

LQ057Q3DG01 LCD Module

Product Specification

June 2009

QVGA Touch Panel-equipped module with 320 nits brightness and 500:1 contrast. An LED backlight along with high-purity color filters give excellent color reproduction. Module carries Sharp's Strong 2 Rating for temperature, shock tolerance, and brightness and contrast.

[Full Specifications Listing](#)

PREPARED BY:	SHARP MOBILE LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION SPECIFICATION	SPEC No. LD-21604A
APPROVED BY:		FILE No.
		ISSUED: June 15th, 2009 PAGE : 19 pages APPLICABLE GROUP MOBILE LIQUID CRYSTAL DISPLAY GROUP

DEVICE SPECIFICATION FOR

TFT-LCD module

MODEL No. LQ057Q3DG01

These parts have corresponded with the RoHS directive.

CUSTOMER'S APPROVAL

DATE _____

BY _____

PRESENTED

BY T.Naka
T.NAKA
DIVISION DEPUTY GENERAL MANAGER
AND DEPARTMENT GENERAL MANAGER
Engineering Department I
Mobile Liquid Crystal Display Division 3
Mobile Liquid Crystal Display Group
SHARP CORPORATION

RECORDS OF REVISION

MODEL No : LQ057Q3DG01

S P E C N o : L D - 2 1 6 0 4 A

NOTICE

This specification is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this specification may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this specification may be made by a third party.

The application circuit examples in this specification are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this specification. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this specification are designed for general electronic equipment use.

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e.,aircraft, trains, automobiles, etc.)
- Traffic signals • Gas leakage sensor breakers • Alarm equipment • Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this specification.

1. Application

This specification applies to color TFT-LCD module, LQ057Q3DG01.

2. Summary and Features

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit (PWB), FPC, front and back polarizer, sealed case, backlight unit, Touch Panel. Graphics and texts can be displayed on a $320 \times \text{RGB} \times 240$ dots panel with 262,144 colors by suitable control supplying from the outside.

It isn't composed LED drive circuit for a backlight drive.

- Wide Viewing Angle technology is adopted.
(The most suitable viewing angle is in the 12 o'clock direction.)
- By adopting an active matrix drive, a picture with high contrast is realized.
- Reflection due to external light is minimized through the use of a low reflection black matrix .
- A thin, light and compact module is accomplished through the use of COG mounting technology .
- Through the use of high color purity color filter and TN-normally white mode excelled in color reproducibility, an image with highly natural color reproduction is realized.
- High viewing angle and high brightness.
- An inverted video display in the vertical / horizontal directions is possible.
- This module is adapted to RoHS compliance.

3. Mechanical specifications

table 3-1

Parameter	Specifications	Units
Screen size	14.4 (5.7 inch) diagonal	cm
Active area	115.2 (H) \times 86.4 (V)	mm
Display format	320(H) \times 240(V)	pixels
	(1 pixel = R + G + B dots)	
Dot pitch	0.360 (H) \times 0.360 (V)	mm
Pixel configuration	R,G,B Stripe configuration	
Display mode	Normally white	
Outline dimension 【Note1-1】	144.0 (W) \times 104.6 (H) \times 13.8(D)	mm
Mass	255 (MAX)	g

【Note 1-1】

Thickness of the Touch Panel is included.

A FPC of LED ,FPC of Touch Panel and some projections are excluded.

A figure of outline dimension is shown in Fig. 1.

4. Input terminal

4-1. TFT-LCD panel driving part

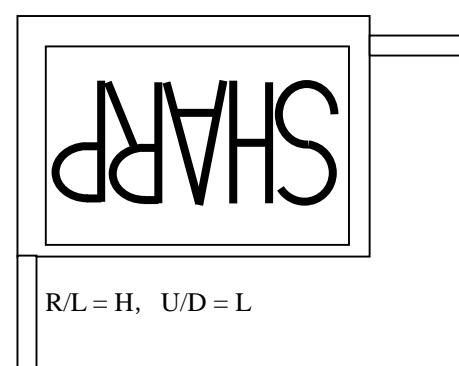
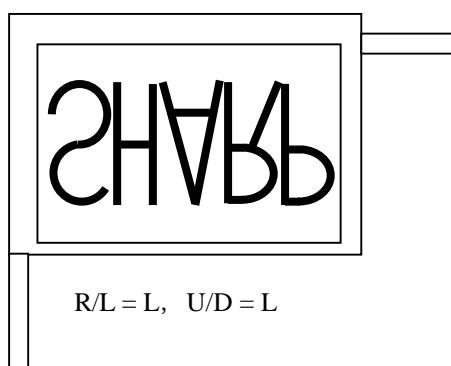
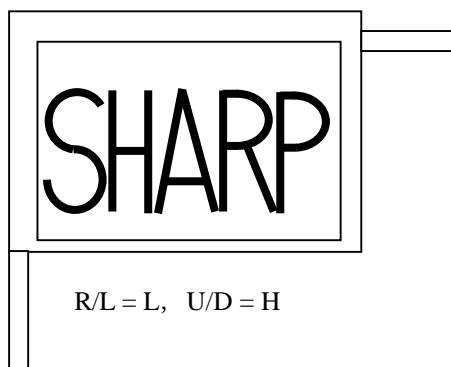



CN1 Used connector: IMSA-9637S-33Y902 (IRISO ELECTRONICS CO.,LTD.)

Table 4-1 Functional table of CN1 terminals

Pin No.	Symbol	Description	Polarity
1	GND	ground	
2	CK	Clock signal for sampling each data signal	
3	Hsync	Horizontal synchronous signal	Negative
4	Vsync	Vertical synchronous signal	Negative
5	GND	ground	
6	R0	RED data signal(LSB)	
7	R1	RED data signal	
8	R2	RED data signal	
9	R3	RED data signal	
10	R4	RED data signal	
11	R5	RED data signal(MSB)	
12	GND	ground	
13	G0	GREEN data signal(LSB)	
14	G1	GREEN data signal	
15	G2	GREEN data signal	
16	G3	GREEN data signal	
17	G4	GREEN data signal	
18	G5	GREEN data signal(MSB)	
19	GND	ground	
20	B0	BLUE data signal(LSB)	
21	B1	BLUE data signal	
22	B2	BLUE data signal	
23	B3	BLUE data signal	
24	B4	BLUE data signal	
25	B5	BLUE data signal(MSB)	
26	GND	ground	
27	ENAB	Signal to settle the horizontal display position 【Note4-1】	Positive
28	Vcc	+3.3V power supply	
29	Vcc	+3.3V power supply	
30	R/L	Selection signal for horizontal scanning direction 【Note4-2】 ("L" : Normally , "H" : Right-and-Left reversal)	
31	U/D	Selection signal for vertical scanning direction 【Note4-2】 ("H" : Normally , "L" : Up-and-Down reversal)	
32	GND	ground	
33	GND	ground	

【Note 4-1】 The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. Don't keep ENAB "Low" during operation.

