

GaAs Broadband SPDT Switch
DC - 8.0 GHz

MASW-007107-000DIE

V1

Features

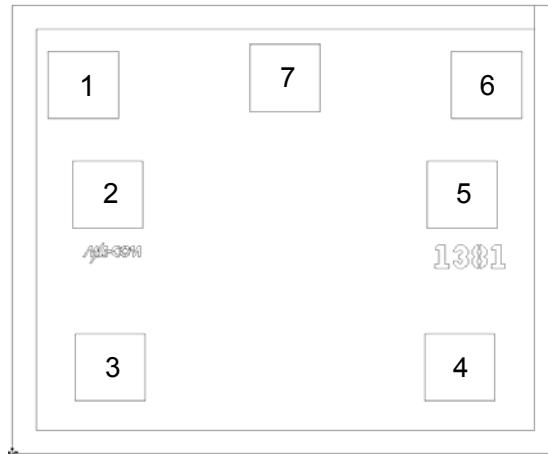
- 802.11a + b/g and MIMO Applications
- Test and Measurement and Low/Medium Power Telecommunication Applications up to 8.0 GHz
- Broadband Performance: DC - 8.0 GHz
- Low Insertion Loss: 1.0 dB at 1 GHz
- High Isolation: 32.5 dB at 1 GHz
- Fast Settling for Low Gate Lag Requirements
- Supplied as Known Good Die
- RoHS* Compliant

Description

M/A-COM's MASW-007107-000DIE is a broadband GaAs PHEMT MMIC SPDT switch. Typical applications are for WLAN IEEE 802.11a + b/g, and MIMO. Other applications include test equipment requiring ultra fast switching speeds. Designed for low insertion loss, this SPDT switch maintains low loss up to 8.0 GHz.

The MASW-007107-000DIE is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ¹


Part Number	Package
MASW-007107-000DIE	Separated Die on Grip Ring

1. Die quantity varies.

Absolute Maximum Ratings ^{2,3}

Parameter	Absolute Maximum
Input Power @ 3 V Control	+32 dBm
Input Power @ 5 V Control	+34 dBm
Operating Voltage	+8.5 volts
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. M/A-COM does not recommend sustained operation near these survivability limits.

Die Bond Pad Layout**Die Bond Pad Configuration**

Pad No.	Name	Description
1	Vc1	Voltage Control 1
2	RF1	RF Output 1
3	GND	Ground
4	GND	Ground
5	RF2	RF Output 2
6	Vc2	Voltage Control 2
7	RFC	RF Common

Truth Table ⁴

Control Vc1	Control Vc2	RFC- RF1	RFC—RF2
1	0	On	Off
0	1	Off	On

4. 1 = +2.9 V to +5 V, 0 = 0 V ± 0.2 V.

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs Broadband SPDT Switch
DC - 8.0 GHzMASW-007107-000DIE
V1Electrical Specifications: $T_A = 25^\circ\text{C}$, $Z_0 = 50 \Omega$, $V_C = 0 \text{ V} / 3 \text{ V}$, 8 pF Capacitor^{5,6}

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss ⁷	2.0 - 6.0 GHz 6.0 - 8.0 GHz	dB dB	— —	0.50 0.75	0.8
Isolation	2.4 GHz 5.3 GHz 5.8 GHz 6.0 - 8.0 GHz	dB dB dB dB	24 28 25 —	29 33 30 20	—
Return Loss	DC - 8.0 GHz	dB	—	16	—
Input IP2	Two Tone, +5 dBm / Tone, 5 MHz Spacing 2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm	— — —	92 83 85	—
Input IP3	Two Tone, +5 dBm / Tone, 10 MHz Spacing 2.4 GHz (3V) 5.8 GHz (3V)	dBm dBm	— —	54 49	—
	2.4 GHz (5V) 5.8 GHz (5V)	dBm dBm	— —	55 51	—
	Two Tone, +15 dBm / Tone, 10 MHz Spacing 2.4 GHz (3V) 5.8 GHz (3V)	dBm dBm	— —	57 54	—
	2.4 GHz (5V) 5.8 GHz (5V)	dBm dBm	— —	59 58	—
Input P0.1dB	2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm	— — —	26 26 25	—
Input P1dB	2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm	— — —	30.5 29.5 27	—
Linear Pout	2.4 GHz, OFDM, QAM-64, 54Mbps, EVM=2.5% 3 V 5 V 8 V	dBm dBm dBm	— — —	21 27.5 30	—
2nd Harmonic	2.4 GHz, $P_{IN} = +20 \text{ dBm}$ 5.3 GHz, $P_{IN} = +20 \text{ dBm}$ 5.8 GHz, $P_{IN} = +20 \text{ dBm}$	dBc dBc dBc	— — —	-80 -71 -71	—
3rd Harmonic	2.4 GHz, $P_{IN} = +20 \text{ dBm}$ 5.3 GHz, $P_{IN} = +20 \text{ dBm}$ 5.8 GHz, $P_{IN} = +20 \text{ dBm}$	dBc dBc dBc	— — —	-83 -71 -72	—
T-rise, T-fall	10% to 90% RF and 90% to 10% RF	nS	—	13	—
Ton, Toff	50% control to 90% RF and 50% control to 10% RF	nS	—	35	—
Transients		mV	—	14	—
Control Current	$ V_C = 3 \text{ V}$	µA	—	1	5
R_{ON}	$t > 90 \text{ mS}$ after OFF to ON Switching (settled)	Ω	—	2.50	—
Gate Lag	$ \Delta R_{ON} $ between 15 µS and 90 mS after OFF to ON Switching	Ω	—	0.15	—

5. For positive voltage control, external DC blocking capacitors are required on all RF ports.
 6. Electrical minimum and maximum specifications are guaranteed in final package assembly only.
 7. Insertion loss can be optimized by varying the DC blocking capacitor value.

GaAs Broadband SPDT Switch
DC - 8.0 GHz

MASW-007107-000DIE
V1

Additional Die Electrical Specifications: $T_A = 25^\circ\text{C}$, $Z_0 = 50 \Omega$, $V_C = 0 \text{ V} / 3 \text{ V}^8$, $\text{RF}_{\text{IN}} = +20 \text{ dBm}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
2nd Harmonic	1.0 GHz	dBc	—	-85	-74
3rd Harmonic	1.0 GHz	dBc	—	-79	-74

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.