Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas E<mark>lect</mark>ronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M61303FP

I²C BUS Controlled 3channel Video Pre-amplifier for LCD Display Monitor

REJ03F0198-0201 Rev.2.01 Mar 31, 2008

Description

M61303FP is integrated circuit for LCD display monitor. It is controlled I²C BUS and band wide is 180 MHz.

It includes OSD blanking, OSD mixing, wide band amplifier, main/sub contrast, main/sub brightness, and 2 input routes.

V_{CC} voltage is 5 V and flat package is used.

Then it is the suitable to LCD monitor.

Features

• Frequency band width: RGB 180 MHz (at -3 dB)

OSD 80 MHz

• Input: RGB input dynamic range Max 1 V_{P-P} positive

2 input routes is changed by I²C BUS

RGB OSD $3.5 V_{P-P}$ to $5.0 V_{P-P}$ (positive) OSD BLK $3.5 V_{P-P}$ to $5.0 V_{P-P}$ (positive)

 $\begin{array}{ccc} \text{Output: RGB} & & 2.2 \text{ V}_{\text{P-P}} \text{ (Max)} \\ \text{OSD} & & 2.0 \text{ V}_{\text{P-P}} \text{ (Max)} \\ \text{Output dynamic range} & & 0.5 \text{ to } 2.2 \text{ V} \end{array}$

It can drive 14 pF

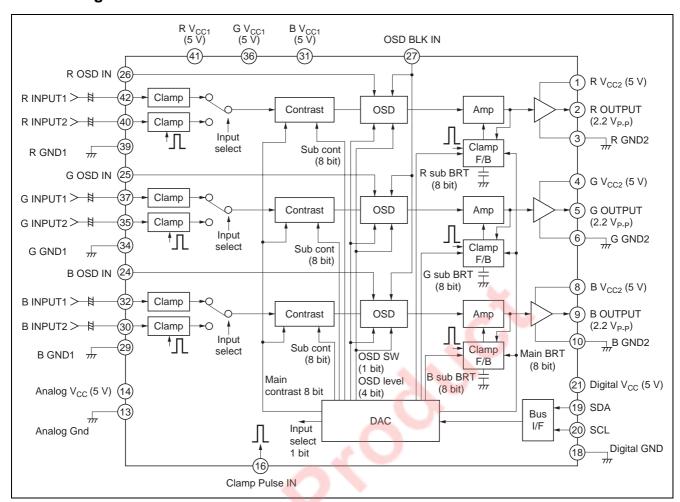
• Contrast: Both of sub and main contrast are controlled by I²C BUS (8 bit).

Control range: $-15 \, dB \, to +15 \, dB$.

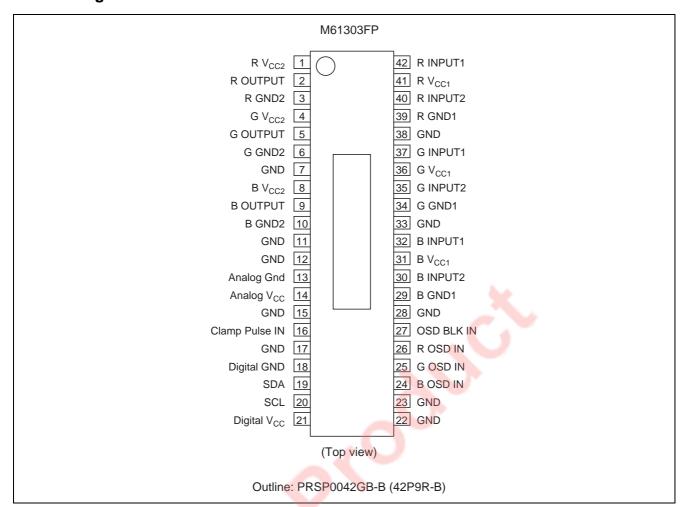
• Brightness: Both of sub and main contrast are controlled by I²C BUS (8 bit).

Control range: 0.5 V to 2.2 V.

OSD adjust: 2 control ranges (Max 1 V_{P-P} or Max 2 V_{P-P}) are able to be changed by I²C BUS.

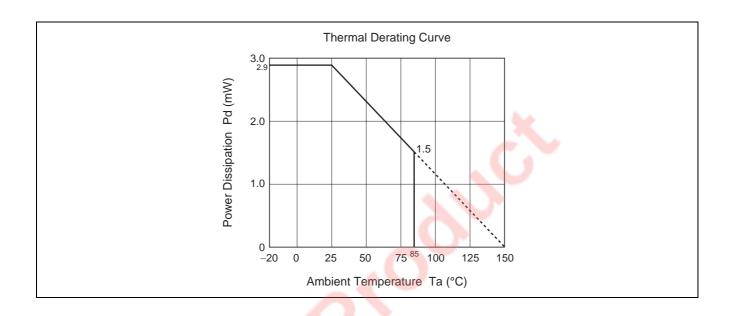

Recommended Operating Conditions

Supply voltage range: 4.7 V to 5.3 V


Rated supply voltage: 5.0 V

Consumption of electricity: 800 mW

Block Diagram


Pin Arrangement

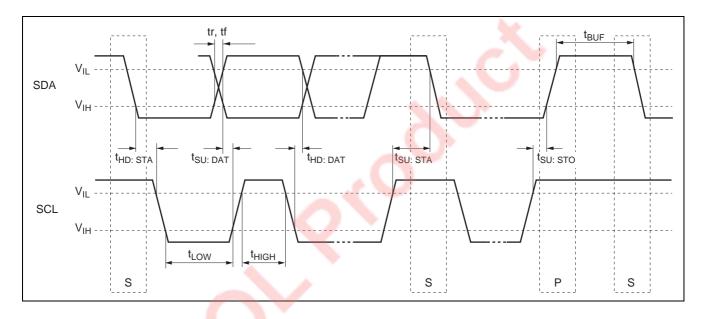
Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	6.0	V
Power dissipation	Pd	2900	mW
Ambient temperature	Topr	−20 to +85	°C
Storage temperature	Tstg	-40 to +150	°C
Recommended supply	Vopr	5.0	V
Voltage range	Vopr'	4.7 to 5.3	V

