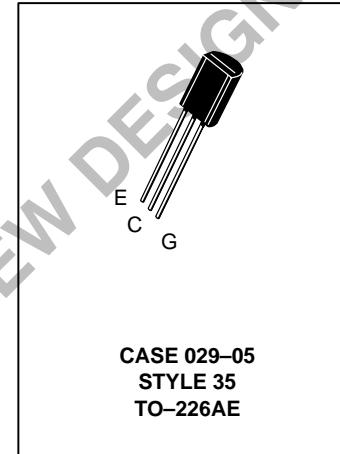


Designer's™ Data Sheet
Insulated Gate Bipolar Transistor
N-Channel Enhancement-Mode Silicon Gate

This IGBT contains a built-in free wheeling diode and a gate protection zener diode. Fast switching characteristics result in efficient operation at higher frequencies. This device is ideally suited for high frequency electronic ballasts.


- Built-In Free Wheeling Diodes
- Built-In Gate Protection Zener Diode
- Industry Standard Package (TO92 — 1.0 Watt)
- High Speed E_{off} : Typical 6.5 μ J @ $I_C = 0.3$ A; $T_C = 125^\circ\text{C}$ and $dV/dt = 1000$ V/ μ s
- Robust High Voltage Termination
- Robust Turn-Off SOA

MGS13002D

IGBT
0.5 A @ 25°C
600 V

CASE 029-05
STYLE 35
TO-226AE

MAXIMUM RATINGS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Parameters	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CES}	600	Vdc
Collector-Gate Voltage ($R_{GE} = 1.0$ M Ω)	V_{CGR}	600	Vdc
Gate-Emitter Voltage — Continuous	V_{GES}	± 15	Vdc
Collector Current — Continuous @ $T_C = 25^\circ\text{C}$ — Continuous @ $T_C = 90^\circ\text{C}$ — Repetitive Pulsed Current (1)	I_{C25} I_{C90} I_{CM}	0.5 0.3 2.0	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$	P_D	1.0	Watt
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-55 to 150	°C

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case — IGBT Thermal Resistance — Junction to Ambient	$R_{\theta JC}$ $R_{\theta JA}$	25 125	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T_L	260	°C

UNCLAMPED DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS ($T_C \leq 150^\circ\text{C}$)

Single Pulse Drain-to-Source Avalanche Energy — Starting @ $T_C = 25^\circ\text{C}$ @ $T_C = 125^\circ\text{C}$ $V_{CE} = 100$ V, $V_{GE} = 15$ V, Peak $I_L = 2.0$ A, $L = 3.0$ mH, $R_G = 25$ Ω	E_{AS}	125 40	mJ
---	----------	-----------	----

(1) Pulse width is limited by maximum junction temperature repetitive rating.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

Designer's is a trademark of Motorola, Inc.

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-to-Emitter Breakdown Voltage ($V_{GE} = 0 \text{ Vdc}$, $I_C = 250 \mu\text{A}$) Temperature Coefficient (Positive)	$V_{(BR)CES}$	600 —	680 0.7	— —	Vdc $\text{V}/^\circ\text{C}$
Zero Gate Voltage Collector Current ($V_{CE} = 600 \text{ Vdc}$, $V_{GE} = 0 \text{ Vdc}$) ($V_{CE} = 600 \text{ Vdc}$, $V_{GE} = 0 \text{ Vdc}$, $T_C = 125^\circ\text{C}$)	I_{CES}	— —	0.1 5.0	5.0 50	μA
Gate-Body Leakage Current ($V_{GE} = \pm 15 \text{ Vdc}$, $V_{CE} = 0 \text{ Vdc}$)	I_{GES}	—	10	100	μA

ON CHARACTERISTICS

Collector-to-Emitter On-State Voltage ($V_{GE} = 15 \text{ Vdc}$, $I_C = 0.3 \text{ Adc}$) ($V_{GE} = 15 \text{ Vdc}$, $I_C = 0.3 \text{ Adc}$, $T_C = 125^\circ\text{C}$)	$V_{CE(on)}$	— —	1.6 1.5	2.0 —	Vdc
Gate Threshold Voltage ($V_{CE} = V_{GE}$, $I_C = 250 \mu\text{A}$) Threshold Temperature Coefficient (Negative)	$V_{GE(th)}$	3.5 —	— 6.0	6.0 —	Vdc $\text{mV}/^\circ\text{C}$
Forward Transconductance ($V_{CE} = 10 \text{ Vdc}$, $I_C = 0.5 \text{ Adc}$)	g_{fe}	0.3	0.42	—	Mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$(V_{CE} = 20 \text{ Vdc}$, $V_{GE} = 0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)	C_{ies}	—	75	100	pF
Output Capacitance		C_{oes}	—	11	20	
Transfer Capacitance		C_{res}	—	1.6	5.0	

