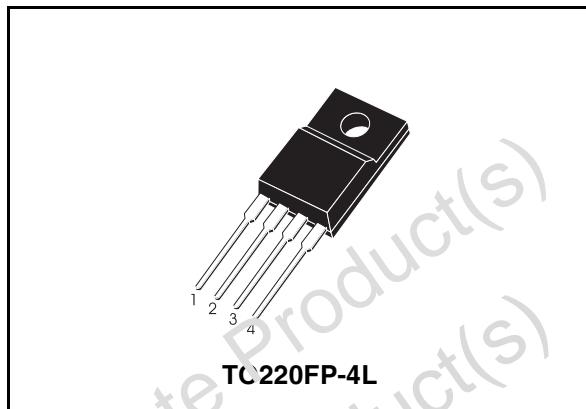


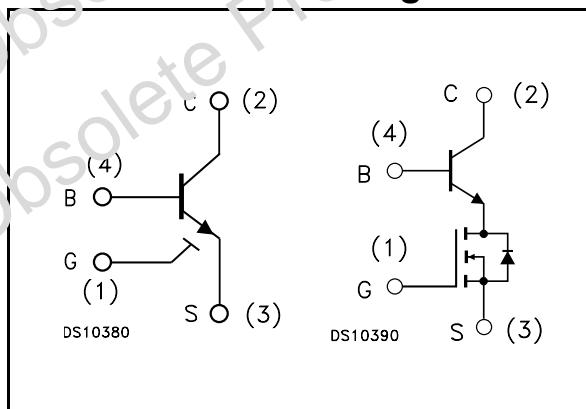
General features

$V_{CS(ON)}$	I_C	$R_{CS(ON)}$
0.8 V	8 A	0.10 Ω

- High voltage / high current Cascode configuration
- Low equivalent on resistance
- very fast-switch up to 150 kHz
- Squared RBSOA up to 1200V
- Very low C_{iss} driven by $R_G = 47Ω$
- Very low turn-off cross over time


Applications

- Aux SMPS for three phase mains


Description

The STP08IE120F4 is manufactured in Monolithic ESBT Technology, aimed to provide best performances in high frequency / high voltage applications.

It is designed for use in Gate Driven based topologies.

Internal schematic diagrams

Order codes

Part Number	Marking	Package	Packing
STP08IE120F4	P08IE120F4	TO220FP-4L	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves)	5
2.2	Test circuits	7
3	Package mechanical data	8
4	Revision history	10

1 Electrical ratings

Table 1. Absolute maximum rating

Symbol	Parameter	Value	Unit
$V_{CS(ss)}$	Collector-source voltage ($V_{BS} = V_{GS} = 0$ V)	1200	V
$V_{BS(OS)}$	Base-source voltage ($I_C = 0$, $V_{GS} = 0$ V)	30	V
$V_{SB(OS)}$	Source-base voltage ($I_C = 0$, $V_{GS} = 0$ V)	17	V
V_{GS}	Gate-source voltage	± 17	V
I_C	Collector current	8	A
I_{CM}	Collector peak current ($t_P < 5$ ms)	24	A
I_B	Base current	5	A
I_{BM}	Base peak current ($t_P < 5$ ms)	12	A
P_{tot}	Total dissipation at $T_c = 25$ °C	21	W
T_{stg}	Storage temperature	-40 to 150	°C
T_J	Max. operating junction temperature	150	°C

Table 2. Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case	6	°C/W

2 Electrical characteristics

($T_{case} = 25^\circ\text{C}$ unless otherwise specified)