【Note 4-2】

4-2. LED Backlight driving part (FPC1)

Table 4-2 Functional table of FPC terminals

Pin No.	Symbol	Description
1	LED-A1	Power Supply for LED (Anode)
2	LED-C1	Power Supply for LED (Cathode)
3	LED-A2	Power Supply for LED (Anode)
4	LED-C2	Power Supply for LED (Cathode)
5	LED-A3	Power Supply for LED (Anode)
6	LED-C3	Power Supply for LED (Cathode)
7	LED-A4	Power Supply for LED (Anode)
8	LED-C4	Power Supply for LED (Cathode)

Suitable connector : IMSA-9632S-08-AGF

4-3. Touch Panel part (FPC2)

Table 4-3 Functional table of FPC terminals

Pin No.	Description
1	X+
2	Y+
3	X-
4	Y-

Suitable connector : IMSA-9617S-04-AGF

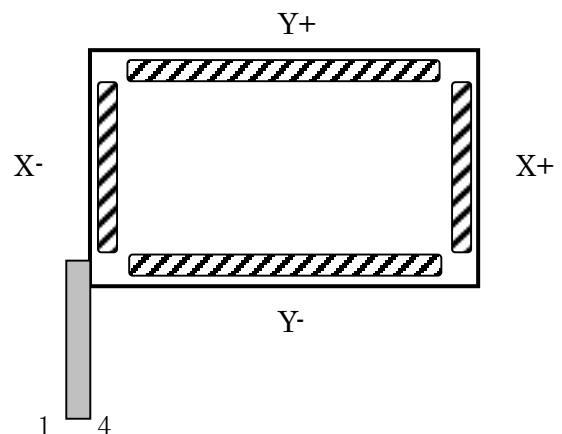


Table 4-4 TP basic specification

Parameters	Min.	Typ.	Max.	Unit	Remark
Input voltage			7	V	
Resistor between terminals (X-,X+)	100	650	900	Ω	
Resistor between terminals (Y-,Y+)	100	300	900	Ω	
Insrating Resistance	10	-	-	$M\Omega$	DC25V
Line linearity(X direction)	-	-	1.5	%	
Line linearity(Y direction)	-	-	1.5	%	
Minimum tension for detecting	-	-	0.8	N	

5. Absolute maximum ratings

Table 5-1

Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{CC} +0.3	V	【Note 5-1】
Power supply voltage	V _{CC}	Ta = 25°C	-0.3 ~ +4.0	V	
Temperature for storage	T _{STG}	-	-30 ~ +70	°C	【Note 5-2,3】
Temperature for operation	T _{OPR}	-	-30 ~ +70	°C	【Note 5-2,3,4】

【Note 5-1】 CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, ENAB, R/L, U/D

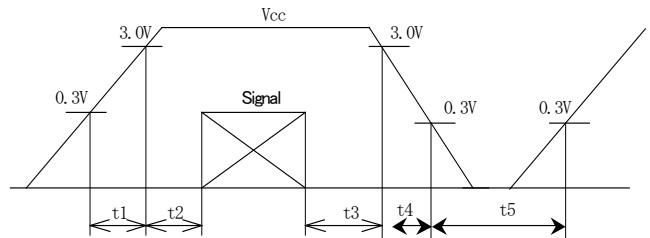
【Note 5-2】 This rating applies to all parts of the module and should not be exceeded.

【Note 5-3】 Maximum wet-bulb temperature is less than 39°C. Condensation of dew must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.

【Note 5-4】 The operating temperature only guarantees operation of the circuit. For contrast, speed response, and other factors related to display quality, judgment is done using the ambient temperature Ta = +25°C.

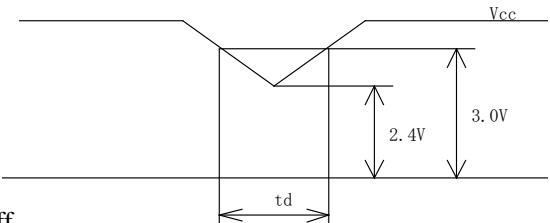
6. Electrical characteristics

6-1. TFT-LCD panel driving section


Table 6-1

Parameter		Symbol	M I N	T Y P	M A X	Unit	Ta=25°C
+3.3V power suply	Supply voltage	V _{cc}	+3.0	+3.3	+3.6	V	【Note 6-1】
	Current dissipation	I _{cc}	—	20	30	mA	【Note 6-2】
Permissive input ripple	V _{RF}	—	—	100	mVp-p	V _{cc} =+3.3V	
Input Low voltage	V _{IL}	0	—	0.1V _{cc}	V		
Input High voltage	V _{IH}	0.9V _{cc}	—	V _{cc}	V		【Note 6-3】
Input leak current (Low)	I _{OL}	—	—	1	μ A	V _i =0V 【Note 6-3】	
Input leak current (High)	I _{OH}	—	—	1	μ A	V _i =3.3~V _{cc} 【Note 6-3】	

【Note 6-1】


V_{cc} turn-on/off conditions.

- t₁ ≤ 10 ms
- 0 < t₂ ≤ 100 ms
- 0 < t₃ ≤ 100 ms
- 0 < t₄ ≤ 50 ms
- 1000 ms < t₅

V_{cc}-dip conditions

1) 2.5V < V_{cc} < 3.0V

$$t_d \leq 10$$

2) At V_{cc} < 2.5V

V_{cc}-dip conditions should also follow the V_{cc} turn-on/off conditions.