DIODE CHARACTERISTICS

Diode Forward Voltage Drop ($I_{EC} = 0.3 \text{ Adc}$) ($I_{EC} = 0.3 \text{ Adc}$, $T_C = 125^\circ\text{C}$) ($I_{EC} = 0.1 \text{ Adc}$) ($I_{EC} = 0.1 \text{ Adc}$, $T_C = 125^\circ\text{C}$)	V_{FEC}	— — — —	5.0 5.2 2.3 2.3	6.0 — 3.0 —	Vdc	
Reverse Recovery Time		t_{rr}	—	150	—	ns
Reverse Recovery Stored Charge	$(I_F = 0.4 \text{ Adc}$, $V_R = 300 \text{ Vdc}$, $dI/dt = 10 \text{ A}/\mu\text{s}$)	Q_{RR}	—	35	—	μC

SWITCHING CHARACTERISTICS⁽¹⁾

Turn-Off Delay Time	$(V_{CC} = 300 \text{ Vdc}$, $I_C = 0.4 \text{ Adc}$, $V_{GE} = 15 \text{ Vdc}$, $L = 3.0 \text{ mH}$, $R_G = 25 \Omega$, $T_C = 25^\circ\text{C}$, $dV/dt = 1000 \text{ V}/\mu\text{s}$) Energy losses include "tail"	$t_{d(off)}$	—	28	—	ns
Fall Time		t_f	—	150	—	
Turn-Off Switching Loss		E_{off}	—	3.25	—	
Turn-Off Delay Time	$(V_{CC} = 300 \text{ Vdc}$, $I_C = 0.4 \text{ Adc}$, $V_{GE} = 15 \text{ Vdc}$, $L = 3.0 \text{ mH}$, $R_G = 25 \Omega$, $T_C = 125^\circ\text{C}$, $dV/dt = 1000 \text{ V}/\mu\text{s}$) Energy losses include "tail"	$t_{d(off)}$	—	21	—	ns
Fall Time		t_f	—	280	—	
Turn-Off Switching Loss		E_{off}	—	8.0	—	
Gate Charge	$(V_{CC} = 300 \text{ Vdc}$, $I_C = 0.3 \text{ Adc}$, $V_{GE} = 15 \text{ Vdc}$)	Q_T	—	6.4	—	nC

(1) Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2\%$.

