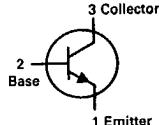


MAXIMUM RATINGS

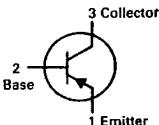
Rating	Symbol	PNP 2N5415	PNP 2N5416	NPN 2N3439	NPN 2N3440	Unit
Collector-Emitter Voltage	V_{CEO}	200	300	350	250	Vdc
Collector-Base Voltage	V_{CBO}	200	350	450	300	Vdc
Emitter-Base Voltage	V_{EBO}	4.0	6.0	7.0	7.0	Vdc
Base Current	I_B	0.5			Adc	
Collector Current — Continuous	I_C	1.0			Adc	
Total Device Dissipation @ $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D	—	—	1.0 5.7	Watts mW/ $^\circ\text{C}$	
Total Device Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	10 57	—	5.0 28.6	Watts mW/ $^\circ\text{C}$	
Total Device Dissipation @ $T_A = 50^\circ\text{C}$ Derate above 50°C	P_D	1.0 6.7	—	—	Watts mW/ $^\circ\text{C}$	
Operating and Storage Junction Temperature Range	T_J, T_{Stg}	-65 to +200			°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N5415	2N5416	2N3439	2N3440	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	17.5	—	35	—	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	150	—	175	—	°C/W


ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage(1) ($I_C = 50 \text{ mA}_\text{dc}$, $I_B = 0$)	$V_{CEO(\text{sus})}$	200 300 350 250	— — — —	Vdc
*Collector Cutoff Current ($V_{CE} = 300 \text{ Vdc}$, $I_B = 0$) ($V_{CE} = 200 \text{ Vdc}$, $I_B = 0$)	I_{CEO}	— —	20 50	μA_dc
*Collector Cutoff Current ($V_{CE} = 450 \text{ Vdc}$, $V_{BE} = 1.5 \text{ Vdc}$) ($V_{CE} = 300 \text{ Vdc}$, $V_{BE} = 1.5 \text{ Vdc}$)	I_{CEX}	— —	500 500	μA_dc
Collector Cutoff Current ($V_{CB} = 175 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 280 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 360 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 250 \text{ Vdc}$, $I_E = 0$)	I_{CBO}	— — — —	50 50 20 20	μA_dc
Emitter Cutoff Current ($V_{EB} = 4.0 \text{ Vdc}$, $I_C = 0$) ($V_{EB} = 6.0 \text{ Vdc}$, $I_C = 0$)	I_{EBO}	— —	20 20	μA_dc
ON CHARACTERISTICS(1)				
DC Current Gain ($I_C = 2.0 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$) *($I_C = 20 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$)	h_{FE}	30 40	— 160	—
*($I_C = 50 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$)		30 30	150 120	
Collector-Emitter Saturation Voltage ($I_C = 50 \text{ mA}_\text{dc}$, $I_B = 4.0 \text{ mA}_\text{dc}$)	$V_{CE(\text{sat})}$	—	0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 50 \text{ mA}_\text{dc}$, $I_B = 4.0 \text{ mA}_\text{dc}$)	$V_{BE(\text{sat})}$	—	1.3	Vdc


*Indicates Data in Addition to JEDEC Requirements.

T-29-23

NPN
2N3439
2N3440

PNP
2N5415
2N5416

JAN, JTX, JTXV AVAILABLE
CASE 79-04, STYLE 1
TO-39 (TO-205AD)

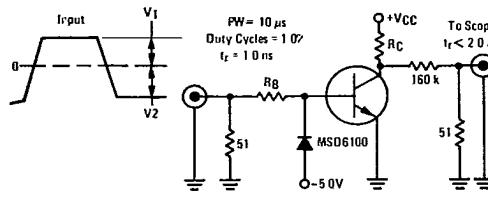
HIGH VOLTAGE AMPLIFIERS

Boca
Semiconductor
Corp.

3

<http://www.bocasemi.com>

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^\circ\text{C}$ unless otherwise noted.)


Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ V}_\text{dc}$, $f = 5.0 \text{ MHz}$)	f_T	15	—	MHz
Output Capacitance ($V_{CB} = 10 \text{ V}_\text{dc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C_{obo}	—	15	pF
Input Capacitance ($V_{EB} = 5.0 \text{ V}_\text{dc}$, $I_C = 0$, $f = 1.0 \text{ MHz}$)	C_{ibo}	—	75	pF
Small-Signal Current Gain ($I_C = 5.0 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ V}_\text{dc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10.0 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ V}_\text{dc}$, $f = 5.0 \text{ MHz}$)	h_{fe}	25	—	—
Real Part of Input Impedance ($V_{CE} = 10 \text{ V}_\text{dc}$, $I_C = 5.0 \text{ mA}_\text{dc}$, $f = 1.0 \text{ MHz}$)	$Re(h_{ie})$	—	300	Ohms

(1) Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2.0\%$.

CAUTION: The sustaining voltage must not be measured on a curve tracer. (See Fig. 15.)

3

FIGURE 1 — SWITCHING TIMES TEST CIRCUIT

NOTE: V_{CC} and R_C adjusted for $V_{CE(\text{off})} = 150 \text{ V}$ and I_C as desired, R_B chosen for desired I_{B1} , $V_1 \approx 10 \text{ V}$, $V_2 \approx 8.0 \text{ V}$ For t_{d1} and t_{r1} , D1 is disconnected and $V_2 = 2.0 \text{ V}$

For PNP test circuit, reverse all polarities.

<http://www.bocasemi.com>PNP
2N5415, 2N5416

FIGURE 2 — TURN-ON TIME

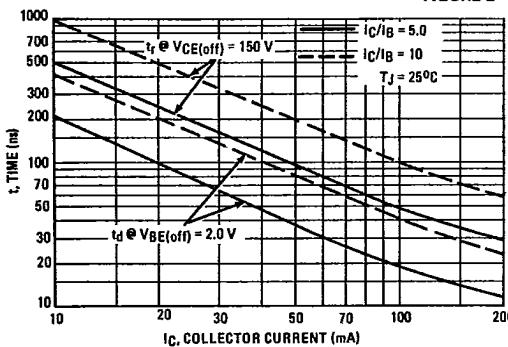
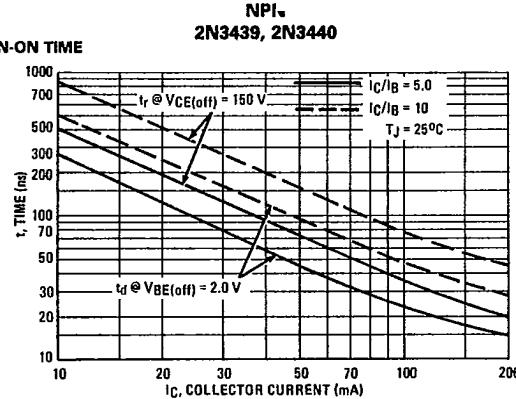


NPN
2N3439, 2N3440

FIGURE 3 — TURN-OFF TIME

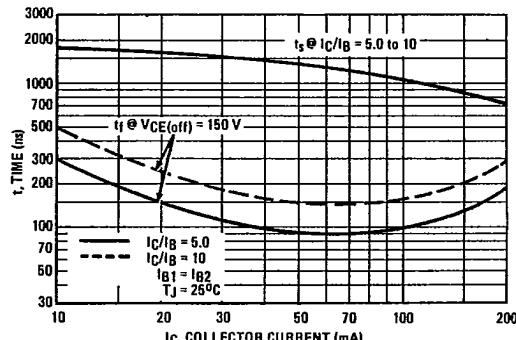
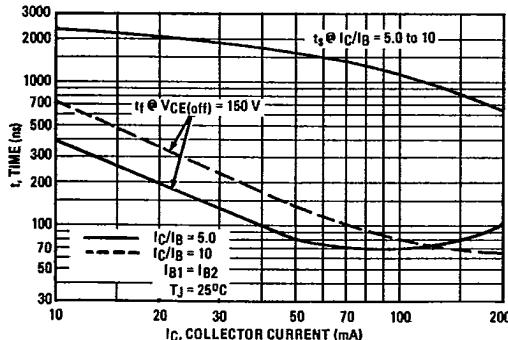