BUS Control Table

(1) Slave address:


D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	= 88H

(2) Each function's sub address:

		Sub				Data	Byte			
Function	Bit	Add.	D7	D6	D5	D4	D3	D2	D1	D0
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
			0	1	0	0	0	0	0	0
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
			1	0	0	0	0	0	0	0
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
			1	0	0	0	0	0	0	0
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
			1	0	0	0	0	0	0	0
Main bright	8	04H	A47	A46	A45	A44	A43	A42	A41	A40
			1	0	0	0	0	0	0	0
Sub bright R	8	05H	A57	A56	A55	A54	A53	A52	A51	A50
			1	0	0	0	0	0	0	0
Sub bright G	8	06H	A67	A66	A65	A64	A63	A62	A61	A60
			1	0	0	0	0	0	0	0
Sub bright B	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
			1	0	0	0	0	0	0	0
OSD level	4	08H	_	_		_	A83	A82	A81	A80
			0	0	0	0	0	0	0	0
INPUT SW	1	09H			_	_	_	_	_	A90
			0	0	0	0	0	0	0	0
OSD SW	1	0AH		V						AA0
			0	0	0	0	0	0	0	0

$\ensuremath{\text{I}^2\text{C}}$ BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V_{IL}	-0.5	1.5	V
Max. input HIGH voltage	V _{IH}	3.0	5.5	V
SCL clock frequency	f _{SCL}	0	100	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	4.7		μS
Hold time start condition. After this period the first clock pulse is generated	t _{HD:STA}	4.0		μS
The LOW period of the clock	t _{LOW}	4.7	_	μS
The HIGH period of the clock	t _{HIGH}	4.0	_	μS
Set up time for start condition (Only relevant for a repeated start condition)	t _{SU:STA}	4.7	_	μS
Hold time DATA	t _{HD:DAT}	0	_	μS
Set-up time DATA	t _{SU:DAT}	250	_	ns
Rise time of both SDA and SCL lines	tr	_	1000	ns
Fall time of both SDA and SCL lines	tf		300	ns
Set-up time for stop condition	t _{SU:STO}	4.0	_	μS

Electrical Characteristics

If SW connect is not designated RGB Input SW: SW (30, 35, 40) = a (b) SW (32, 37, 42) = b (a), SW (2, 5, 9, 16, 19, 20, 24, 25, 26, 27) = a

 $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C})$

																				T
		I	_imits			T4	RGB		00H	01H	02H	03H	04H	05H	OGH	07H	08H	09H		
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point	Input Signal	SW Connect	Main Cont	Sub Cont 1	Sub Cont 2	Sub Cont 3	Main brt	Sub brt 1	Sub brt 2	Sub brt 3	OSD Adj	Input SW	OSI	
Circuit current1	I _{CC1}	_	155	185	mA	I _A	_	RGB Input SW = a (All)	A6H 166	A6H 166	A6H 166	A6H 166	00H 0	00H 0	00H 0	00H 0	00H 0	_	-	_
Output dynamic range	Vomax	2.2	_	_	V _{P-P}	OUT	SG2	_	T.	Ţ	Ţ	Ţ	vari- able	vari- able	vari- able	vari- able		П	П	1-
Maximum input1	Vimax1	1.0	_	_	V _{P-P}	IN OUT	SG2 Amplitude		7FH 127	7FH 127	7FH 127	7FH 127	40H 64	7FH 127	7FH 127	7FH 127			$\dagger\dagger$	+-
Maximum input2	Vimax2	1.0	_	_	V _{P-P}	IN OUT	Variable SG2 Amplitude	SW (30, 35, 40) = b SW (32, 37, 42) = a	Τ	Τ	Τ	Ι			П	П			$\dagger\dagger$	1-
Maximum gain	GV	11.9	13.9	15.9	dB	OUT	Variable SG1	— — —	FFH 255	FFH 255	FFH 255	FFH 255			\parallel	+	\vdash		$^{+}$	+-
Relative maximum	ΔGV	0.8	1.0	1.2	_	_													$\dagger\dagger$	+-
gain Main contrast	VC1	6.4	7.9	9.4	dB	OUT	SG1		C8H	7FH	7FH	7FH							$\dagger \dagger$	+
control characteristics1 Main contrast	VC2	2.3	4.1	5.9	dB	OUT	SG1		200 64H	127	127	127				\coprod			\coprod	
control characteristics2		2.0		0.0	uD		001		100											-
Main contrast control	VC3	0.2	0.4	0.6	V _{P-P}	OUT	SG1		00H 0	1										
Sub contrast control	VSC1	6.3	7.8	9.4	dB	OUT	SG1		7FH 127	C8H 200	C8H 200	C8H 200							$\dagger\dagger$	+-
characteristics1	VSC2	2.6	4.3	6.0	dB	OUT	SG1		127	64H	64H	64H			\vdash				${oxed{H}}$	+
control characteristics2										100	100	100							Ш	<u> </u>
Sub contrast control characteristics3	VSC3	0.2	0.4	0.6	V _{P-P}	OUT	SG1	20		00H 0	00H 0	00H 0								-
Main/sub contrast control	VMSC	1.7	2.0	2.3	V _{P-P}	OUT	SG1		A6H 166	A6H 166	A6H 166	A6H 166								1-
characteristics Main brightness control	VB1	1.3	1.7	2.0	V	OUT	X	RGB Input	A6H 166	A6H 166	A6H 166	A6H 166	7FH 127						\forall	+_
characteristics1 Main brightness	VB2	0.4	0.6	0.8	V	OUT	_	SW = a (All)	100	100	100	100	00H		\vdash	\vdash			H	
control characteristics2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												0	V	 	 				
Sub brightness control	VSB1	1.7	2.2	2.6	V	OUT	_						7FH 127	FFH 255	FFH 255	FFH 255				-
Sub brightness control	VSB2	1.3	1.7	2.0	V	OUT								7FH 127	7FH 127	7FH 127				1-
Sub brightness control	VSB3	0.7	1.0	1.3	V	OUT	_							00H 0	00H 0	00H 0			$\dagger \dagger$	+-
characteristics3 Frequency	FC1	-3.0	0	3.0	dB	OUT	SG3	†	vari-				▼	7FH	7FH	7FH	00H	†	♥	refer-
characteristics1 (50 MHz-2 V _{P-P})			-						able				64	127	127	127	0			ence
Frequency relative characteristics1 (180 MHz-2 V _{P-P})	∆FC1	-1.0	0	1.0	dB	_	_		A6H 166											
Frequency characteristics2 (50 MHz-2 V _{P-P})	FC2	-4.0	-3.0	1.0	dB	OUT	SG3													
Frequency relative characteristics2	ΔFC2	-1.0	0	1.0	dB	_													\parallel	+
(50 MHz-2 V _{P-P}) Frequency	FC3	-1.0	0	1.0	dB	OUT	SG3												\mathbf{H}	+
characteristics3 (180 MHz-1 V _{P-P})	-								V						\coprod	\coprod			\coprod	\coprod
Frequency relative characteristics3 (180 MHz-1 V _{P-P})	∆FC3	-1.0	0	1.0	dB	_	_		37H 55											
Frequency characteristics4 (180 MHz-2 V _{P-P} -Cap)	FC4	-4.0	-3.0	1.0	dB	OUT	SG3	SW (2, 5, 9) = b										\parallel	\prod	
Frequency relative characteristics4	ΔFC4	-1.0	0	1.0	dB	_		_	A6H 166						+	+		\parallel	\dagger	+
(180 MHz-2 V _{P-P} -Cap)											₩			₩		\		₩		_ ♦