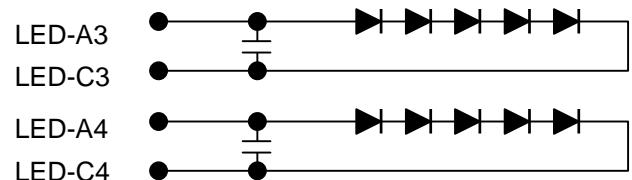
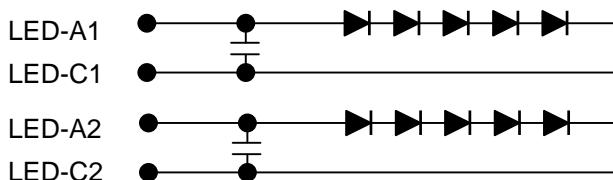
【Note 6-2】 V_{cc} = 3.3V

Max current situation : Timing ; Typical, Pattern ; All Black

【Note 6-3】 CK,R0~R5,G0~G5,B0~B5,Hsync,Vsync,ENAB,R/L,U/D

6-2. Backlight driving section

The backlight system is edge-lighting type with 20 White-LED(White Light Emitting Diode). The characteristics of White-LED are shown in the following table. (Ta = 25 deg.)



Table 6-2

Parameter	Min.	Typ.	Max.	Unit	Remark
LED voltage	-	16.0	17.5	V	LED current = 20mA
LED current range	-	20	20	mA	
Number of circuit strings	-	4	-		[Note 1]
LED power consumption	-	1.28	-	W	[Note 2]
LED life time	-	30,000	-	Hour	continuous operation

[Note 1] The LED backlight is composed by 4 strings from which 5 LED is connected with the series.

The figure below shows the circuit chart.

In each string, there is a ceramic capacitor for the electrostatic protection.

[Note 2] Calculated value for reference (IL × VL)

7. Timing Characteristics of input signals

Timing diagrams of input signal are shown in Fig.7

7-1. Timing characteristics

Table 7-1

Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
Clock	frequency	1/Tc	-	6.3	7.0	MHz
	Duty ratio	TH/T	40	50	60	%
Data	Setup time	Tds	10	-	-	ns
	Hold time	Tdh	10	-	-	ns
Horizontal sync. signal	Cycle	TH	50.0	63.6	-	μ s
			360	400	450	clock
	Pulse width	THp	1	-	6	clock
Vertical sync. signal	Cycle frequency	TV	251	262	280	line
		1/TV	50	60	-	Hz
	Pulse width	TVp	1	-	6	line
Horizontal display period	THd	320	320	320	clock	
Hsync-Clock phase difference	THc	5	-	-	ns	
Hsync-Vsync phase difference	TVh	0	-	320	clock	
Vertical display start position	TVs	7	7	7	line	

[Note7-1] In case of lower frequency, the deterioration of display quality, flicker etc., may occur.

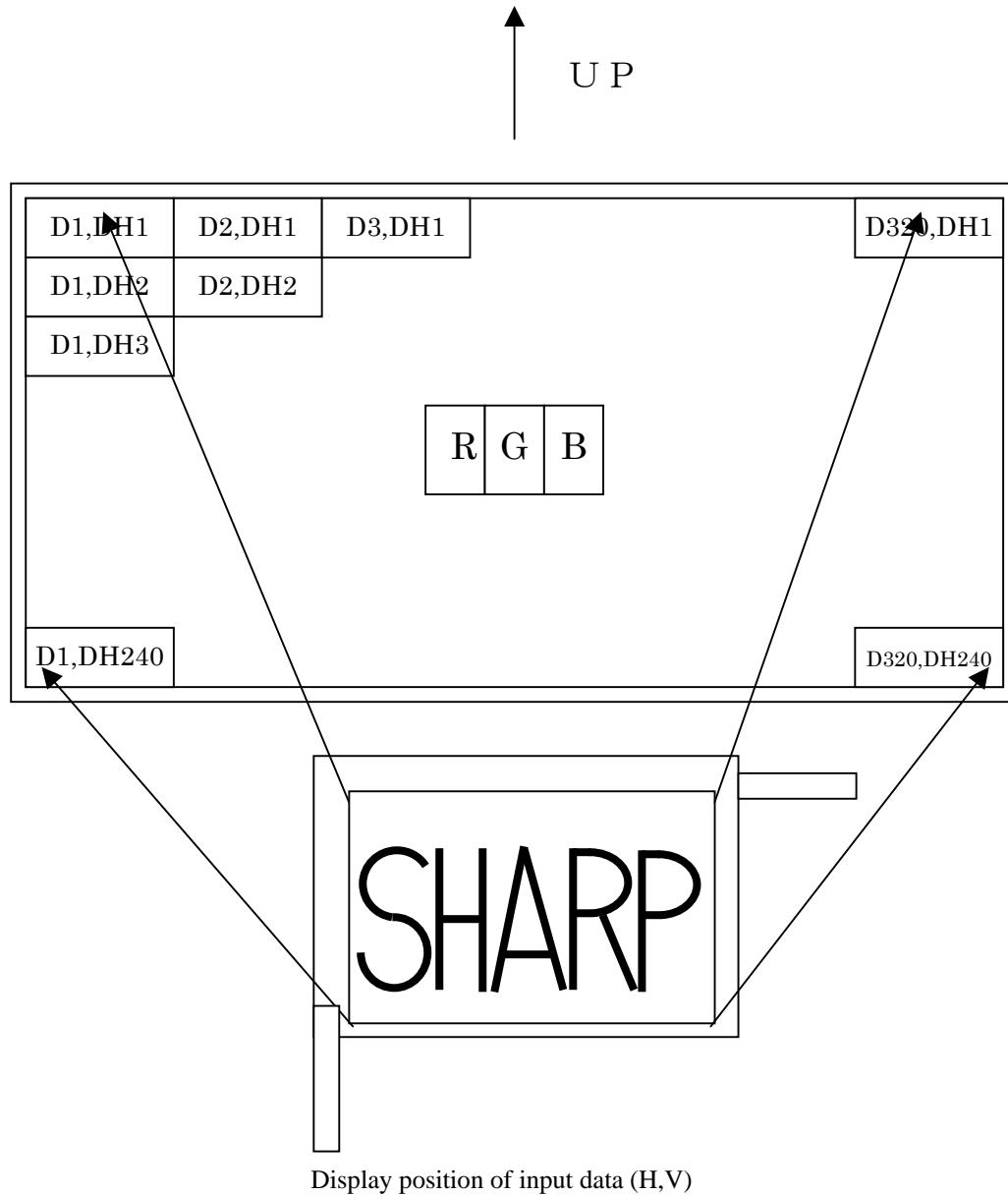
Please use this module in more than 50Hz.(1/Tv)

7-2. Horizontal display position

Table 7-2

Parameter		symbol	Min.	Typ.	Max.	Unit	Remark
Enable signal	Setup time	Tes	10	-	-	ns	
	Pulse width	Tep	320	-	-	clock	
Hsync-Enable signal phase difference		The	7	7	7	clock	

Please do not make ENAB fixation in "L".