FIGURE 4 — CURRENT-GAIN — BANDWIDTH PRODUCT

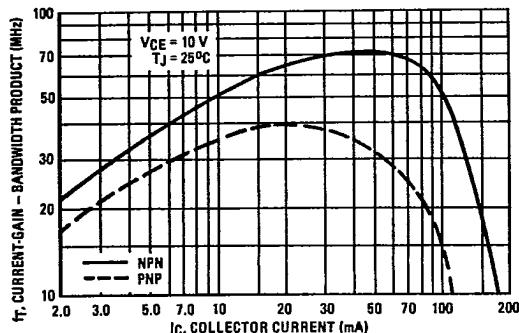
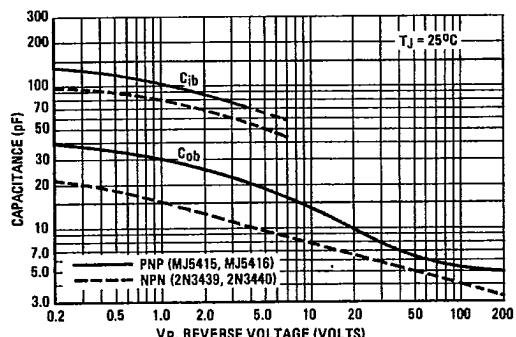
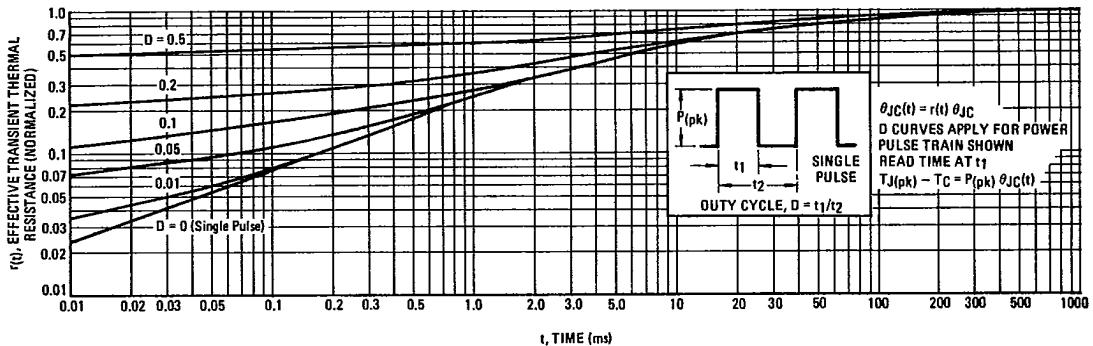
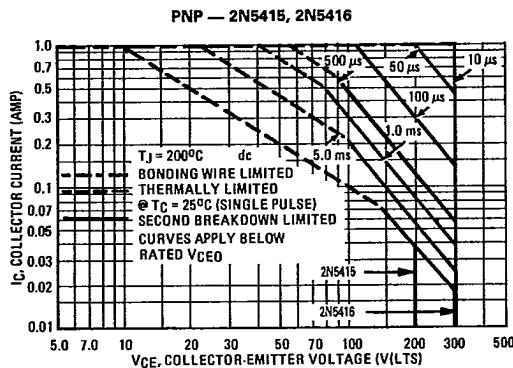
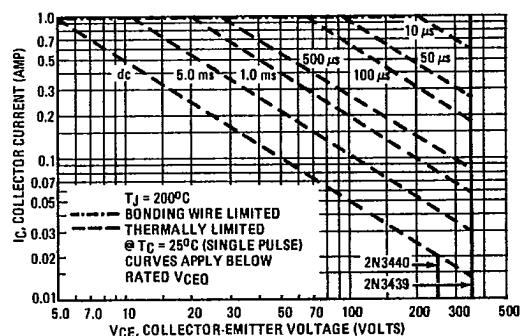


FIGURE 5 — CAPACITANCE

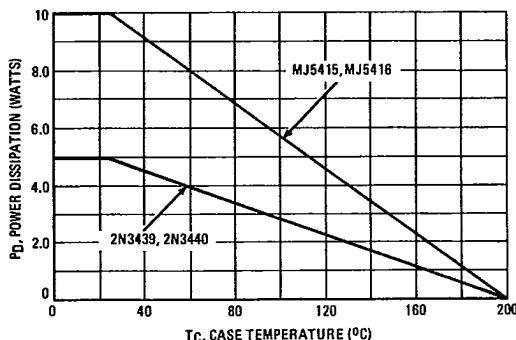




FIGURE 6 — THERMAL RESPONSE


3

<http://www.bocasemi.com>

FIGURE 7 — ACTIVE-REGION SAFE OPERATING AREA



NPN — 2N3439, 2N3440

T-29-23

FIGURE 8 — POWER DERATING

There are two limitations on the power handling ability of a transistor, average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}}\text{-}V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on $T_{\text{J(pk)}} = 200^{\circ}\text{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{\text{J(pk)}} \leq 200^{\circ}\text{C}$. $T_{\text{J(pk)}}$ may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415).