Electrical Characteristics (cont.)

			_imits						BUS CTL (H)											
Item	Symbol					Test	RGB Input	SW Connect	00H Main Cont	01H Sub Cont	02H Sub Cont	03H Sub Cont	04H Main brt	05H Sub brt	06H Sub brt	07H Sub brt	08H OSD Adj	09H Input SW	0AH OSD SW	Re- mark
Crosstalk1	Symbol INCT1	Min.	Typ. -35	Max. -30	Unit dB	Point OUT (2)	Signal SG3	SW (42) = b, Other SW = a	A6H	A6H	A6H	3 A6H	40H	7FH	2 7FH	3 7FH	00H	00H		refer-
input1-2 50 MHz-1 Crosstalk1'		_	-15	-10	dB	OUT (5) OUT (9) OUT (2)	SG3	SW (37) = b, Other SW = a SW (32) = b, Other SW = a		166	166	166	64	127	127	127	0	0	_	ence
input1-2 50 MHz-1	INCT1'		-15	-10	иь	OUT (5)	563	ļ ,										Į į		
Crosstalk2 input1-2 50 MHz-2	INCT2	-	-35	-30	dB	OUT (2) OUT (5) OUT (9)	SG3	SW (40) = b, Other SW = a SW (35) = b, Other SW = a SW (30) = b, Other SW = a	1									01H 1		
Crosstalk2' input1-2 50 MHz-2	INCT2'	-	-15	-10	dB	OUT (2) OUT (5) OUT (9)	SG3	, St. (66) = 5, St. 16: 611 = 4												
Crosstalk1 between RGB ch	CHCT1	-	-25	-20	dB	OUT	SG3	SW (42) = b, Other SW = a										_		
50 MHz-1 Crosstalk1' between RGB ch	CHCT1'	-	-15	-10	dB	OUT	SG3		\parallel											
180 MHz-1 Crosstalk2 between RGB ch	CHCT2	-	-25	-20	dB	OUT	SG3	SW (37) = b, Other SW = a	+						\vdash	\Box	+			H
50 MHz-2 Crosstalk2'	CHCT2'	_	-15	-10	dB	OUT	SG3			\vdash						H	\vdash			H
between RGB ch 180 MHz-2 Crosstalk3	CHCT2		-25	20	dB	OUT	SG3	SW (32) = b, Other SW = a				3								Н
between RGB ch 50 MHz-3 Crosstalk3'	CHCT3			-20				UV (02) = 0, Oulet SVV = 8	\coprod							\coprod				Щ
between RGB ch 50 MHz-3	CHCT3'	_	-15	-10	dB	OUT	SG3													
Pulse characteristics Tr1	Tr1	_	1.1	_	ns	OUT	SG1	_ >		1										
Relative pulse characteristics	ΔTr1	-0.8	0.0	0.8	ns	_	_													
Tr1 Pulse characteristics	Tf1	-	1.1	_	_	OUT	SG1													
Tf1 Relative pulse characteristics	ΔTf1	-0.8	0.0	0.8		_			\parallel											\parallel
Tf1 Pulse characteristics	Tr2	-	2.0	_	ns	OUT	SG1	SW (2, 5, 9) = b	\parallel											
Tr2 Relative pulse characteristics	ΔTr2	-0.8	0.0	0.8	ns	_		_	+	\vdash					\parallel	H	+			H
Tr2 Pulse	Tf2	_	2.0	_		OUT	SG1	SW (2, 5, 9) = b	+							Н	+			H
characteristics Tf2 Relative pulse	ΔTf2	-0.8	0.0	0.8			_	_	\parallel						\prod					
characteristics Tf2 Clamp pulse		1.5	2.0	2.5	V	OUT	004									Ш				1
threshold voltage Clamp pulse	VthCP WCP	0.2	2.0	2.5	μS	OUT	SG1 SG1	_	H						\perp	Н	\vdash			-
minimum width OSD pulse	OTr	-	3.0	6.0	ns	OUT	_	SW (24, 25, 26, 27) = b	00H	♥	00H	♥	♥	7FH	7FH	7FH	0FH		00H	refer-
OSD pulse characteristics Tf	OTf	-	3.0	6.0	ns	_	_		0	0	0	0	64	127	127	127	15		0	ence
OSD adjust control characteristics1	Oaj1	0	0	0.2	V _{P-P}	OUT	_		A6H 166	A6H 166	A6H 166	A6H 166				П	00H 0		00H 0	Ė
OSD adjust control characteristics2 OSD adjust control	Oaj2 ∆Oaj2	0.9	1.2	1.5	V _{P-P}	OUT			\parallel	igdash				\parallel		\coprod	01H 1		00H 0	_
relative characteristics2	·				\	01.1-			\coprod							\coprod				
OSD adjust control characteristics3 OSD adjust control	Oaj3 ΔOaj3	0.75	1.0	1.25	V _{P-P}	OUT —	_		\parallel	\prod	\parallel	\parallel			\parallel	\prod	0FH 15		00H 0	<u> </u>
relative characteristics3 OSD adjust control	Oaj4	0	0	0.2	V _{P-P}	OUT	_		H	\parallel			H	\vdash		\coprod	00H		01H	-
Characteristics4 OSD adjust control characteristics5	Oaj5	0.4	0.6	0.8	V _{P-P}	OUT	_		+	+	+	+	\vdash	+	+	+	0 01H	+	1 01H	-
OSD adjust control relative	∆Oaj5	0.75	1.0	1.25	_	_	_		\dagger	\parallel				\parallel	\dagger	\parallel	1		1	-