Table 3. Electrical characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$I_{CS(ss)}$	Collector-source current ($V_{BS} = V_{GS} = 0$)	$V_{CE} = 1200\text{V}$			100	μA
$I_{BS(OS)}$	Base-source current ($I_C = 0, V_{GS} = 0$)	$V_{BS(OS)} = 30\text{V}$			10	μA
$I_{SB(OS)}$	Source-base current ($I_C = 0, V_{GS} = 0$)	$V_{SB(OS)} = 17\text{V}$			100	μA
$I_{GS(OS)}$	Gate-source leakage	$V_{GS} = \pm 17\text{V}$			100	nA
$V_{CS(ON)}$	Collector-source ON voltage	$V_{GS} = 10\text{V} \quad I_C = 8\text{A} \quad I_B = 1.6\text{A}$ $V_{GS} = 10\text{V} \quad I_C = 4\text{A} \quad I_B = 0.4\text{A}$		0.8 0.5	1 1.2	V
h_{FE}	DC current gain	$V_{GS} = 10\text{V} \quad I_C = 8\text{A} \quad V_{CS} = 1\text{V}$ $V_{GS} = 10\text{V} \quad I_C = 4\text{A} \quad V_{CS} = 1\text{V}$	5 7			
$V_{BS(ON)}$	Base Source ON voltage	$V_{BS} = 0\text{V} \quad I_C = 8\text{A} \quad I_B = 1.6\text{A}$ $V_{BS} = 10\text{V} \quad I_C = 4\text{A} \quad I_B = 0.4\text{A}$		1.5 1.5		V
$V_{GS(th)}$	Gate threshold voltage	$V_{BS} = V_{GS} \quad I_B = 250\mu\text{A}$	2	3	4	V
C_{ISS}	Input capacitance	$V_{CS} = 25\text{V} \quad f = 1\text{MHz}$ $V_{GS} = 0$		550		pF
$Q_{GS(tot)}$	Gate source charge	$V_{GS} = 10\text{V}$		26		nC
t_s t_f	INDUCTIVE LOAD Storage time Fall time	$I_C = 4\text{A} \quad I_B = 0.8\text{A} \quad V_{GS} = 10\text{V}$ $V_{Clamp} = 960\text{V} \quad R_G = 47\Omega$ $t_p = 4\mu\text{s}$		670 15		ns ns
t_s t_f	INDUCTIVE LOAD Storage time Fall time	$I_C = 4\text{A} \quad I_B = 0.4\text{A} \quad V_{GS} = 10\text{V}$ $V_{Clamp} = 960\text{V} \quad R_G = 47\Omega$ $t_p = 4\mu\text{s}$		340 10.2		ns ns
V_{CSW}	Maximum collector-source voltage switched without snubber	$R_G = 47\Omega \quad h_{FE} = 5\text{A} \quad I_C = 8\text{A}$	1200			V
$V_{CS(dyn)}$	Collector-source dynamic voltage (500ns)	$V_{CC} = V_{Clamp} = 400\text{V} \quad V_{GS} = 10\text{V}$ $R_G = 47\Omega \quad I_C = 4\text{A} \quad I_B = 0.8\text{A}$ $I_{Bpeak} = 4\text{A} \quad t_{peak} = 500\text{ns}$		5.75		V
$V_{CS(dyn)}$	Collector-source dynamic voltage (1 μs)	$V_{CC} = V_{Clamp} = 400\text{V} \quad V_{GS} = 10\text{V}$ $R_G = 47\Omega \quad I_C = 4\text{A} \quad I_B = 0.8\text{A}$ $I_{Bpeak} = 4\text{A} \quad t_{peak} = 500\text{ns}$		3.35		V

