

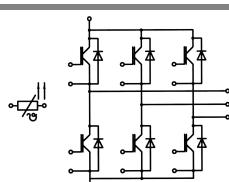
MiniSKiiP® 2

3-phase bridge inverter

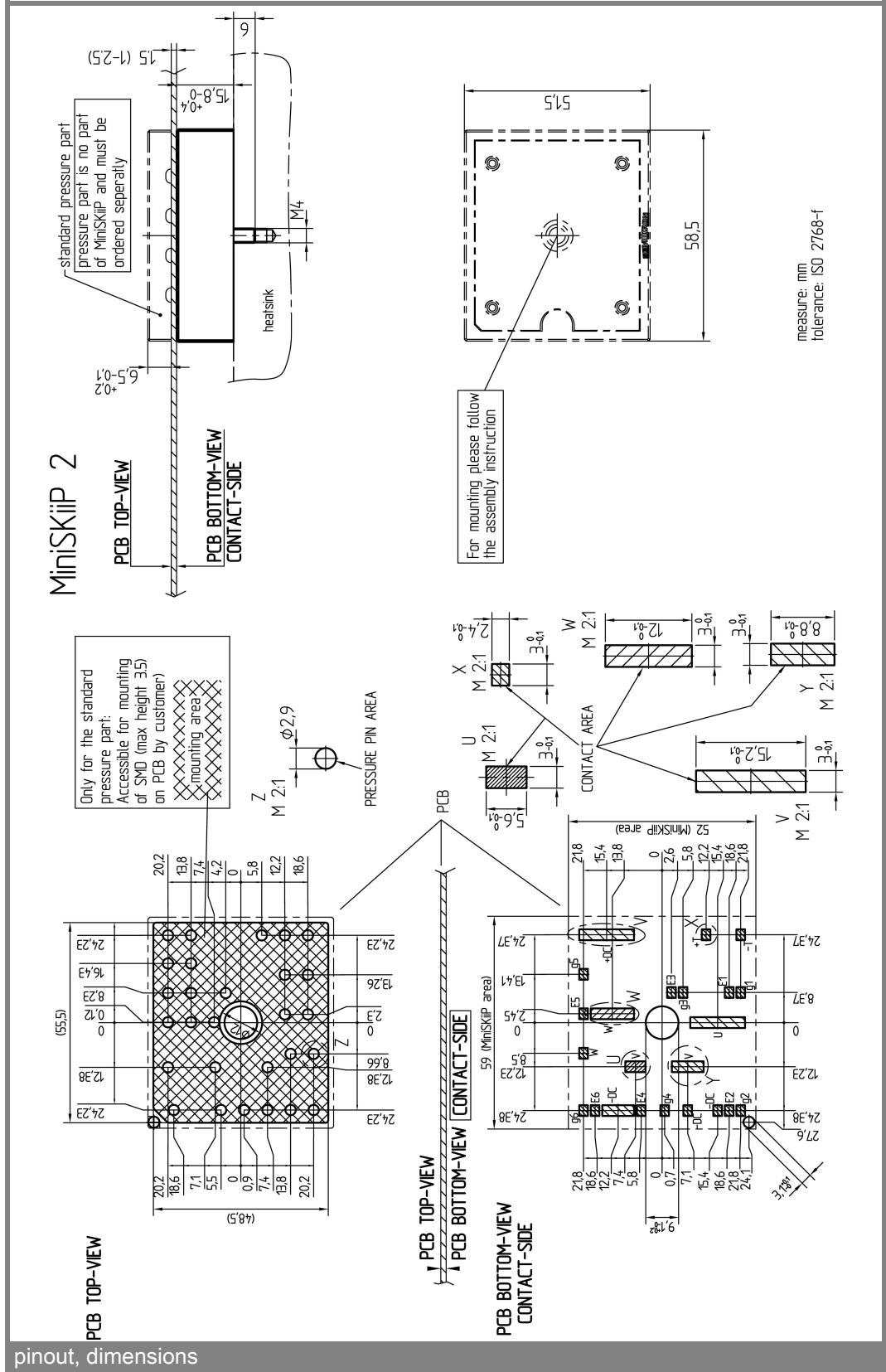
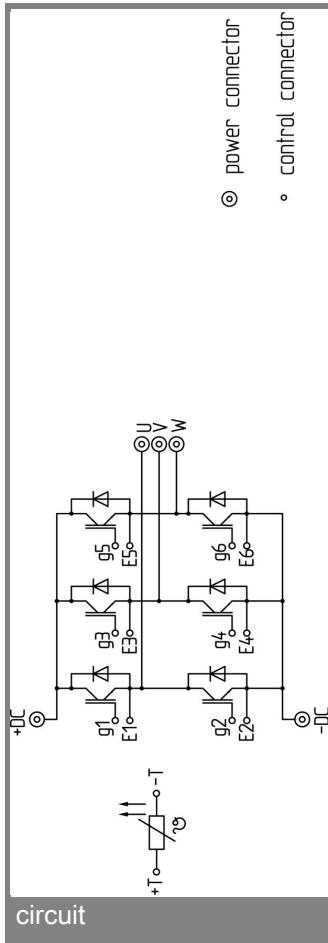
SKiiP 25AC125V10