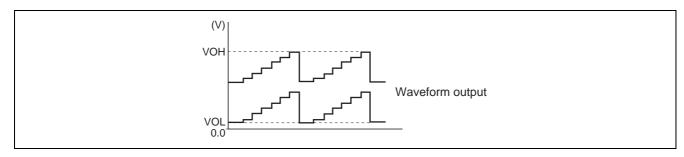
Electrical Characteristics (cont.)

		ı	_imits	;									В	US	CTL	(H)				
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point	RGB Input Signal	SW Connect	00H Main Cont	01H Sub Cont 1	02H Sub Cont 2	03H Sub Cont 3	04H Main brt	05H Sub brt 1	06H Sub brt 2	07H Sub brt 3	08H OSD Adj	09H Input SW	0AH OSD SW	Re- mark
OSD adjust control characteristics6	Oaj6	0.9	1.2	1.5	V _{P-P}	OUT	_	SW (24, 25, 26, 27) = b	A6H 166	A6H 166	A6H 166	A6H 166	40H 64	7FH 127	7FH 127	7FH 127	0FH 15	_	01H 1	_
OSD adjust control relative characteristics6	∆Oaj6	0.75	1.0	1.25			_	· ·									_		_	_
OSD BLK characteristics	OBLK	0.0	0.1	0.3	V _{P-P}	OUT	_	SW (24, 25, 26) = a SW (27) = b												-
OSD BLK relative characteristics	ΔOBLK	-0.15	0.0	0.15	V	_	_										V			_
OSD input threshold voltage	VthOSD	2.0	2.5	3.0	V	OUT	_	SW (24, 25, 26, 27) = a									0FH 15		00H 0	
OSD BLK input threshold voltage	VthBLK	2.0	2.5	3.0	V	OUT	SG1	SW (27) = b	V		V	V	\Box	Ţ	l l		Ţ	Ţ	Ţ	_
Pin 19 Input current H	I _{19H}	-1.0	0.0	_	μА	I ₁₉	_	SW (19) = b V19 = 5 V	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
Pin 19 Input current L	I _{19L}	_	0.6	2.0	μА	I ₁₉	_	SW (19) = b V19 = 0 V												
Pin 20 Input current H	I _{20H}	-1.0	0.0	_	μА	l ₂₀	_	SW (20) = b V20 = 5 V					è							
Pin 20 Input current L	I _{20L}	_	0.6	2.0	μА	l ₂₀	_	SW (20) = b V20 = 0 V				ď	1							
Pin 24, 25, 26 Input current H	I _{OSDH}	-2.0	-1.3	_	mA	l ₂₄ l ₂₅ l ₂₆	_	SW (24, 25, 26) = b VOSD = 5 V		1		h de								
Pin 24, 25, 26 Input current L	I _{OSDL}	_	1.3	2.0	mA	l ₂₄ l ₂₅ l ₂₆	_	SW (24, 25, 26) = b VOSD = 0 V		1										
Pin 27 Input current H	I _{27H}	-2.0	-1.3	_	mA	l ₂₇	_	SW (27) = b V27 = 5 V												
Pin 27 Input current L	I _{27L}	_	1.3	2.0	mA	l ₂₇	_	SW (27) = b V27 = 0 V	V		\	1		Ţ	\			Ţ		_

Electrical Characteristics Test Method

I_{CC1} Circuit Current1

Measuring conditions are as listed in supplementary Table.


Measured with a current meter at test point I_A.

Vomax Output Dynamic Range

Decrease main bat or sub bat gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL.