2.1 Electrical characteristics (curves)

Figure 1. Output characteristics

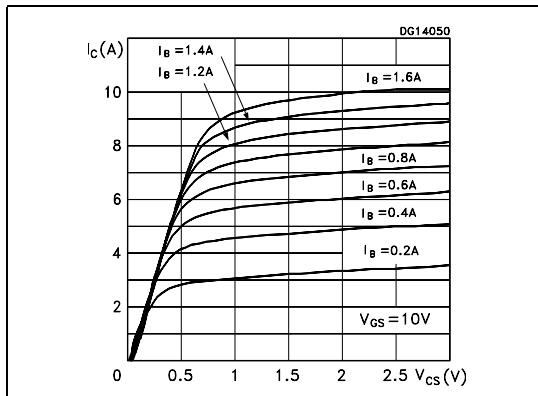


Figure 2. DC current gain

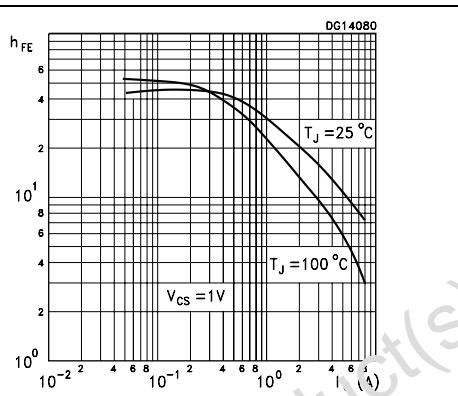


Figure 3. Collector-source On voltage

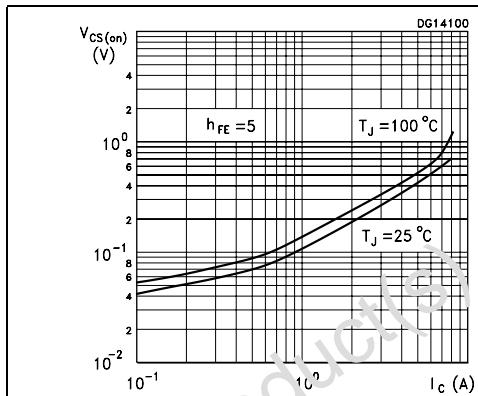


Figure 4. Collector-source On voltage

