

Data Sheet September 2013 File Number 2253.2

N-Channel Power MOSFET 50V, 30A, 40 $m\Omega$

This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits.

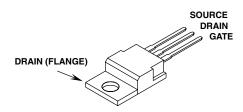
Formerly developmental type TA9771.

Ordering Information

PART NUMBER	PACKAGE	BRAND		
BUZ11_NR4941	TO-220AB	BUZ11		

NOTE: When ordering, use the entire part number.

Features


- 30A, 50V
- r_{DS(ON)} = 0.040Ω
- SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-220AB

BUZ11

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	BUZ11	UNITS
Drain to Source Breakdown Voltage (Note 1)	50	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	50	V
Continuous Drain Current $T_C = 30^{\circ}C$	30	Α
Pulsed Drain Current (Note 3)	120	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation	75	W
Linear Derating Factor	0.6	W/oC
Operating and Storage Temperature	-55 to 150	οС
DIN Humidity Category - DIN 40040	Е	
IEC Climatic Category - DIN IEC 68-1	55/150/56	
Maximum Temperature for Soldering		_
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications

 $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V$	50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 1mA (Figure 9)	2.1	3	4	V
Zero Gate Voltage Drain Current	I _{DSS}	$T_J = 25^{\circ}C$, $V_{DS} = 50V$, $V_{GS} = 0V$	-	20	250	μΑ
		$T_J = 125^{\circ}C, V_{DS} = 50V, V_{GS} = 0V$	-	100	1000	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 20V, V _{DS} = 0V	-	10	100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 15A, V _{GS} = 10V (Figure 8)	-	0.03	0.04	Ω
Forward Transconductance (Note 2)	9fs	V _{DS} = 25V, I _D = 15A (Figure 11)	4	8	-	S
Turn-On Delay Time	t _{d(ON)}	V_{CC} = 30V, I_D \approx 3A, V_{GS} = 10V, R_{GS} = 50 Ω , R_L = 10 Ω	-	30	45	ns
Rise Time	t _r		-	70	110	ns
Turn-Off Delay Time	t _{d(OFF)}		-	180	230	ns
Fall Time	t _f		-	130	170	ns
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 10)	-	1500	2000	pF
Output Capacitance	Coss		-	750	1100	pF
Reverse Transfer Capacitance	C _{RSS}		-	250	400	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$			≤ 1.67		°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			≤ 75		°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	$T_C = 25^{\circ}C$	-	-	30	Α
Pulsed Source to Drain Current	I _{SDM}	$T_{C} = 25^{\circ}C$	-	-	120	Α
Source to Drain Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 60A$, $V_{GS} = 0V$	-	1.7	2.6	٧
Reverse Recovery Time	t _{rr}	$T_J = 25^{o}C$, $I_{SD} = 30A$, $dI_{SD}/dt = 100A/\mu s$,	-	200	-	ns
Reverse Recovery Charge	Q _{RR}	V _R = 30V	-	0.25	-	μС

NOTES:

- 2. Pulse Test: Pulse width \leq 300ms, duty cycle \leq 2%.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).

©2001 Fairchild Semiconductor Corporation

Typical Performance Curves Unless Otherwise Specified

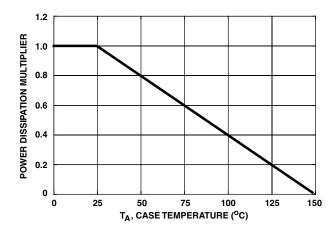
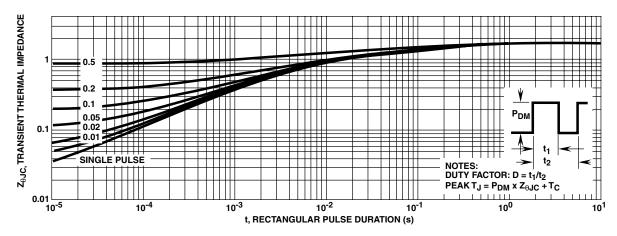
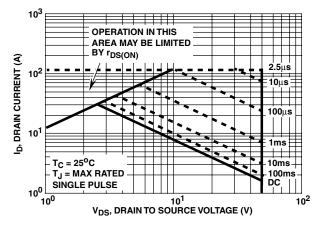
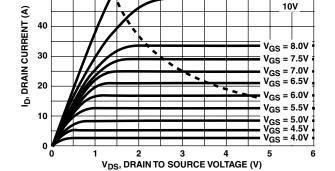