Next, increase V30 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH. Voltage Vomax is calculated by the equation below:

Vomax = VOH - VOL

Vimax1 Maximum Input1

Increase the input signal (SG2) at Input1 amplitude gradually, starting from 700 mV_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

Vimax2 Maximum Input2

Increase the input signal (SG2) at Input amplitude gradually, starting from 700 mV_{P-P} . Measure the amplitude of the input signal when the output signal starts becoming distorted.

GV Maximum Gain

Input SG1, and read the amplitude output at OUT (2, 5, 9). The amplitude is called VOUT (2, 5, 9). Maximum gain GV is calculated by the equation below:

$$GV = 20log \frac{VOUT}{0.7} (dB)$$

∆GV Relative Maximum Gain

Relative maximum gain ΔGV is calculated by the equation below:

$$\Delta$$
GV = VOUT (2) / VOUT (5),
VOUT (5) / VOUT (9),
VOUT (9) / VOUT (2)

VC1 Main Contrast Control Characteristics1

Measuring the amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9).

$$VC1 = 20log \frac{VOUT}{0.7} (dB)$$

VC2 Main Contrast Control Characteristics2

Measuring condition and procedure are the same as described in VC1.

VC3 Main Contrast Control Characteristics3

Measuring condition and procedure are the same as described in VC1.

VSC1 Sub Contrast Control Characteristics1

Measuring condition and procedure are the same as described in VC1.

VSC2 Sub Contrast Control Characteristics2

Measuring condition and procedure are the same as described in VC1.

VSC3 Sub Contrast Control Characteristics3

Measuring condition and procedure are the same as described in VC1.

VMSC Main/sub Contrast Control Characteristics

Measuring condition and procedure are the same as described in VC1.

VB1 Main Brightness Control Characteristics1

Measure the DC voltage output at OUT (2, 5, 9). The measured value is called VB1.

VB2 Main Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

VSB1 Sub Brightness Control Characteristics1

Measuring condition and procedure are the same as described in VB1.

VSB2 Sub Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

VSB3 Sub Brightness Control Characteristics3

Measuring condition and procedure are the same as described in VB1.

FC1 Frequency Characteristics1 (50 MHz-2 V_{P-P})

First, SG3 to 1 MHz is as input signal.

Control the main contrast in order that the amplitude of sine wave output is $2.0 \, V_{P-P}$. Control the brightness in order that the bottom of sine wave output is $1.0 \, V$. By the same way, measure the output amplitude when SG3 to $50 \, MHz$ is as input signal. The measured value is called VOUT (2, 5, 9).

Frequency characteristics FC1 (2, 5, 9) is calculated by the equation below:

FC1 =
$$20\log \frac{\text{VOUT V}_{\text{P-P}}}{\text{Output amplitude when inputted SG3 (1 MHz): } 2.0 \text{ V}_{\text{P-P}}}$$
 (dB)

ΔFC1 Frequency Relative Characteristics1 (180 MHz-2 V_{P-P})

Relative characteristics $\Delta FC1$ is calculated by the difference in the output between the channels.

FC2 Frequency Characteristics2 (50 MHz-2 V_{P-P})

Measuring condition and procedure are the same as described in FC1, expect SG3.

ΔFC2 Frequency Relative Characteristics2 (50 MHz-2 V_{P-P})

Relative characteristics $\Delta FC2$ is calculated by the difference in the output between the channels.

FC3 Frequency Characteristics 3 (180 MHz-1 V_{P-P})

SG3 to 1 MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0 V_{P-P} . By the same way, measure the output amplitude when SG3 to 180 MHz is as input signal.

ΔFC3 Frequency Relative Characteristics3 (180 MHz-1 V_{P-P})

Relative characteristics Δ FC3 is calculated by the difference in the output between the channels.

FC4 Frequency Characteristics4 (180 MHz-2 V_{P-P}-Cap)

Change OUT SW from a to b. Measuring condition and procedure are the same as described in FC1.

△FC4 Frequency Relative Characteristics4 (180 MHz-2 V_{P-P}-Cap)

Relative characteristics $\Delta FC4$ is calculated by the difference in the output between the channels.

INCT1 Crosstalk1 Input1-2 50 MHz-1

Input SG3 (50 MHz) to pin 42 only, set Input SW of I²C BUS to 0 and then measure the waveform amplitude output at OUT (2). The measured value is called VOUT (2). On equal terms set Input SW of I²C BUS to 1. And then measure the waveform amplitude output at OUT (2)'. Crosstalk INCT1 is calculated by the equation below:

INCT1 =
$$20\log \frac{\text{VOUT (2)'}}{\text{VOUT (2)}}$$
 (dB)

Similarly measure the waveform amplitude output at OUT (5) when signal input only pin 37 and OUT when signal input only pin 32 and calculate crosstalk.

INCT1' Crosstalk1' Input1-2 50 MHz-1

Measuring condition and procedure are the same as described in INCT1, expect SG3 to 180 MHz.

INCT2 Crosstalk2 Input1-2 50 MHz-2

Input SG3 (50 MHz) to pin 40 only, set Input SW of I²C BUS to 1 and then measure the waveform amplitude output at OUT (2). The measured value is called VOUT (2). On equal terms set Input SW of I²C BUS to 0. And then measure the waveform amplitude output at OUT (2)'. Crosstalk INCT2 is calculated by the equation below:

INCT2 =
$$20\log \frac{\text{VOUT (2)'}}{\text{VOUT (2)}}$$
 (dB)

Similarly measure the waveform amplitude output at OUT (5) when signal input only pin 35 and OUT when signal input only pin 30 and calculate crosstalk.

INCT2' Crosstalk2' Input1-2 50 MHz-2

Measuring condition and procedure are the same as described in INCT2, expect SG3 to 180 MHz.