The Horizontal display start position (The) is fixed 7 clock.

7-3. Vertical display position

The Vertical display start position (TVs) is fixed 7 line.

ENAB signal has no relation to the vertical display position.

7-4. Input Data Signals and Display Position on the screen

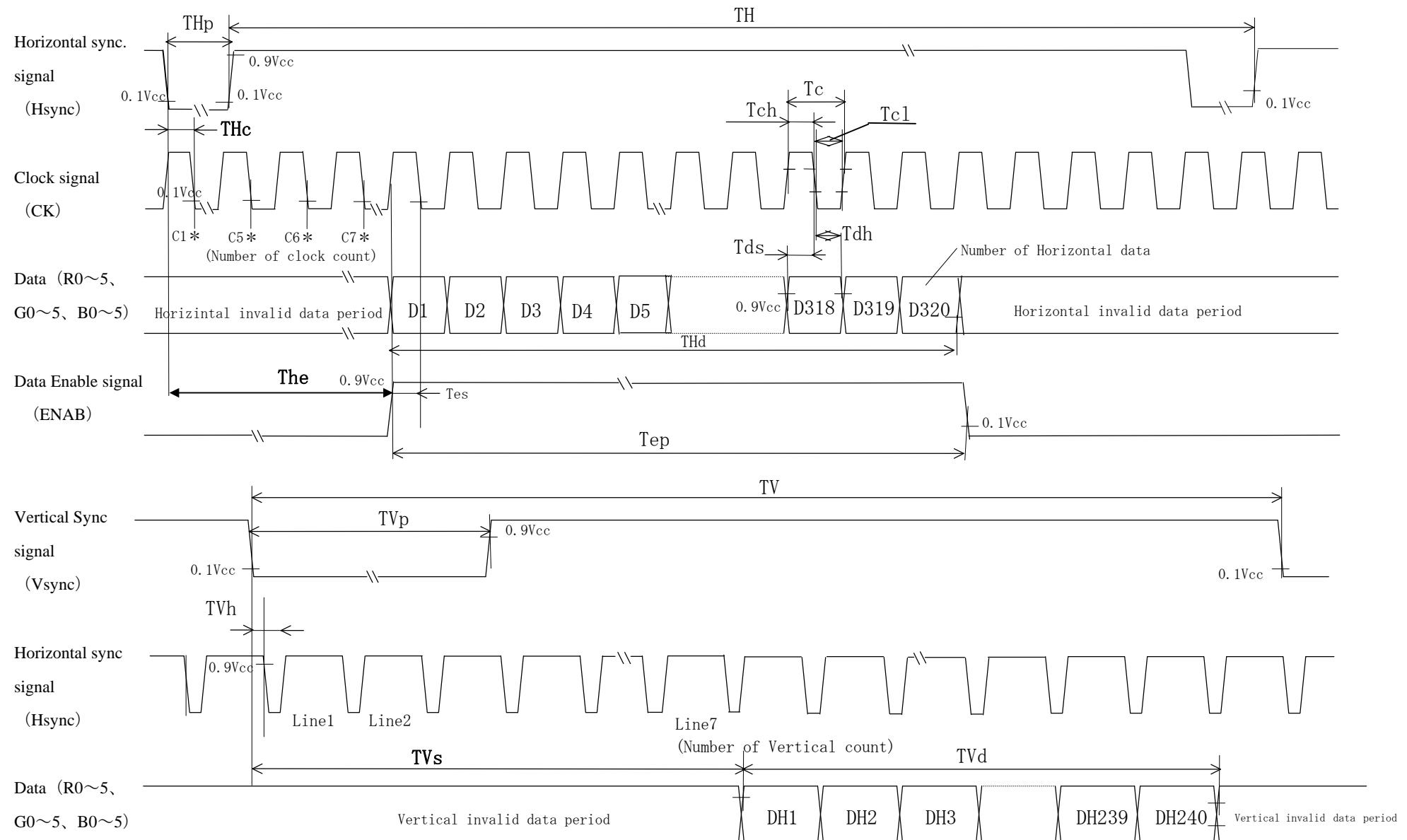


Fig 7. Input signal waveforms

(8) Input Signals, Basic Display Color and Gray Scale of Each Color

Colors & Gray scale		Data signal																			
		Gray Scale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	B3	B4	B5	
Basic color	Black	—	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue	—	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green	—	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0
	Cyan	—	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	—	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	—	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	—	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	—	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Gray Scale of red	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Brighter	↓	↓						↓						↓				↓		
		↓	↓						↓						↓				↓		
	GS61	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS62	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of green	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
		GS2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	Brighter	↑	↓						↓						↓				↓		
		↓	↓						↓						↓				↓		
	GS61	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0
	GS62	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Gray Scale of bleu	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
		GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	Brighter	↑	↓						↓						↓				↓		
		↓	↓						↓						↓				↓		
	GS61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Bleu	GS63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

0 : Low level voltage 1 : High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

9. Optical characteristics

Table 9-1

Ta=25°C, VCC =+3.3V

Parameter	Symbol	Condition	Min	Typ	Max	Unit	Remarks
Viewing angle range	θ_{21}, θ_{22}	$CR \geq 5$	75	80	—	° (degree)	【Note 9-1】
	θ_{11}		75	80	—	° (degree)	
	θ_{12}		55	65	—	° (degree)	
Contrast ratio	CRmax	Optimal viewing angle	400	500	—		【Note 9-2】
Response time	Rise	$\theta = 0^\circ$	—	30	—	ms	【Note 9-3】
	Fall		—	10	—	ms	
White chromaticity	x		0.264	0.314	0.364		【Note 9-4】
	y		0.285	0.335	0.385		
Luminance	Y		250	320	—	cd/m ²	

Remarks: The optical specifications are measured 30 minute after turing LED on and in a dark room or equivalent condition, according to the method shown in Fig.9-1 below. All specs shall be measured including Touch Panel.

