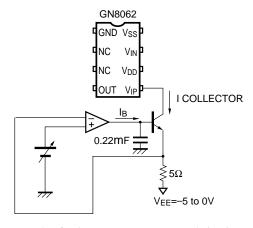
■ Caution for Handling

- 1) The recommended $V_{\rm IN}$ voltage is 2.5 to 3V for [H] and 0 to 0.4V for [L].
- 2) Do not apply V_{IN} while the power supply is OFF.
- 3) For the current source to be connected to the V_{IP} pin, use a Si bipolar transistor as shown in the circuit diagram.

(Example: 2SD874)


To connect a resistor to the emitter or collector, use a resistor of a few ohm. The use of higher resistor may cause large change in the voltage at the V_{IP} pin, and may make the output waveform distortion. (See the pulse output current control example).

To use another current control circuit, set so that the V_{IP} pin voltage becomes around 2V.


- 4) When mounting, minimize the connection distance between the semiconductor laser and IC, and use the chip parts (C, R) of less parasitic effects.
- 5) Attention to damage by the power surge (see the example connection of the pin protection circuit). During handling, take care to ground the human body and solder iron tip.
- 6) When the power supply is turned ON and OFF, set the current value of the current source connected to the $V_{\rm IP}$ pin to zero. This is important to prevent the large current flow through the semiconductor laser during power ON/OFF.

When the power supply is ON, be sure to turn ON V_{DD} , after V_{SS} is completely equal to – 5V. When the power supply is OFF, be sure to turn OFF V_{SS} , after V_{DD} is completely 0V.

7) Pay attention to release the heat.

Connection example of pin protection circuit

Example of pulse output current control circuit