CHCT1 Crosstalk1 between RGB Ch 50 MHz-1

Input SG3 (50 MHz) to pin 42 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT1 is calculated by the equation below:

CHCT1 =
$$20\log \frac{\text{VOUT}(5, 9)}{\text{VOUT}(2)}$$
 (dB)

CHCT1' Crosstalk1' between RGB Ch 180 MHz-1

Measuring condition and procedure are the same as described in CHCT1, expect SG3 to 180 MHz.

CHCT2 Crosstalk2 between RGB Ch 50 MHz-2

Input SG3 (50 MHz) to pin 37 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT2 is calculated by the equation below:

CHCT2 =
$$20\log \frac{\text{VOUT } (2, 9)}{\text{VOUT } (5)}$$
 (dB)

CHCT2' Crosstalk2' between RGB Ch 180 MHz-2

Measuring condition and procedure are the same as described in CHCT2, expect SG3 to 180 MHz.

CHCT3 Crosstalk3 between RGB Ch 50 MHz-3

Input SG3 (50 MHz) to pin 32 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT3 is calculated by the equation below:

CHCT3 =
$$20\log \frac{\text{VOUT } (2, 5)}{\text{VOUT } (9)}$$
 (dB)

CHCT3' Crosstalk3' between RGB Ch 50 MHz-3

Measuring condition and procedure are the same as described in CHCT3, expect SG3 to 180 MHz.

Tr1 Pulse Characteristics Tr1

Control the contrast in order that the amplitude of output signal is 2.0 V_{P-P}.

Control the brightness in order that the Black level of output signal is 1.0 V.

Measure the time needed for the input pulse to rise from 10% to 90% (Trin) and for the output pulse to rise from 10% to 90% (Trout) with an active probe.

Pulse characteristics Tr1 is calculated by the equations below:

$$Tr1 = \sqrt{(Trin)^2 - (Trout)^2}$$
 (ns)

∆Tr1 Relative Pulse Characteristics Tr1

Relative Pulse characteristics $\Delta Tr1$ is calculated by the equation below:

$$\Delta Tr1 = VOUT (2) - VOUT (5),$$

$$VOUT (5) - VOUT (9),$$

$$VOUT (9) - VOUT (2)$$

Tf1 Pulse Characteristics Tf1

Measure the time needed for the input pulse to fall from 90% to 10% (Tfin) and for the output pulse to fall from 90% to 10% (Tfout) with an active probe.

Pulse characteristics Tf1 is calculated by the equations below:

$$Tf1 = \sqrt{(Tfin)^2 - (Tfout)^2} \quad (ns)$$


∆Tf1 Relative Pulse Characteristics Tf1

Relative Pulse characteristics $\Delta Tf1$ is calculated by the equation below:

$$\Delta Tf1 = VOUT (2) - VOUT (5),$$

$$VOUT (5) - VOUT (9),$$

$$VOUT (9) - VOUT (2)$$

Tr2 Pulse Characteristics Tr2

Change SW (2, 5, 9) from (a) to (b). Measuring condition and procedure are the same as described in Tr1.

∆Tr2 Relative Pulse Characteristics Tr2

Measuring condition and procedure are the same as described in $\Delta Tr1$, except of SW (2, 5, 9) condition.

Tf2 Pulse Characteristics Tf2

Change SW (2, 5, 9) from (a) to (b). Measuring condition and procedure are the same as described in Tf1.

∆Tf2 Relative Pulse Characteristics Tf2

Measuring condition and procedure are the same as described in $\Delta Tf1$, except of SW (2, 5, 9) condition.

VthCP Clamp Pulse Threshold Voltage

Reduce the SG4 input level gradually from $5.0~V_{P-P}$, monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.

WCP Clamp Pulse Minimum Width

Decrease the SG4 pulse width gradually from $0.G~\mu s$, monitoring the output. Measure the SG4 pulse width (a point of 1.5~V) when the output pedestal voltage turn decrease with unstable.

OTr OSD Pulse Characteristics Tr

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics Tf

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oaj1 OSD Adjust Control Characteristics1

Measure the amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9), and is treated as Oaj1.

Oaj2 OSD Adjust Control Characteristics2

Measuring condition and procedure are the same as described in Oaj1.

∆Oaj2 OSD Adjust Control Relative Characteristics2

Relative characteristics $\Delta Oaj2$ is calculated by the equation below:

```
\DeltaOaj2 = VOUT (2) / VOUT (5),
VOUT (5) / VOUT (9),
VOUT (9) / VOUT (2)
```

Oaj3 OSD Adjust Control Characteristics3

Measuring condition and procedure are the same as described in Oaj1.

∆Oaj3 OSD Adjust Control Relative Characteristics3

Measuring condition and procedure are the same as described in Δ Oaj2.

Oaj4 OSD Adjust Control Characteristics4

Measuring condition and procedure are the same as described in Oaj1.

Oaj5 OSD Adjust Control Characteristics5

Measuring condition and procedure are the same as described in Oaj1.

∆Oaj5 OSD Adjust Control Relative Characteristics5

Measuring condition and procedure are the same as described in $\Delta Oaj2$.

Oaj6 OSD Adjust Control Characteristics6

Measuring condition and procedure are the same as described in Oaj1.

∆Oaj6 OSD Adjust Control Relative Characteristics6

Measuring condition and procedure are the same as described Δ Oaj2.

OBLK OSD BLK Characteristics

Measuring the amplitude output at OUT (2, 5, 9). The measured value is called OBLK.

∆OBLK OSD BLK Relative Characteristics

Relative OSD BLK characteristics \triangle OBLK is calculated by the equation below:

 $\Delta OBLK = VOUT (2) / VOUT (5),$ VOUT (5) / VOUT (9), VOUT (9) / VOUT (2)

VthOSD OSD Input Threshold Voltage

Reduce the SG5 input level gradually, monitoring output. Measure the SG5 level when the output reaches 0 V. The measured value is called VthOSD.