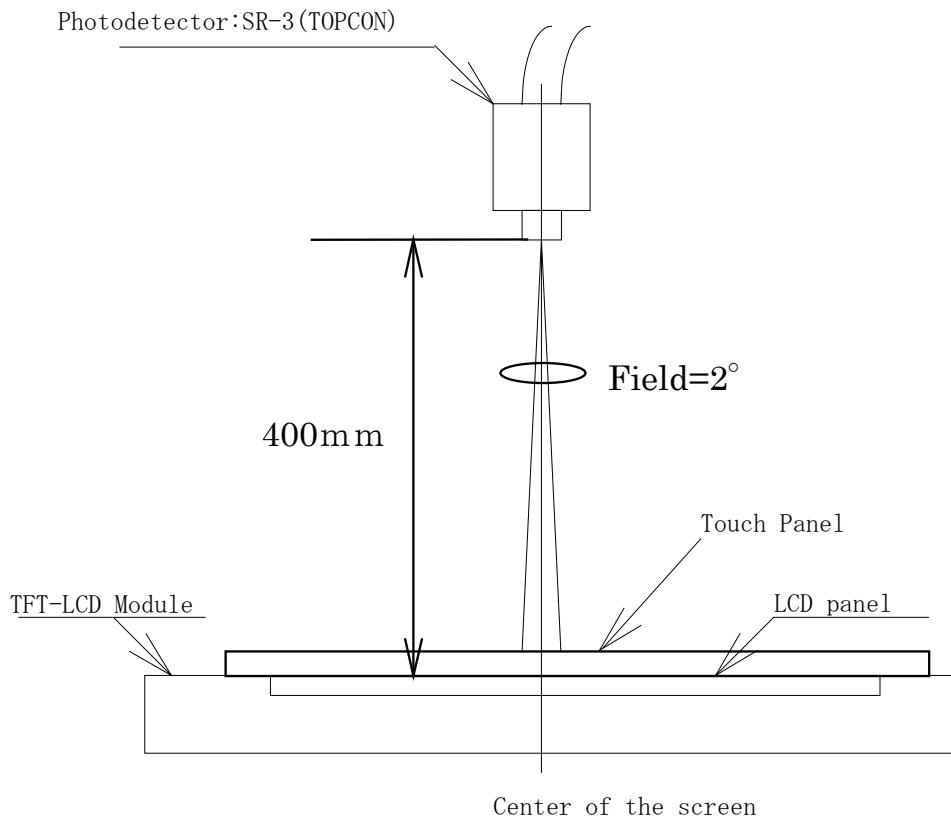
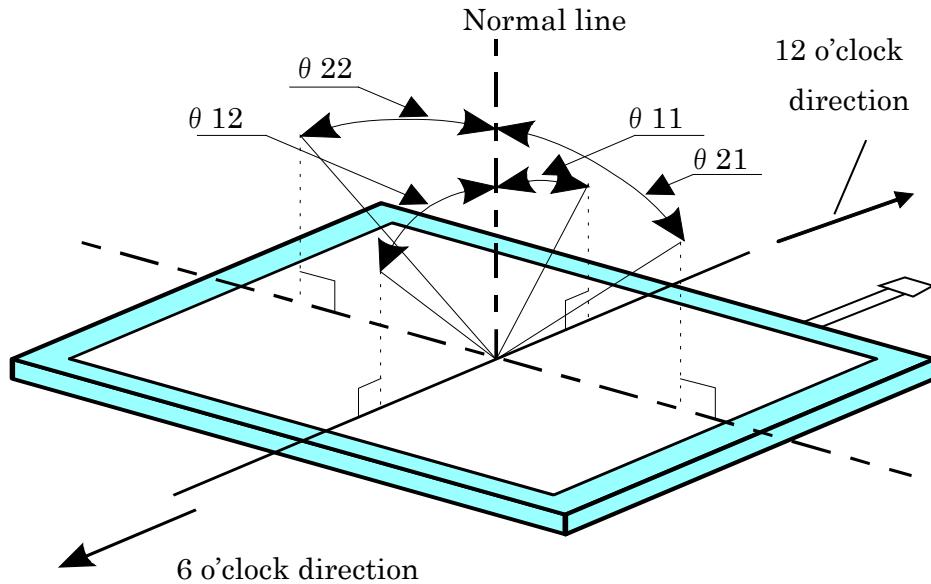
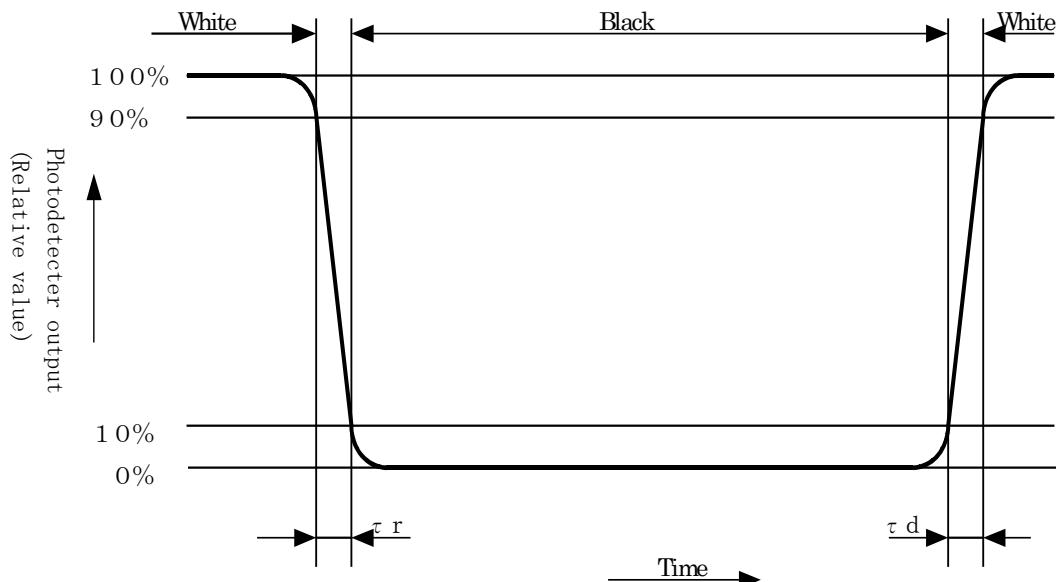



Fig.9-1 Optical characteristics measurement method

【Note 9-1】 Viewing angle range is defined as follows.

The best viewing angle of this module is slightly leaned to 12 o'clock from normal line.

Where $\theta_{11} > \theta_{\max}$, gray scale is reversed partially.


Where $\theta_{11} < \theta_{\max}$, or in θ_{12} direction, gray scale isn't reversed.