DEVICE NOT RECOMMENDED FOR NEW DESIGN

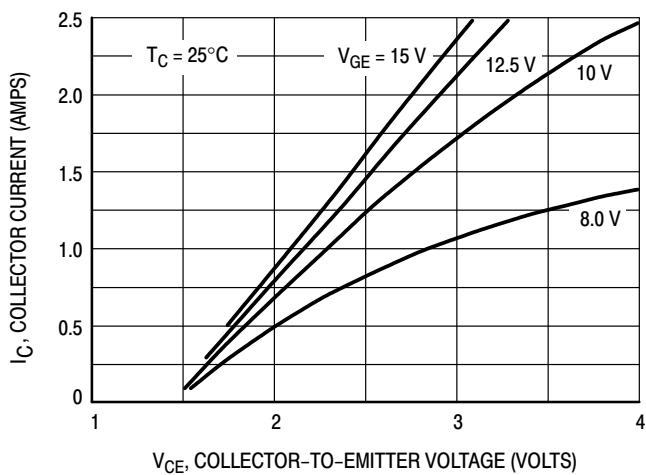


Figure 1. Saturation Characteristics

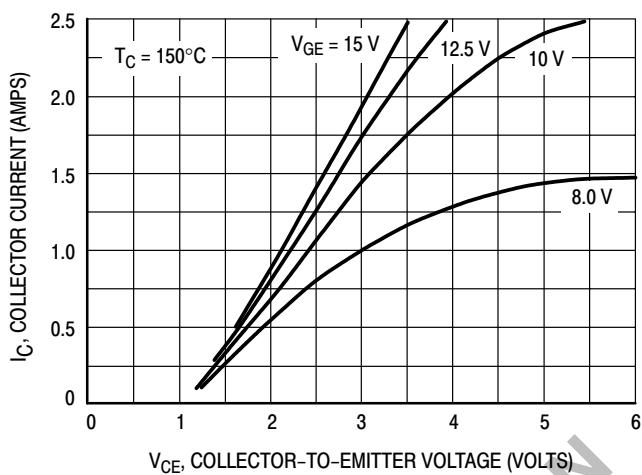


Figure 2. Saturation Characteristics

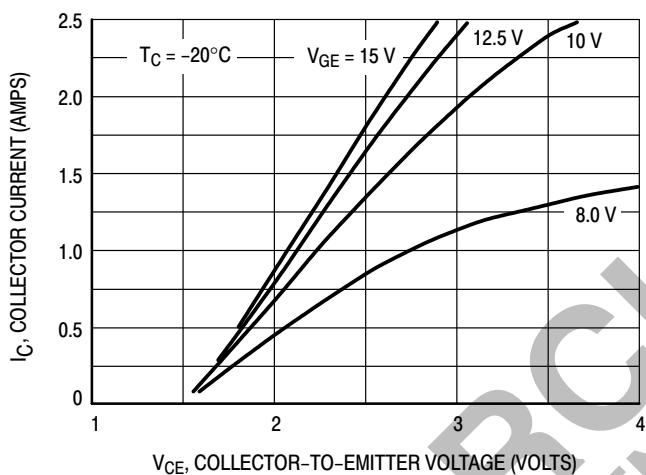


Figure 3. Saturation Characteristics

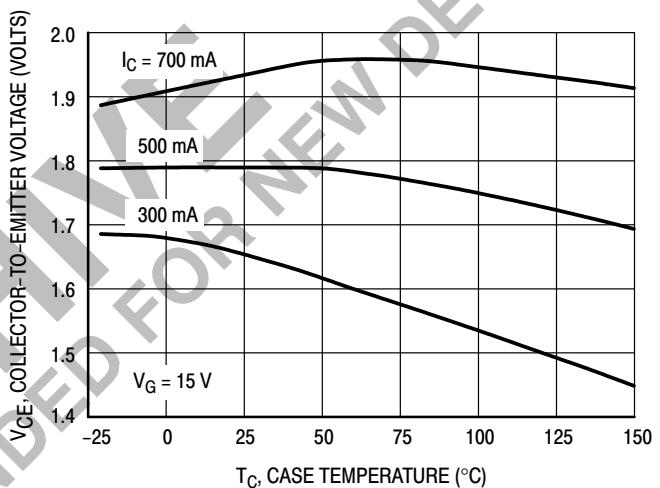


Figure 4. Collector-to-Emitter Saturation Voltage versus Case Temperature