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG5 at the time.

Monitoring to output signal, decreasing the level of SG5. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.

I_{19H} Pin 19 Input Current H

Supply 5 V to V19, and then measure input current into pin 19.

I_{19L} Pin 19 Input Current L

Supply 0 V to V19, and then measure input current into pin 19.

I_{20H} Pin 20 Input Current H

Supply 5 V to V20, and then measure input current into pin 20.

I_{20L} Pin 20 Input Current L

Supply 0 V to V20, and then measure input current into pin 20.

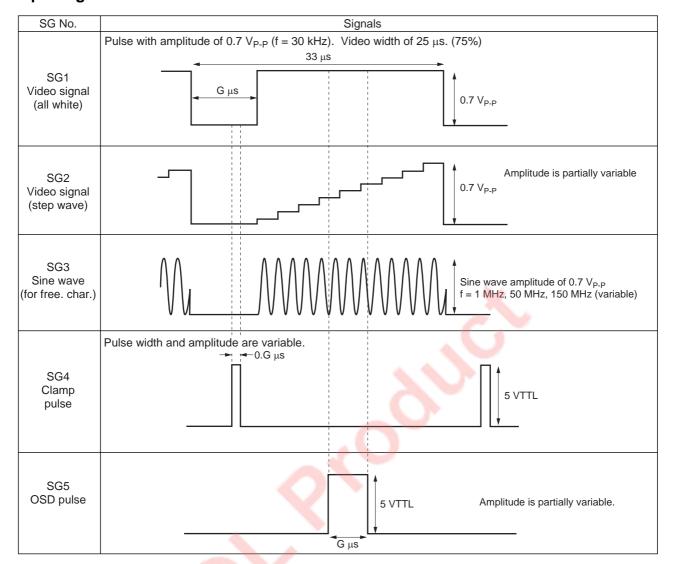
I_{OSDH} Pin 24, 25, 26 Input Current H

Supply 5 V to V (24, 25, 26) and then measure input current into pin (24, 25, 26)

I_{OSDL} Pin 24, 25, 26 Input Current L

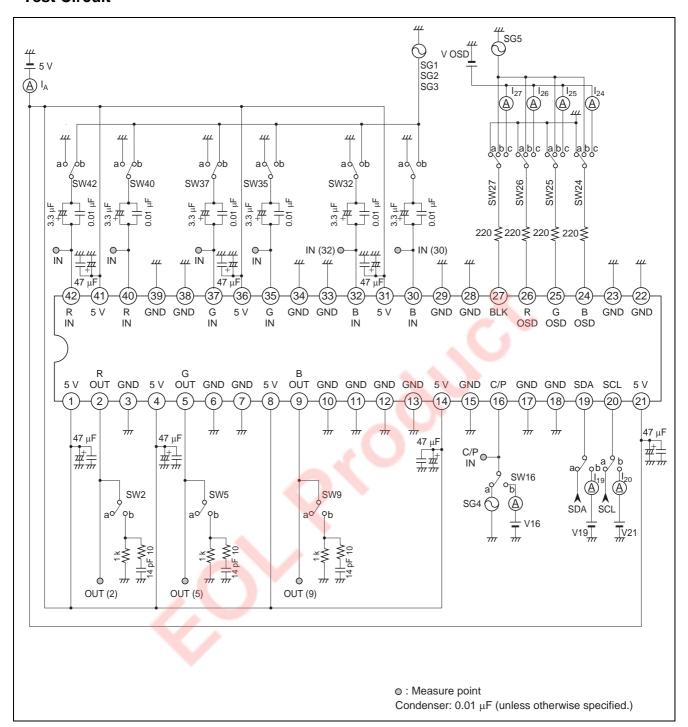
Supply 0 V to V (24, 25, 26) and then measure input current into pin (24, 25, 26)

I_{27H} Pin 27 Input Current H

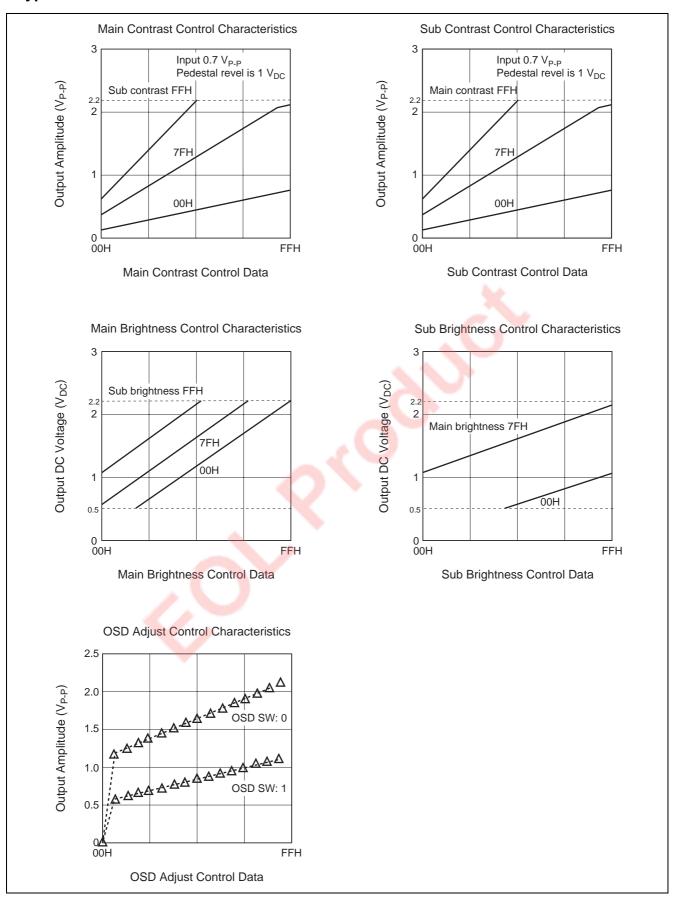

Supply 5 V to V27, and then measure input current into pin 27.