【Note 9-2】 Contrast ratio is defined as follows:

$$\text{Contrast ratio(CR)} = \frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}$$

※ Measurement point : Center of the active area

【Note 9-3】 Response time is obtained by measuring the transition time of photo detector output, when input signals are applied so as to make the area "black" to and from "white".

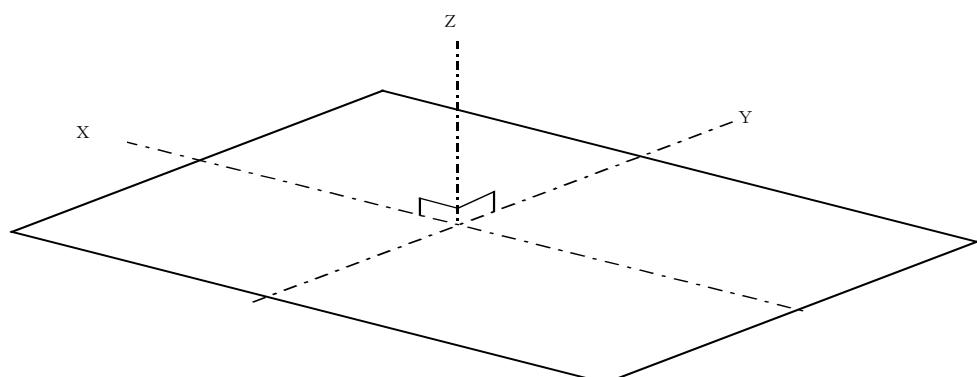
【Note 9-4】 This parameter should be measured at the center of the screen and 30 minutes after turn-on. The characteristics are measured when the driver circuit is not powered.

【Note 9-5】 The data for LED is for your reference, because LED is consumable component.
LED life time : When a brightness of lamp surface become 50% of the initial value under the Standard condition.

10. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Our TFT-LCD module is designed to be fixed to the hardware with mounting holes on 4-corners on the backside. Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- d) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- e) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
Handle with care.
- f) Since CMOS LSI is used in this module, take care of static electricity and ensure the human earth when handling. Observe all other precautionary requirements in handling components.
- g) Since there is a circuit board in the module back, stress shall not be impressed in designing and assembling. If stress is impressed, there arises a possibility that circuit parts may be damaged.
- h) Direct sunlight on LCD panel may cause degradation of panel quality. Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment.
- i) Connect GND to 4 place of mounting holes to get stable against EMI and external noise.
- j) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- k) When installing LCD modules in the cabinet, we suggest the reference torque as $0.38 \pm 0.3 \text{ N}\cdot\text{m}$ (with JIS B1122 M3, 6mm).
Since the optimal torque varies according to the screw or building conditions, so be sure to test it in the actual use condition.
Inserting length to the module shall be within 5mm. Tapping screws shall be tighten only one time.
More than two time tightening is not assured. Please take care in the case of reworking.
- l) Liquid crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.
- m) Notice: Never dismantle the module, because it will cause failure.
Please don't remove the fixed tape, insulating tape etc that was pasted on the original module.
(except for protection film of the panel and the crepe tape(yellow tape) temporarily adhered on the module.)
- n) Be careful when using it for long time with fixed pattern display as it may cause afterimage.
(Please use a screen saver etc., in order to avoid an afterimage.)
- o) Adjusting volume have been set optimally before shipment, so do not change any adjusted value.
If adjusted value is changed, the specification may not be satisfied.
- p) If a minute particle get into the module and adheres on an optical material, it may cause display irregularity issue, etc. Therefore, fine-pitch filters have to be built into cooling and inhalation hole if you intend to install a fan.
- q) Liquid crystal can be damaged by ultraviolet light. Be sure not to operate or storage under direct sunlight or strong ultraviolet light for a long time.
- r) Please storage modules in ambient temperature if possible. Below the storage temperature, liquid crystal can freeze and damage the LCD panel. Above storage temperature, it can irreversibly turn into isotropic state which cannot work as display.
- s) Don't give stress on the surface of the touch panel continuously. It causes unevenness (in such cases as the Newton's Ring) in the touch panel surface.

12. Reliability Test Items


No.	Test items	Test conditions
1	High temperature storage test	Leaves the module at $T_a = +70^{\circ}\text{C}$ for 240h 【Note 1】
2	Low temperature storage test	Leaves the module at $T_a = -30^{\circ}\text{C}$ for 240h 【Note 1】
3	High temperature and high humidity operating test	Operates the module at $T_p = +40^{\circ}\text{C}$, 95%RH for 240h (No condensation) 【Note 1】
4	High temperature operating test	Operates the module at $T_p = +70^{\circ}\text{C}$ for 240h 【Note 1】
5	Low temperature operating test	Operates the module at $T_p = -30^{\circ}\text{C}$ for 240h 【Note 1】
6	Strength against ESD	$\pm 200\text{V} \cdot 200\text{pF}(0\Omega)$ 1 time for each terminals
7	Shock test (non-operating)	$490\text{m/s}^2 \cdot 11\text{ms}$, $\pm X$; $\pm Y$; $\pm Z$ once for each direction
8	Vibration test (non-operating)	Frequency : $5 \sim 57\text{Hz}$, One side : 0.076mm Frequency : $58 \sim 500\text{Hz}$, Acceleration : 9.8m/s^2 Sweep cycle : 11 minutes X, Y, Z 1 hours for each directions (total 3 hours) 【Note 2】
9	Thermal shock test	$T_a = -30^{\circ}\text{C} \sim +70^{\circ}\text{C}$, 50 cycles (0.5h) (0.5h)
10	Durability (Touch panel hitting)	500,000 times Stylus:R0.8mm / load:2.45N / 2times/s / Electrical characteristics shall be satisfied.
11	Durability (Touch panel scratching)	50,000 times Stylus:R0.8mm / load:2.45N / 60mm/sec Electrical characteristics shall be satisfied after test.

【Result evaluation criteria】

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

【Note 1】 T_a = Ambient temperature, T_p = Panel surface temperature

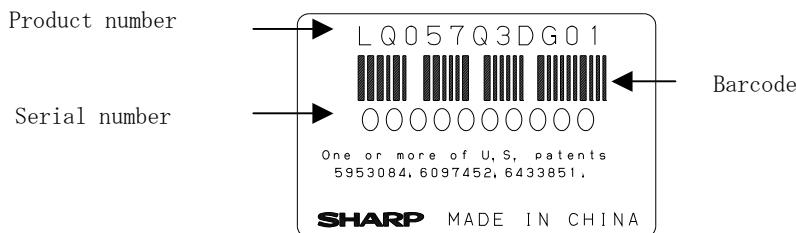
【Note 2】 X, Y, Z directions are shown as follows:

13. Packing Form

1-1 packaging detail

Please refer "Figure A" for the detailed packing form.