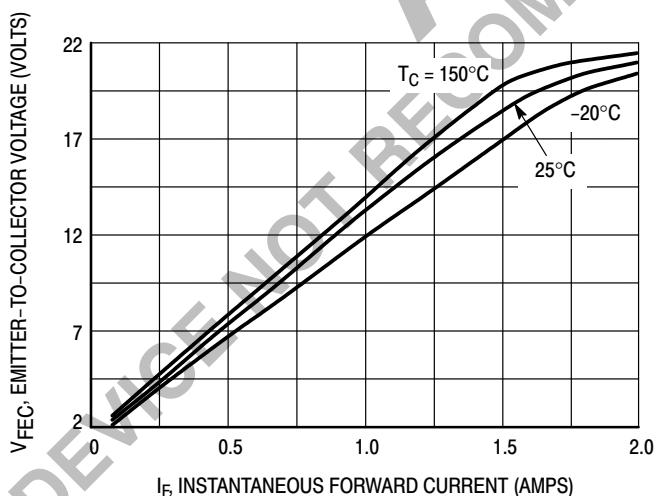


Figure 5. Diode Forward Voltage Drop

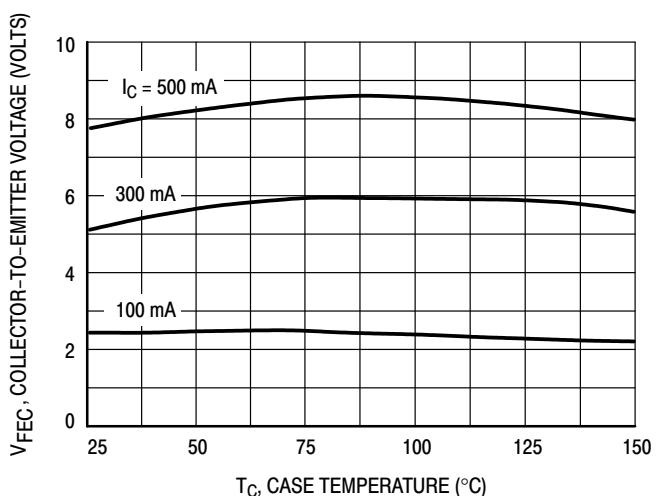
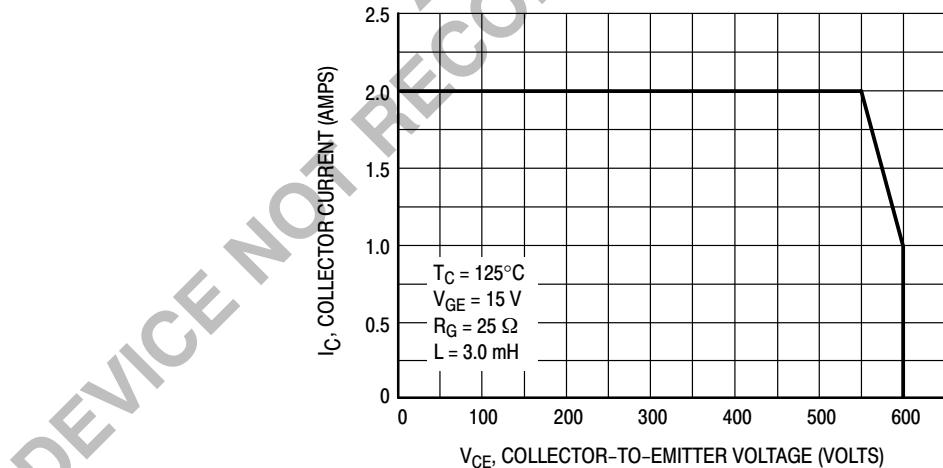
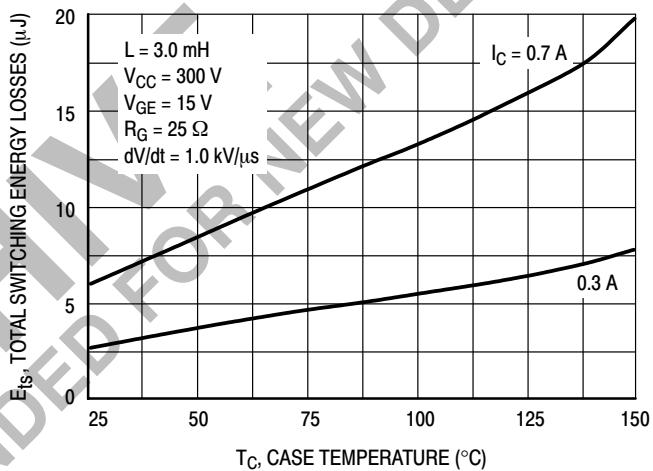
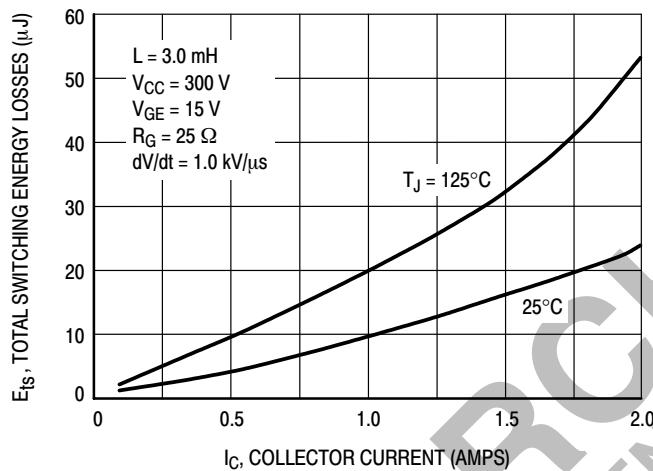
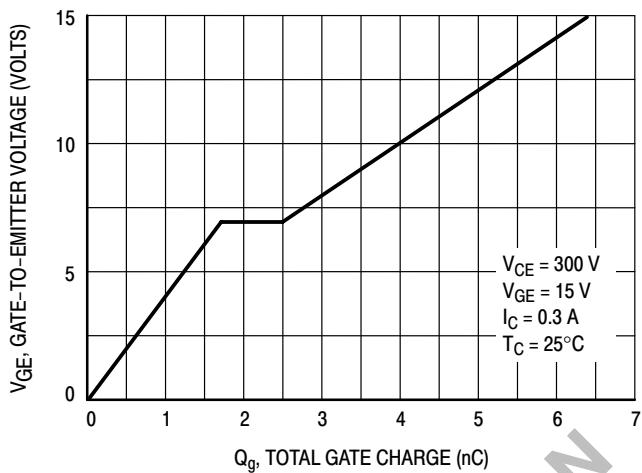
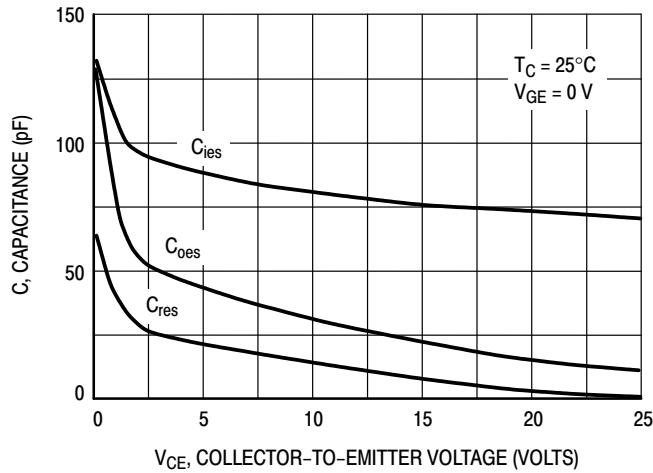