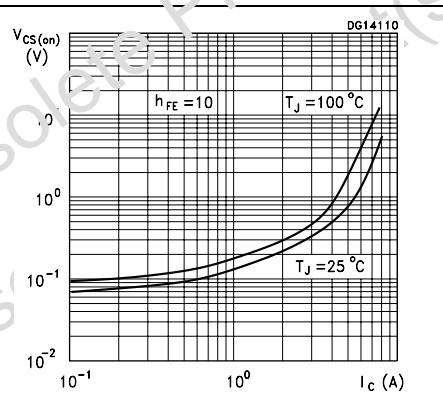
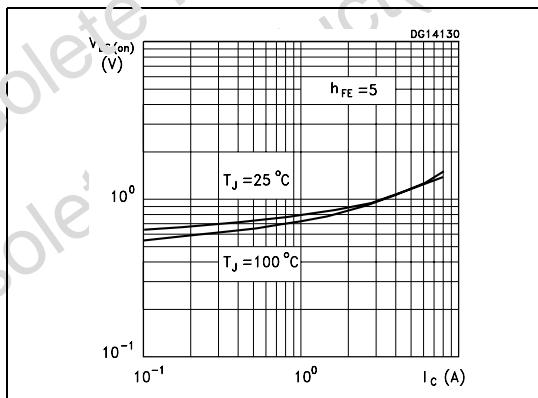
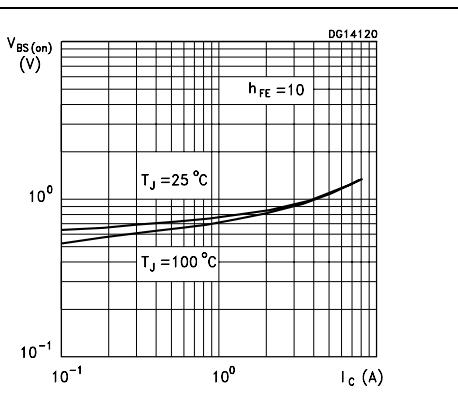
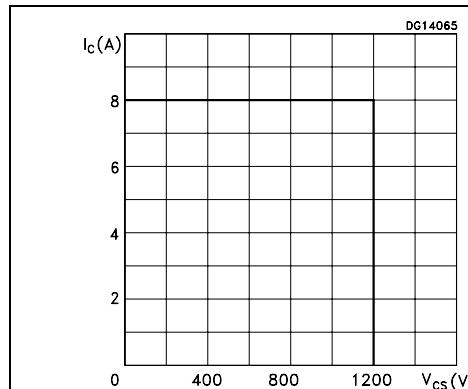
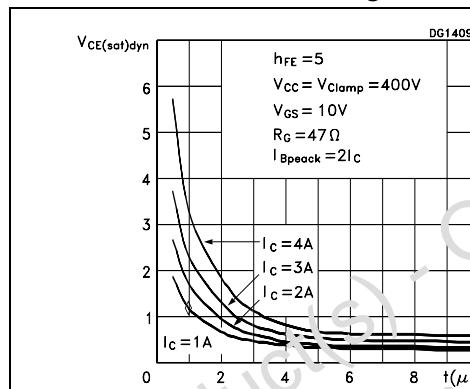
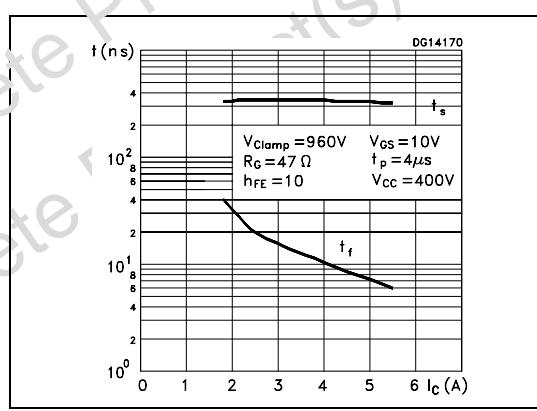
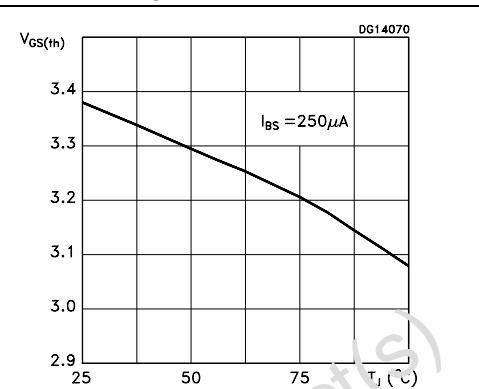