I_{27L} Pin 27 Input Current L

Supply 0 V to V27, and then measure input current into pin 27.



Input Signal



Note: fH = 30 kHz

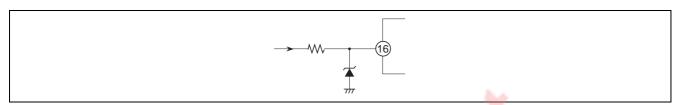
Test Circuit

Typical Characteristics

Application Method

Clamp Pulse Input

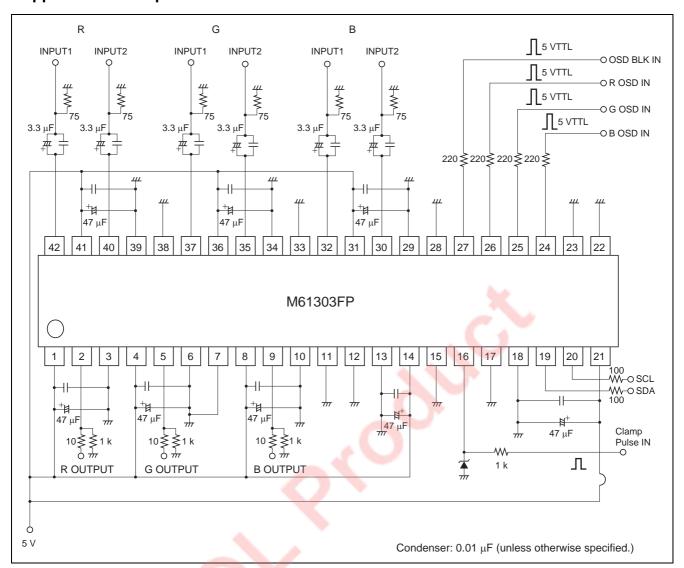
Clamp pulse width is recommended


above 15 kHz, 1.0 µs

above 30 kHz, 0.5 µs

above 64 kHz, 0.3 µs.

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.


Therefore, the figure shown right is recommended.

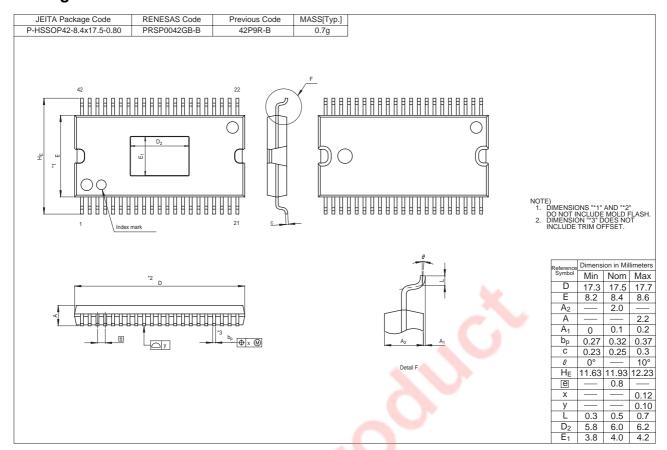
Notice of Application

- 1. Recommended pedestal voltage of IC output signal is l V.
- 2. This IC has 2 Input routes. When the 2 Input signal input at different timing, clamp pulses which synchronize with selected signals is needed. In this case, it is necessary to change clamp pulses by the outside circuit.
- 3. Connect coupling cap $(0.01 \,\mu)$ as nearer as can to V_{CC} pin. If not response of waveform is getting wrong.

Application Example

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
1	R V _{CC2}	5	_	_
4	G V _{CC2}			
8	B V _{CC2}			
2	OUTPUT (R)	_	+ + +	Pull down about 1 k for
5	OUTPUT (G)			valance control Tr and Tf
9	OUTPUT (B)		② 20 mA W 777	
3	R GND 2	GND	_	_
6	G GND 2		2	•
10	B GND 2			
13	Analog Gnd	GND	_	
14	Analog V _{CC}	5		_
16	Clamp Pulse In		16 2.0 V 2.0 V 0.2 mA	more than 200 ns


Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
18	Digital GND	GND		_
19	SDA		50 k 2 k	SDA for I ² C (Serial data line) VTH = 2.3 V
20	SCL		20	SCL of I ² C (Serial clock line) VTH = 2.3 V
21	Digital V _{CC}	5V	_	_
24 25 26	B OSD IN G OSD IN R OSD IN		24 2.5 V 2.5 V	Input pulses 3.5 to 5 V 1.0 V to GND

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
27	OSD BLK IN	_	+ +	Input pulses
			27 1 k 330 2.5 V 7 1.5 mA	1.0 V to GND Connected to GND if not used.
29	B GND 1	GND	_	_
34	G GND 1			
39	R GND 1			
30	B INPUT 2	2.1 V	+	Clamped to about 2.1 V
32	B INPUT 1		2 k ₹ ₹2 k	due to clamp pulses from
35	G INPUT 2			pin 16.
37	G INPUT 1			Input at low impedance.
40	R INPUT 2			
42	R INPUT 1		30	
31	B V _{CC1}	5	_	_
36	G V _{CC1}			
41	R V _{CC1}			
7	NC	_	_	Connect GND for radiation
11				of heat
12				
15			-	
17				
22 23				
23				
33				
38				

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical expensions of the purpose of any other military use. When exporting the products or technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to the date this document, including the suitability of the such and the procedure of the date this document, and the procedure of the procedure of the procedure of the procedure of the date this document, an

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510