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE


FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE

60

50

 $P_D = 75W$

V_{GS} = 20V

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. OUTPUT CHARACTERISTICS

PULSE DURATION = 80μs

DUTY CYCLE = 0.5% MAX

Typical Performance Curves Unless Otherwise Specified (Continued)

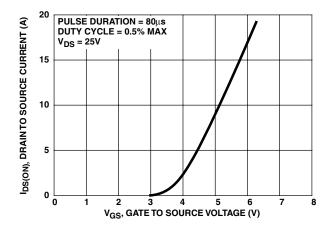


FIGURE 6. TRANSFER CHARACTERISTICS

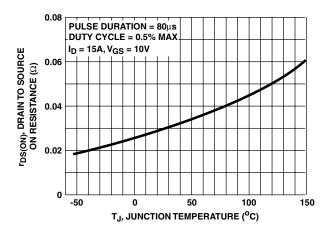


FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

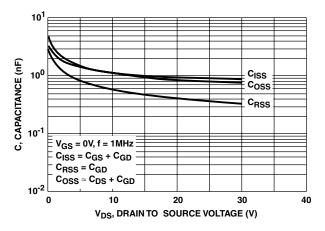


FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

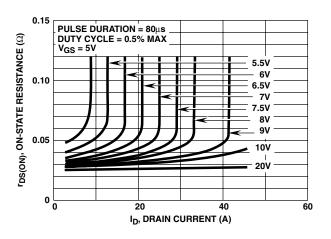


FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

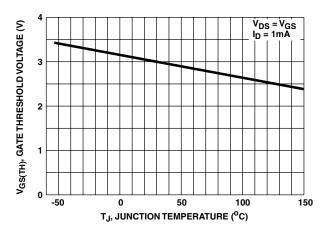


FIGURE 9. GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. TRANSCONDUCTANCE vs DRAIN CURRENT

©2001 Fairchild Semiconductor Corporation BUZ11 Rev. C0

Typical Performance Curves Unless Otherwise Specified (Continued)

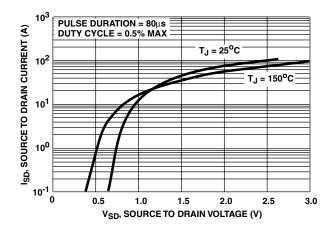


FIGURE 12. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

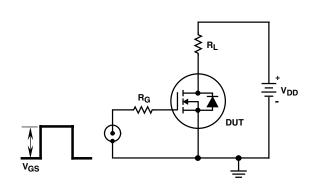


FIGURE 14. SWITCHING TIME TEST CIRCUIT

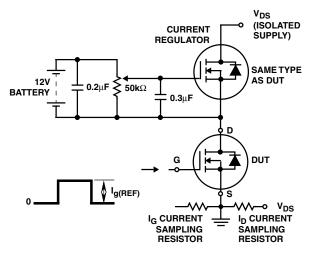


FIGURE 16. GATE CHARGE TEST CIRCUIT

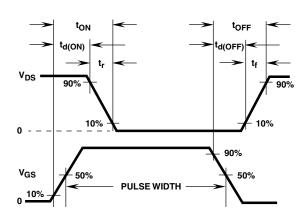


FIGURE 15. RESISTIVE SWITCHING WAVEFORMS

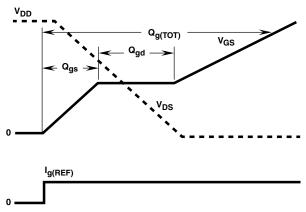


FIGURE 17. GATE CHARGE WAVEFORMS

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower™ FRFET® AX-CAP® BitSiC™

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™

CTL™

Current Transfer Logic™ DEUXPEED®

Dual Cool™ EcoSPARK® EfficentMax™

ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

FAST® FastvCore™ FETBench™

Global Power ResourceSM GreenBridge™

Green FPS™

Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6

SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM ®* TinyBoost® TinyBuck[®] TinyCalc™ TinyLogic[®]
TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC®

Ultra FRFET™ UniFET™ **VCX**TM VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166