Figure 5. Base-source On voltage


Figure 6. Base-source On voltage


Figure 7. Reverse biased safe operating area


Figure 9. Dynamic collector-emitter saturation voltage

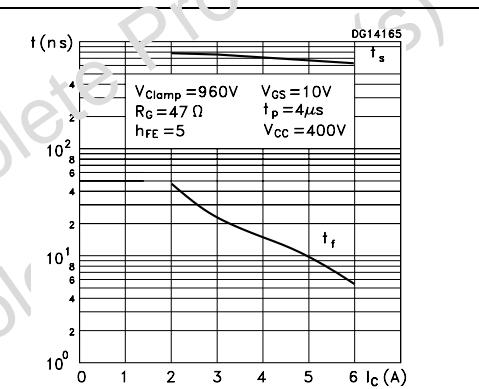

Figure 11. Inductive load switching time

Figure 8. Gate threshold voltage vs temperature

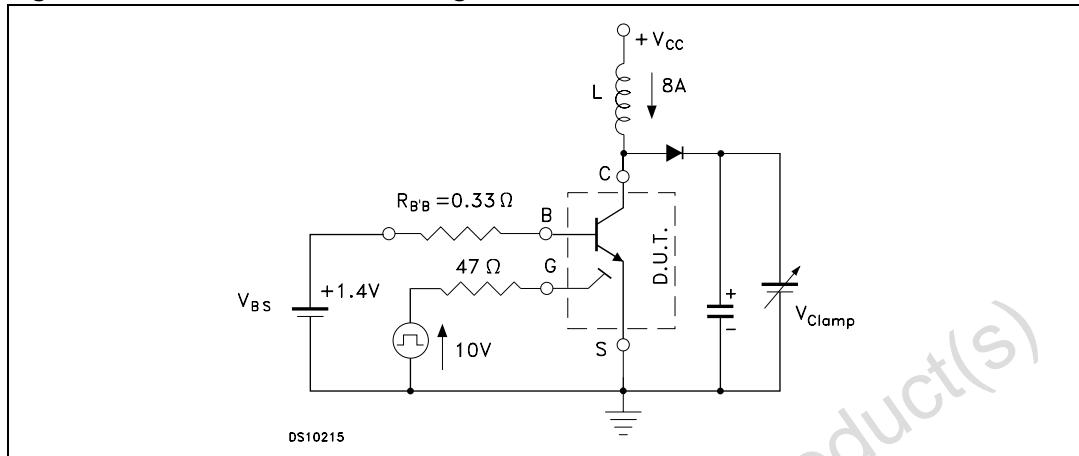
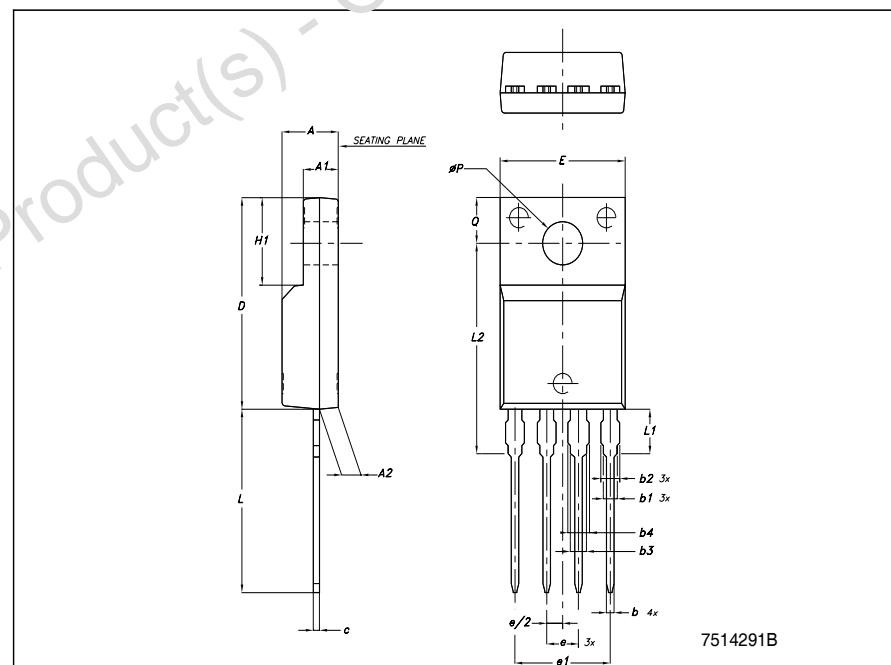


Figure 10. Inductive load switching time

2.2 Test circuits

Figure 12. Inductive load switching and RBSOA test circuit



3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO220FP-4L MECHANICAL DATA

DIM.	MIN.	mm. TYP.	MAX.
A	4.30		4.70
A1	2.60		3
A2	1.30	1.50	1.70
b	0.50		0.70
b1	1.05		
b2			1.3
b3	1.25		
b4			0.50
c	0.45	0.50	0.60
D	15.50		15.90
E	9.80		10.20
e	2.29	2.54	2.79
e1		7.62	
H1	6.30		6.70
L		10.60	
L1		9.30	
L2	15.40		15.80
Dia P	3		3.40
Q	3.30		3.50

4 Revision history

Table 4. Revision history

Date	Revision	Changes
28-Nov-2006	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[STMicroelectronics:](#)

[STP08IE120F4](#)