Target Data

Features


- Ultrafast NPT IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications



- Inverter up to 20 kVA
- Typical motor power 11 kW

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT - Inverter				
V_{CES}		1200		V
I_C	$T_s = 25 (70)^\circ\text{C}$	52 (39)		A
I_{CRM}	$T_s = 25 (70)^\circ\text{C}, t_p \leq 1\text{ ms}$	104 (78)		A
V_{GES}		± 20		V
T_j		- 40 ... + 150		$^\circ\text{C}$
Diode - Inverter				
I_F	$T_s = 25 (70)^\circ\text{C}$	67 (50)		A
I_{FRM}	$T_s = 25 (70)^\circ\text{C}, t_p \leq 1\text{ ms}$	134 (100)		A
T_j		- 40 ... + 150		$^\circ\text{C}$
I_{tRMS}	per power terminal (20 A / spring)	100		A
T_{stg}	$T_{op} \leq T_{stg}$	- 40 ... + 125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT - Inverter				
V_{CEsat}	$I_C = 50\text{ A}, T_j = 25 (125)^\circ\text{C}$		3,5 (4,1)	3,9 (4,5)
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_C = 2\text{ mA}$	4,5	5,5	6,5
$V_{CE(TO)}$	$T_j = 25 (125)^\circ\text{C}$		1,5 (1,8)	1,7 (2)
r_T	$T_j = 25 (125)^\circ\text{C}$		40 (46)	44 (50)
C_{ies}	$V_{CE} = 25\text{ V}, V_{GE} = 0\text{ V}, f = 1\text{ MHz}$		3,1	nF
C_{oes}	$V_{CE} = 25\text{ V}, V_{GE} = 0\text{ V}, f = 1\text{ MHz}$		0,4	nF
C_{res}	$V_{CE} = 25\text{ V}, V_{GE} = 0\text{ V}, f = 1\text{ MHz}$		0,4	nF
$R_{th(j-s)}$	per IGBT		0,5	K/W
$t_{d(on)}$	under following conditions		100	ns
t_r	$V_{CC} = 600\text{ V}, V_{GE} = \pm 15\text{ V}$		60	ns
$t_{d(off)}$	$I_C = 50\text{ A}, T_j = 125^\circ\text{C}$		400	ns
t_f	$R_{Gon} = R_{Goff} = 12\Omega$		20	ns
E_{on}	inductive load		5,9	mJ
E_{off}			3,1	mJ
Diode - Inverter				
$V_F = V_{EC}$	$I_F = 50\text{ A}, T_j = 25 (125)^\circ\text{C}$		2 (1,8)	2,5 (2,3)
$V_{(TO)}$	$T_j = 25 (125)^\circ\text{C}$		1,3 (1)	1,5 (1,2)
r_T	$T_j = 25 (125)^\circ\text{C}$		14 (16)	20 (22)
$R_{th(j-s)}$	per diode		0,7	K/W
I_{RRM}	under following conditions		40	A
Q_{rr}	$I_F = 50\text{ A}, V_R = 600\text{ V}$		8	μC
E_{rr}	$V_{GE} = 0\text{ V}, T_j = 125^\circ\text{C}$ $di_F/dt = 800\text{ A}/\mu\text{s}$		2	mJ
Temperature Sensor				
R_{ts}	3 %, $T_r = 25 (100)^\circ\text{C}$		1000(1670)	Ω
Mechanical Data				
m		65		g
M_s	Mounting torque	2	2,5	Nm

AC

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.