HFE4074-323/XXX

High Power Fiber Optic LED

FEATURES

- Provides 10 µW into 50/125 micron fiber
- High speed up to 100 MHz typical
- Optimized for 50 mA operation
- Designed to operate with Honeywell fiber optic receivers
- Mounting options

SMA single hole ST single hole SMA PCB ST PCB SMA 4 hole

DESCRIPTION

The HFE4074-323/XXX is a high radiance GaAlAs 850 nanometer LED optimized for coupling into small fiber core diameters at a forward current of 50 mA. The "Caprock"™ LED chip combines high power coupling with wide bandwidth. The peak wavelength is matched for use with Honeywell silicon fiber optic detectors and receivers.

APPLICATION

The HFE4074-323/XXX is a high radiance LED packaged in a fiber optic connector that aligns the optical axis of the base component to the axis of the optical fiber. Data rates can vary from DC to above 100 MHz depending upon component application. The LED converts electrical current into optical power that can be used in fiber optic communications. As the current varies (typically from 10 to 100 mA), the light intensity increases proportionally. When high currents (near the 100 mA range) flow through the HFE4074-323/XXX continually, heat sinking is recommended to maintain the expected long life. If the HFE4074-323/XXX is heat sinked the package has a typical thermal resistance of 250°C per watt. If not heat sinked, typical thermal resistance is 500°C per watt.

The HFE4074-323/XXX sends high optical power into standard fiber optic cables. A 0.25 mm diameter glass microlens over the "Caprock"™ junction collimates the light, increasing the intensity, which directs greater power into standard fiber optic cables.

HFE4074-323/XXX

High Power Fiber Optic LED

ELECTRO-OPTICAL CHARACTERISTICS (T_C = 40°C to +100°C unless otherwise stated)

PARAMETER	SYMBOL	MIN	TYP (1) MAX	UNITS	TEST CONDITIONS
Fiber Coupled Power	Poc					I _F = 50 mA, 50/125 micron,
						0.20 NA fiber (2)
HFE4074-323/XXX		10	20	40	μW	
		-20.0	-17.0	-14.0	dBm	
Forward Voltage	V _F	1.5	1.84	2.28	V	$I_F = 50 \text{ mA}$
Reverse Voltage	B _{VR}	1.8	5.0		V	$I_R = 10 \mu A$
Peak Wavelength	λ_{P}	810	850	885	nm	$I_F = 50 \text{ mA DC}$
Spectral Bandwidth (FWHM)	Δλ		50		nm	$I_F = 50 \text{ mA DC}$
Response Time						1 V Prebias, 100 mA peak (3)
10-90%	t _R		3	6.3	ns	
90-10%	tϝ		5	6.3	ns	
Analog Bandwidth	BWE		100		MHz	I _F = 100 mA DC, sinusoidal
						modulation (3)
Po Temperature Coefficient	ΔΡο/ΔΤ		-0.02		dB/°C	$I_F = 50 \text{ mA}$
Series Resistance	Rs		4.0		Ω	DC
Capacitance	С		35		рF	$V_R = 0 V, f = 1 MHz$

Motos

- 1. Typical specifications are for operations at T_C= 25°C.
- 2. HFE4074-323/XXX is tested using a 50/125 micron fiber located in a special fixture. The fiber is mechanically centered with respect to the outside can diameter. Actual coupled power values may vary due to mechanical alignment procedures and/or receptacle and fiber tolerances.
- 3. HFE4074-323/XXX must be heat sinked for continuous I_F > 50 mA operation (i.e. mounted in a metal connector with thermally conductive epoxy).

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted)

Storage temperature -65 to + 150°C
Case operating temperature -40 to +100°C
Lead solder temperature 260°C, 10 s
Continuous forward current 50 mA
Continuous forward current 100 mA

(heat sinked)

Reverse voltage 1 V @ 10 μA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

FIBER INTERFACE

Honeywell LEDs are designed to interface with multimode fiber with sizes ranging from 50/125 to 200/230 microns. Honeywell performs final tests using 50/125 micron core fiber. All multimode fiber optic cables between 50/125 and 200/230 should operate with similar excellent performance. See table for typical powers.

TYPICAL COUPLED POWER (µW/dBm) @ I = 50mA

Dia.	Index	N.A.	-323
8/125	Step		0.6/-32.0
50/125	Graded	0.20	20/-17.0
62.5/125	Graded	0.28	44/-13.6
100/140	Graded	0.29	116/-9.4

HFE4074-323/XXX

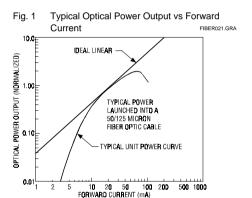
High Power Fiber Optic LED

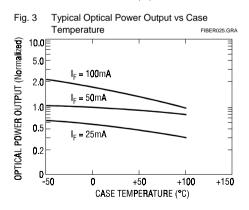
ORDER GUIDE	
Description	Catalog Listing
Standard screening, minimum power out 10 µW, t _r /t _f < 6.5 ns	HFE4074-323/XXX

MOUNTING OPTIONS

substitute XXX with one of the following 3 letter combinations

 SMA single hole
 - AAA


 ST single hole
 - BAA


 SMA PCB
 - ABA

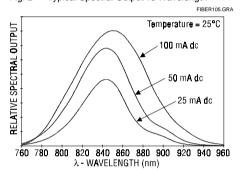
 ST PCB
 - BBA

 SMA 4 hole
 - ADA

Dimensions on page 203

All Performance Curves Show Typical Values

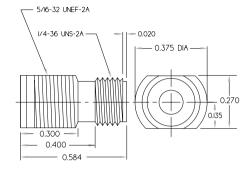
WARNING


Under certain application conditions, the infrared optical output of this device may exceed Class 1 eye safety limits, as defined by IEC 825-1 (1993-11). Do not use magnification (such as a microscope or other focusing equipment) when viewing the device's output.

CAUTION

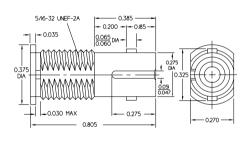
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

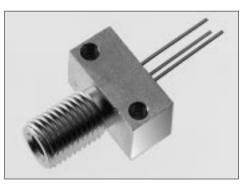
Fig. 2 Typical Spectral Output vs Wavelength

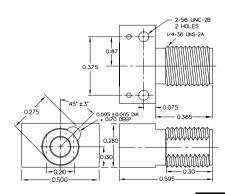

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

European Connectorized LEDs/Transmitters

Honeywell LED/transmitter components are available in the following connector styles. Each style has a three-digit reference used in the order guides.

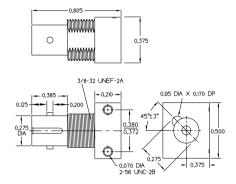

SMA SINGLE HOLE MOUNTING (REF.: AAA)

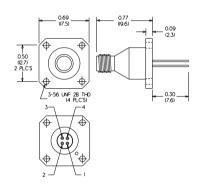



ST SINGLE HOLE MOUNTING (REF.: BAA)

SMA PCB MOUNTING (REF.: ABA)


Honeywell Optoelectronics reserves the right to make changes at any time in order to improve design and supply the best products possible.


European Connectorized LEDs/Transmitters


ST PCB MOUNTING (REF.: BBA)

SMA 4 HOLE MOUNTING (REF.: ADA)

