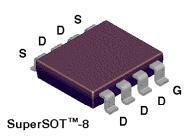


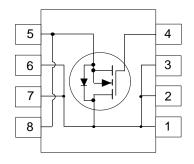
FDR4410

N-Channel Enhancement Mode Field Effect Transistor

General Description

The FDR4410 has been designed as a smaller, low cost alternative to the popular ${\rm Si4410DY}.$


The SuperSOT $^{\text{TM}}$ -8 package is 40% smaller than the SO-8 package.


The SuperSOT-8 advanced package design and optimised pinout allow the typical Power dissipation to be similar to the bigger SO-8 packages.

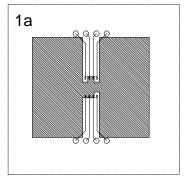
Features

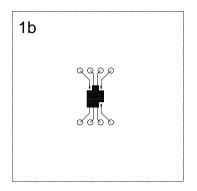
- 9 A, 30 V. $R_{DS(ON)} = 0.013 \Omega$ @ $V_{GS} = 10V$ $R_{DS(ON)} = 0.020 \Omega$ @ $V_{GS} = 4.5V$.
- High density cell design for extremely low R_{DS(ON)}.
- Proprietary SuperSOTTM-8 small outline surface mount package with high power and current handling capability.

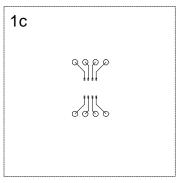
Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter		FDR4410	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Draint Current - Continuous	(Note 1a)	9	А
	- Pulsed		27	
P _D	Maximum Power Dissipation	(Note 1a)	1.8	W
		(Note 1b)	1	
		(Note 1c)	0.9	
T_J , T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			
R _{eJA}	Thermal Resistance, Junction-to-Ambie	ent (Note 1a)	70	°C/W
R _{euc}	Thermal Resistance, Junction-to-Case	(Note 1)	20	°C/W

Electrica	al Characteristics (T _A = 25 °C unless othe	rwise noted)				
Symbol	Parameter	Conditions	Min	Typ Est	Max	Units
OFF CHA	RACTERISTICS	•	'	•		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \ I_{D} = 250 \ \mu\text{A}$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \ V_{GS} = 0 \text{ V}$			1	μA
		$T_J = 55^{\circ}$	С		10	μA
I _{GSS}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$			100	nA
I _{GSS}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \ V_{DS} = 0 \text{ V}$			-100	nA
ON CHAR	ACTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{O} = 250 \mu\text{A}$	1	1.5	2	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \ I_{D} = 9 \text{ A}$		0.0115	0.013	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 7.5 \text{ A}$		0.018	0.02	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \ V_{DS} = 5 \text{ V}$	27			Α
SWITCHIN	IG CHARACTERISTICS (Note 2)					
Q_g	Total Gate Charge	$V_{DS} = 15 \text{ V}, I_{D} = 9 \text{ A}, V_{GS} = 10 \text{ V}$		38	55	nC
DRAIN-S	DURCE DIODE CHARACTERISTICS AND M.	AXIMUM RATINGS	•	•		
I _s	Maximum Continuous Drain-Source Diode Forward Current				1.5	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.5 A (Note 2)			1.2	V


Notes


1. $R_{e_{i}A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{e_{i}C}$ is guaranteed by design while $R_{e_{i}CA}$ is determined by the user's board design.


$$P_D(t) = \frac{T_J - T_A}{R_{\theta JA}(t)} = \frac{T_J - T_A}{R_{\theta JC} + R_{\theta CA}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$$

Typical $R_{_{\theta,M}}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

- a. 70°C/W when mounted on a 1 in² pad of 2oz cpper.
- b. 125°C/W when mounted on a 0.026 in² pad of 2oz copper.
- c. 135°C/W when mounted on a 0.005 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0\%$