Figure 6. Diode Forward Voltage versus Case Temperature

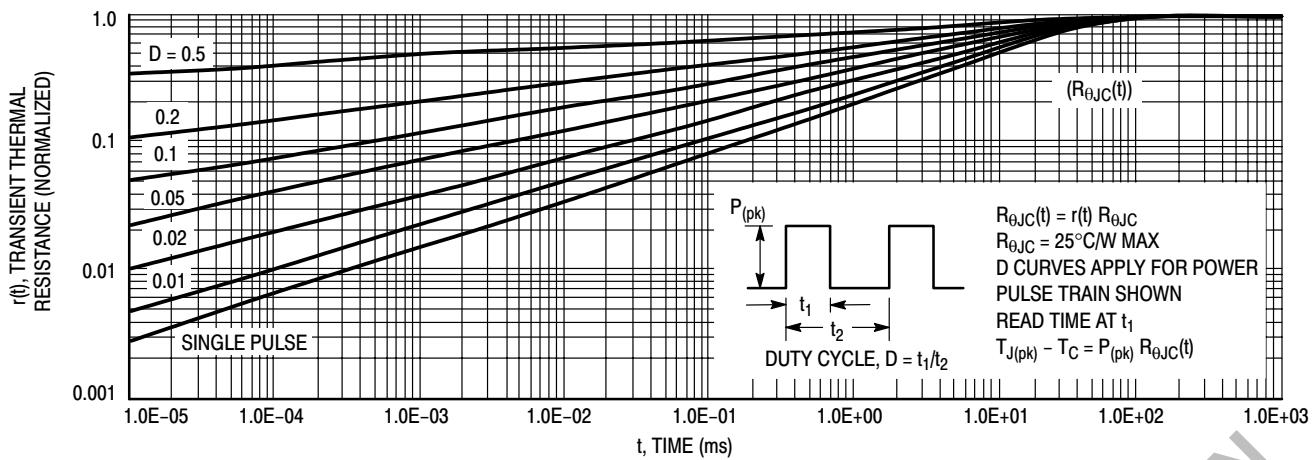
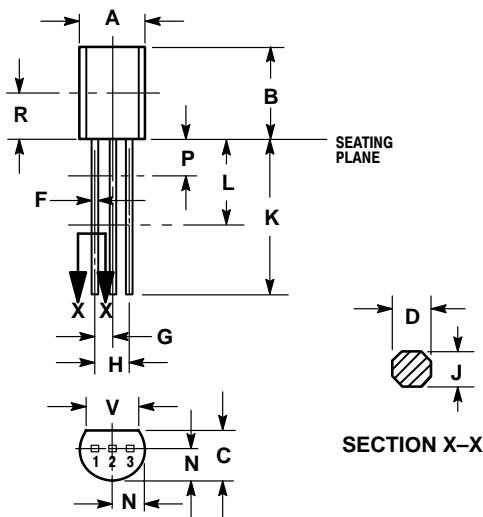



Figure 12. Typical Thermal Response

DEVICE NOT RECOMMENDED FOR NEW DESIGN

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSIONS D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.022	0.46	0.56
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	---

CASE 029-05
TO-226AE
ISSUE AD

STYLE 35:
PIN 1. GATE
2. COLLECTOR
3. Emitter

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609
Motorola Fax Back System

– US & Canada ONLY 1-800-774-1848
– <http://sps.motorola.com/mfax/>

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: <http://motorola.com/sps/>