1-2 Carton stock conditions


- a) Maximum number of Carton being stuck: Max. 9 cartons
- b) Maximum number of product contained: 20 Unit
- c) Carton size: 534 mm(W)×349 mm(D)×195 mm(H)
- d) Total mass : 8.6 kg (MAX)
- e) Carton stock environment:
 - 1) Temperature: 0 ~ 40°C
 - 2) Humidity: Less than 60%RH
 - 3) Ambiance: No gases bite into electronic components and wiring materials
 - 4) Period: Approximately 3month
 - 5) Unpacking: Take care not to get LCD module damaged by ESD.
When unpacking, the room humidity shall be controlled to be more than 50%RH.
Please unpack packages by effective means against ESD (the earthing Band, for example).

1-3 Barcode label print

Serial No. consists of 10 numbers. The role of each number is as follows:

- 1st: last number of the year of manufacture (0-9)
- 2nd: month of manufacture (1-9,X,Y,Z)
- 3rd-4th: SHARP handling No. (fixed value=0X)
- 5th: manufacturing location (fixed value=D)
- 6th-10th: serial No. (1-9)

ex. The 12th product of Dec. 2011 = 1Z0XD00012

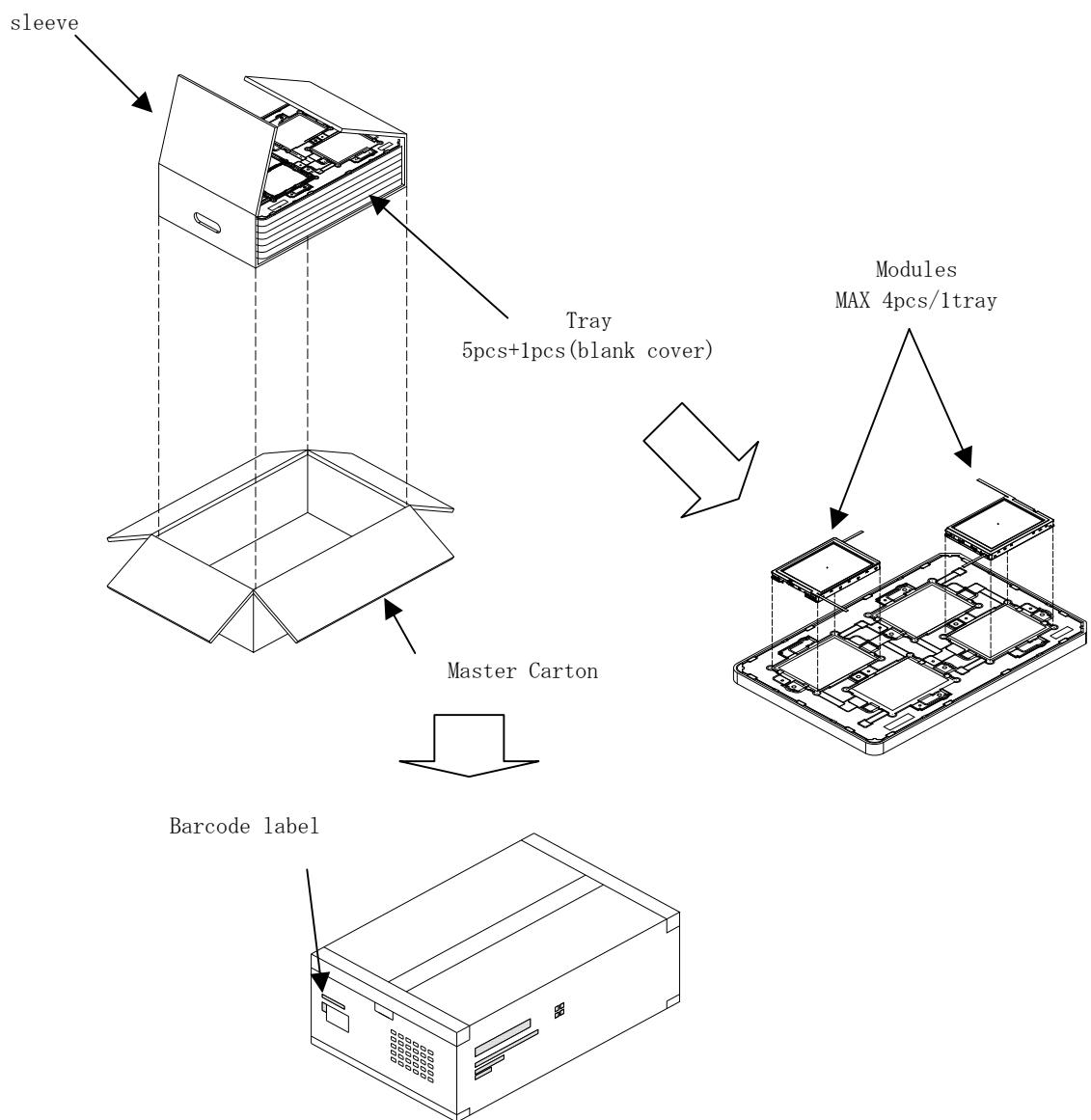
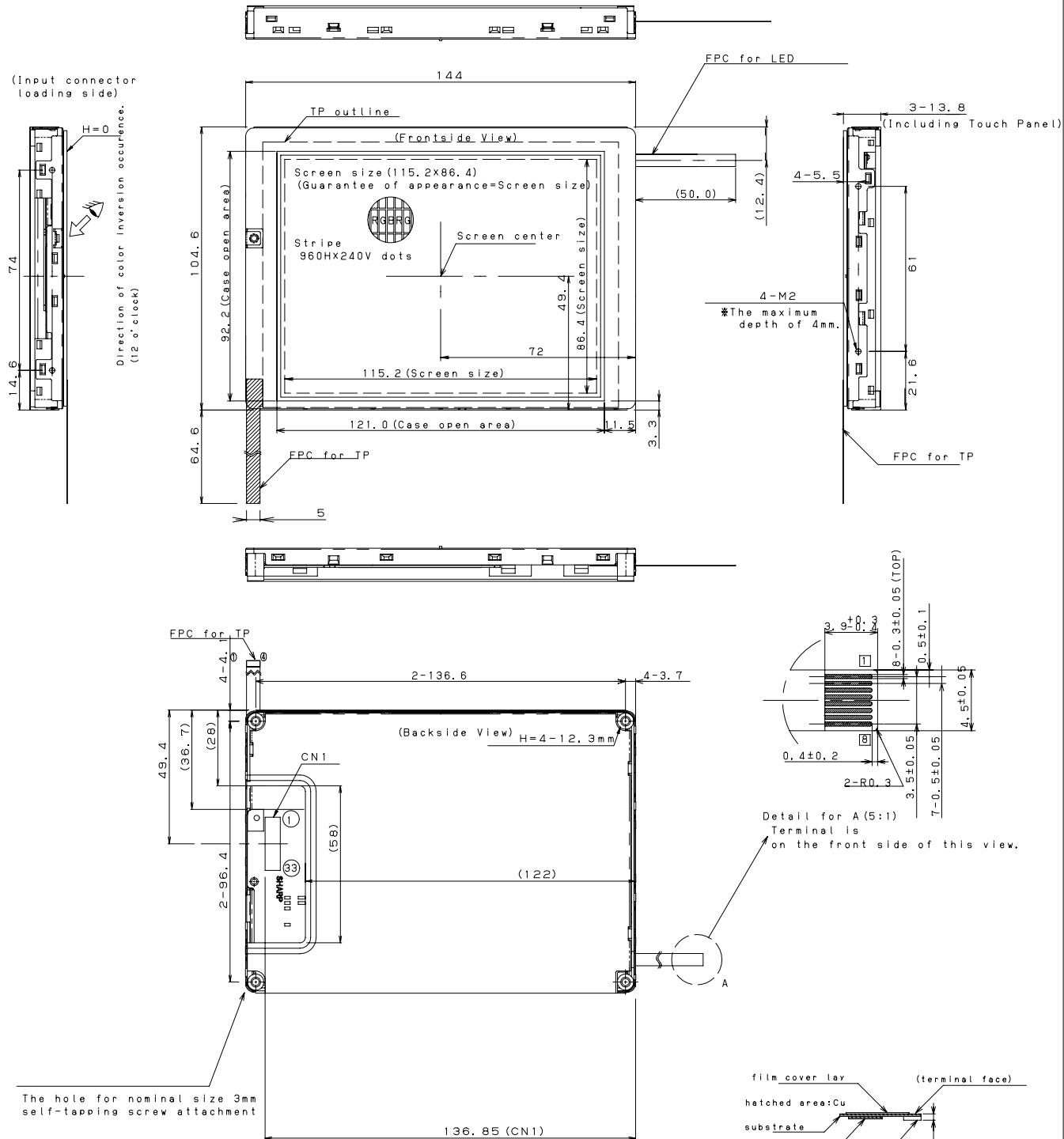



