Max

0.30

1.35

2.20

0.40

2.20

2.20

0.10

1.00

0.40

0.25

0.65 Nominal

SOT-363

Min

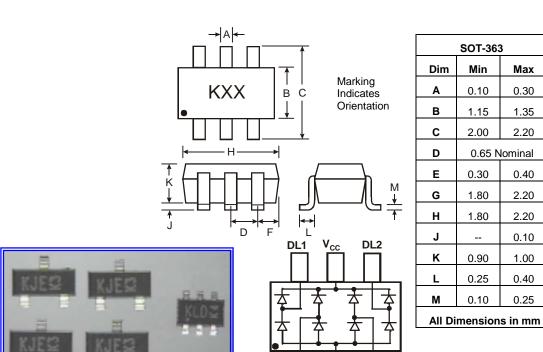
0.10

1.15

2.00

0.30

1.80


1.80

0.90

0.25

0.10

Introducing Our New Compact 4-line Array Schottky Bus Terminator for High-Speed Data Systems: QSBT40 !

Key Features

Diodes Inc's unique ASMCC (Application Specific Multi-Chip Component) high density implementation.

GND

- Four data line terminators in one SOT-363 surface mount package.
- Rugged discrete Schottky die construction for high surge capability.
- Eight diodes arranged as four series-connected pairs.
- Low Schottky forward voltage, far superior to switching diode (BAV99) approaches.
- Low capacitance for high speed interfaces.
- Provides transient protection for high-speed data lines in accordance with: IEC 1000-4-2 (ESD), IEC 1000-4-4 (EFT), and IEC 1000-4-5 (Lightning)

Availability

- **Samples Now In Stock**
- Production Quantity Lead Time: Stock 6 weeks
- Data Sheet at: www.diodes.com

Desirable Benefits

- Effectively terminates data lines avoiding complex impedance matching.
- Termination remains effective after changing data line configuration.
- Overshoots and transients clamped to Vcc and Ground.
- Up to 10:1 board space reduction over discrete Schottky diodes, with corresponding component placement cost savings.
- Compact 4-line array approach allows more effective and efficient distributed layout compared to multi-line monolithic arrays.

Applications – End Equipment

- 1) Designed to protect the sensitive I/O ports of TTL and CMOS ICs from over voltages caused by induced electrical transients. Typical applications include:
 - Data line protection for RS-232, RS-422, and RS-485 transceivers.
 - Micro-controller input port protection.
 - Secondary protection for T1 Line Cards
 - LAN/WAN Equipment
 - Latch-Up protection
 - Video protection
 - Set Top Box I/O line protection
 - Ethernet 10-Base-T protection
 - Protection of memory devices
- 2) Designed to provide Bus Termination for High Speed Data Systems --This low capacitance device appears virtually transparent to the data signal, however, effectively dissipates an over/under voltage to the Vcc or Ground rail during a voltage transient or a pulse reflection.
- 3) A compact solution to providing the necessary high speed data line termination, ensuring:
 - increased noise immunity,
 - reduced cross-talk between lines, and
 - reduced propagation delays resulting in reduced improper operation and data loss to a devices input circuitry.

Typical applications include:

High speed parallel data communication such as:

Hard Disk Drives

DAT Drives

Disc Arrays

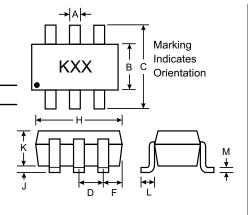
Network Peripherals

Termination of data lines

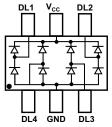
Termination networks

Ways It Surpasses Its Competition

- Far more rugged than monolithic arrays
- Much lower cost than monolithic arrays
- Ease of layout
- Ease of placement
- Significant space advantage over other discrete Schottky approaches


QUAD DATA LINE SCHOTTKY BUS TERMINATOR

Features


- Low Forward Voltage Drop
- Fast Switching
- Very High Density
- Ultra-Small Surface Mount Package
- PN Junction Guard Ring for Transient and ESD Protection

Mechanical Data

- Case: SOT-363, Molded Plastic
- Terminals: Solderable per MIL-STD-202, Method 208
- Polarity: See Diagrams Below
- Weight: 0.006 grams (approx.)
- Marking Code: KST

SOT-363					
Dim	Min	Max			
Α	0.10	0.30			
В	1.15	1.35			
С	2.00	2.20			
D	0.65 Nominal				
E	0.30	0.40			
Н	1.80	2.20			
J	_	0.10			
K	0.90	1.00			
L	0.25	0.40			
М	0.10	0.25			
All Dimensions in mm					

Maximum Ratings @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} VR	30	V	
Forward Continuous Current	I _{FM}	200	mA	
Non-Repetitive Peak Forward Surge Current @ t < 1.0s	I _{FSM}	600	mA	
Power Dissipation	Pd	200	mW	
Thermal Resistance Junction to Ambient Air	$R_{ hetaJA}$	625	K/W	
Operating and Storage Temperature Range	T _j , T _{STG}	-55 to +125 -65 to +125	°C	

Electrical Characteristics @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Тур	Max	Unit	Test Condition
Maximum Forward Voltage	V _{FM}	_	280 350 450 550 1000	mV	I _F = 0.1mA, tp < 300μS I _F = 1.0mA, tp < 300μS I _F = 10mA, tp < 300μS I _F = 30mA, tp < 300μS I _F = 100mA, tp < 300μS
Maximum Peak Reverse Current	I _{RM}	_	2	μΑ	V _R = 25V
Junction Capacitance (Note 1)	Cj	10.0	_	pF	V _R = 0, f = 1.0MHz
Reverse Recovery Time	t _{rr}	_	5.0	ns	$I_F = I_R = 10 \text{mA},$ $I_{rr} = 0.1 \text{ x } I_R, R_L = 100 \Omega$

Notes: 1. At V_R = 0V, DL(X) to V_{CC} or GND.