3

PNP
2N5415, 2N5416

NPN
2N3439 2N3440

FIGURE 9 — DC CURRENT GAIN

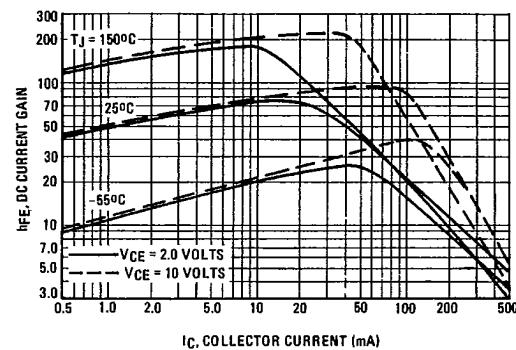
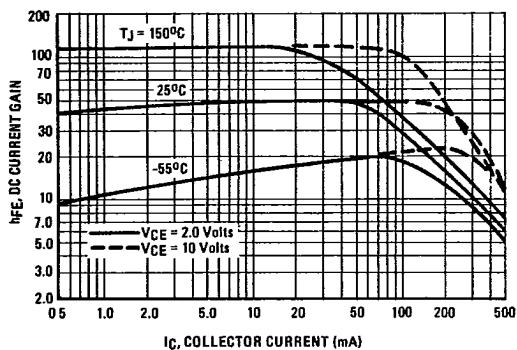
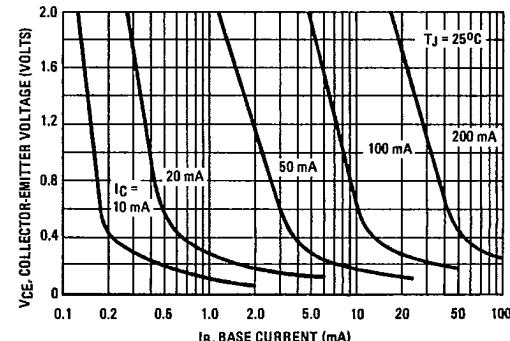
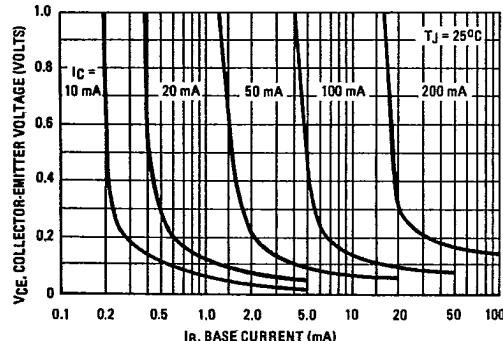





FIGURE 10 — COLLECTOR SATURATION REGION

<http://www.bocasemi.com>

FIGURE 11 — "ON" VOLTAGES

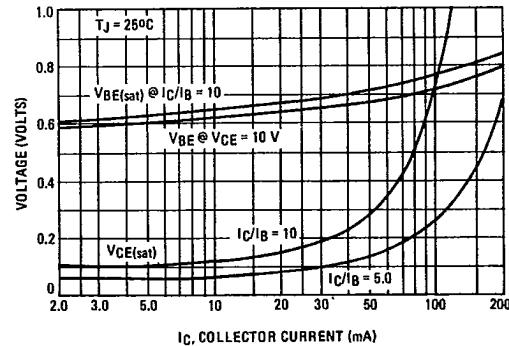
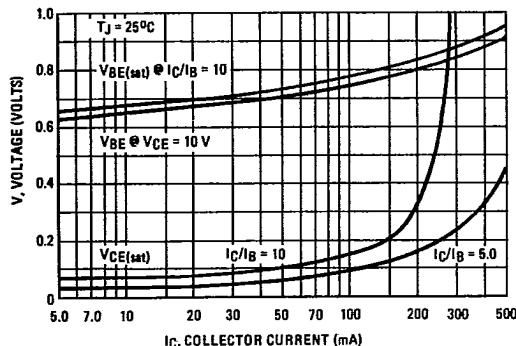
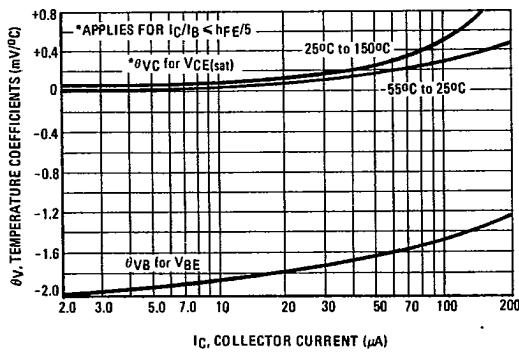
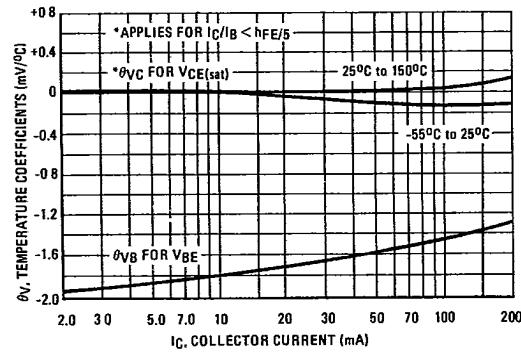