Figure. A : packing form

SHARP

* See other drawings
for detailed dimension of TP

1) CN1: I/O connector is IMS-9637S-33Y902 (IRISO ELECTRICS CO., LTD)

2) Recommendation screw is nominal size 3mm tapping amount of invasion 5mm.

3) General tolerance is ±0.5mm.

Cross-section of LED FPC

unit:mm	Please do not copy this material and do not disclose this to third party.						
DATE							
MODEL	LQ057Q3DG01	size	free	DATE	REVISION		Sign.
DRAWING NO		A2		SHARP CORPORATION		ENGINEERING DEPARTMENT MOBILE LIQUID CRYSTAL DIVISION III MOBILE LIQUID CRYSTAL DISPLAY GROUP I	

LCD Specification

LCD Group

NORTH AMERICA

Sharp Microelectronics of the Americas
 5700 NW Pacific Rim Blvd.
 Camas, WA 98607, U.S.A.
 Phone: (1) 360-834-2500
 Fax: (1) 360-834-8903
www.sharpsma.com

TAIWAN

Sharp Electronic Components
 (Taiwan) Corporation
 8F-A, No. 16, Sec. 4, Nanking E. Rd.
 Taipei, Taiwan, Republic of China
 Phone: (886) 2-2577-7341
 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

Sharp Microelectronics of China
 (Shanghai) Co., Ltd.
 28 Xin Jin Qiao Road King Tower 16F
 Pudong Shanghai, 201206 P.R. China
 Phone: (86) 21-5854-7710/21-5834-6056
 Fax: (86) 21-5854-4340/21-5834-6057
 Head Office:
 No. 360, Bashen Road,
 Xin Development Bldg. 22
 Waigaoqiao Free Trade Zone Shanghai
 200131 P.R. China
 Email: smc@china.global.sharp.co.jp

EUROPE

Sharp Microelectronics Europe
 Division of Sharp Electronics (Europe) GmbH
 Sonninstrasse 3
 20097 Hamburg, Germany
 Phone: (49) 40-2376-2286
 Fax: (49) 40-2376-2232
www.sharpsme.com

SINGAPORE

Sharp Electronics (Singapore) PTE., Ltd.
 438A, Alexandra Road, #05-01/02
 Alexandra Technopark,
 Singapore 119967
 Phone: (65) 271-3566
 Fax: (65) 271-3855

KOREA

Sharp Electronic Components
 (Korea) Corporation
 RM 501 Geosung B/D, 541
 Dohwa-dong, Mapo-ku
 Seoul 121-701, Korea
 Phone: (82) 2-711-5813 ~ 8
 Fax: (82) 2-711-5819

JAPAN

Sharp Corporation
 Electronic Components & Devices
 22-22 Nagaoka-cho, Abeno-Ku
 Osaka 545-8522, Japan
 Phone: (81) 6-6621-1221
 Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

HONG KONG

Sharp-Roxy (Hong Kong) Ltd.
 Level 26, Tower 1, Kowloon Commerce Centre,
 No. 51, Kwai Cheong Road, Kwai Chung,
 New Territories, Hong Kong
 Phone: (852) 28229311
 Fax: (852) 28660779
www.sharp.com.hk
 Shenzhen Representative Office:
 Room 602-603, 6/F,
 International Chamber of Commerce Tower,
 168 Fuhua Rd. 3, CBD,
 Futian District, Shenzhen 518048,
 Guangdong, P.R. China
 Phone: (86) 755-88313505
 Fax: (86) 755-88313515

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Sharp Microelectronics:](#)

[LQ057Q3DG01](#)