FIGURE 12 — TEMPERATURE COEFFICIENTS

3

<http://www.bocasemi.com>

FIGURE 13 — COLLECTOR CUTOFF REGION

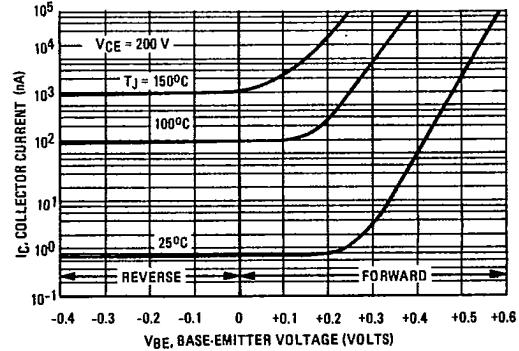
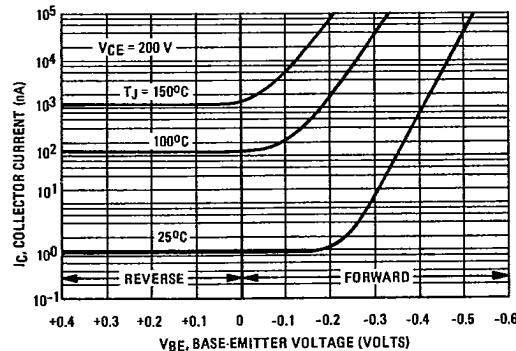
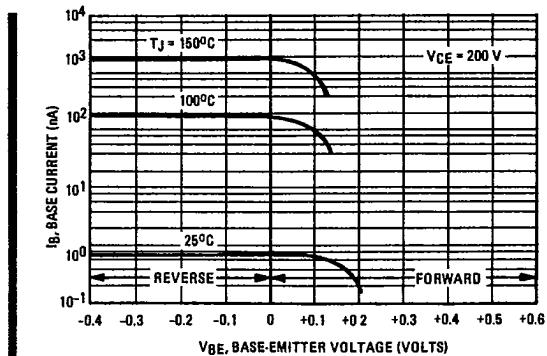
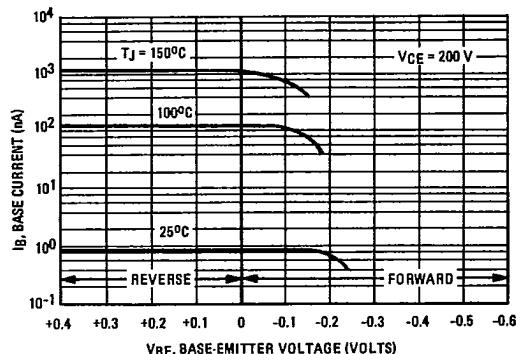
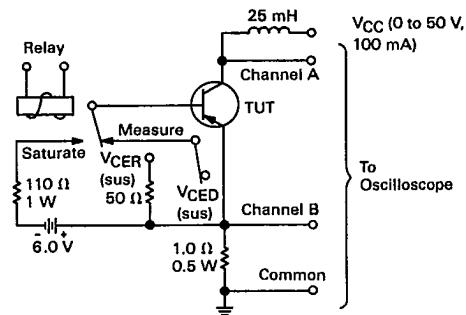






FIGURE 14 — BASE CUTOFF REGION

3

FIGURE 15 — CIRCUIT USED TO MEASURE SUSTAINING VOLTAGES

