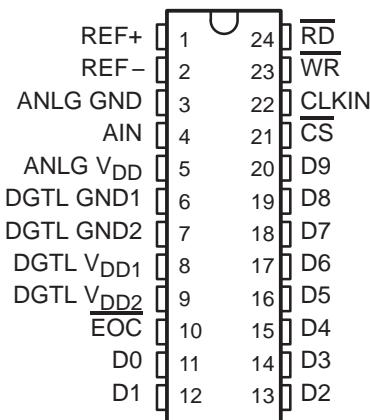


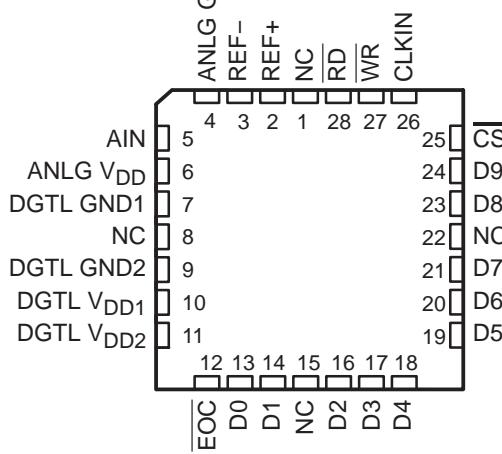
TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS

SLAS043G – MAY 1991 – REVISED NOVEMBER 2003


- Power Dissipation . . . 40 mW Max
- Advanced LinEPIC™ Single-Poly Process Provides Close Capacitor Matching for Better Accuracy
- Fast Parallel Processing for DSP and μ P Interface
- Either External or Internal Clock Can Be Used
- Conversion Time . . . 6 μ s
- Total Unadjusted Error . . . ± 1 LSB Max
- CMOS Technology

description

The TLC1550x and TLC1551 are data acquisition analog-to-digital converters (ADCs) using a 10-bit, switched-capacitor, successive-approximation network. A high-speed, 3-state parallel port directly interfaces to a digital signal processor (DSP) or microprocessor (μ P) system data bus. D0 through D9 are the digital output terminals with D0 being the least significant bit (LSB). Separate power terminals for the analog and digital portions minimize noise pickup in the supply leads. Additionally, the digital power is divided into two parts to separate the lower current logic from the higher current bus drivers. An external clock can be applied to CLKIN to override the internal system clock if desired.


The TLC1550I and TLC1551I are characterized for operation from -40°C to 85°C . The TLC1550M is characterized over the full military range of -55°C to 125°C .

J† OR DW PACKAGE (TOP VIEW)

† Refer to the mechanical data for the JW package.

FK OR FN PACKAGE (TOP VIEW)

NC – No internal connection

AVAILABLE OPTIONS

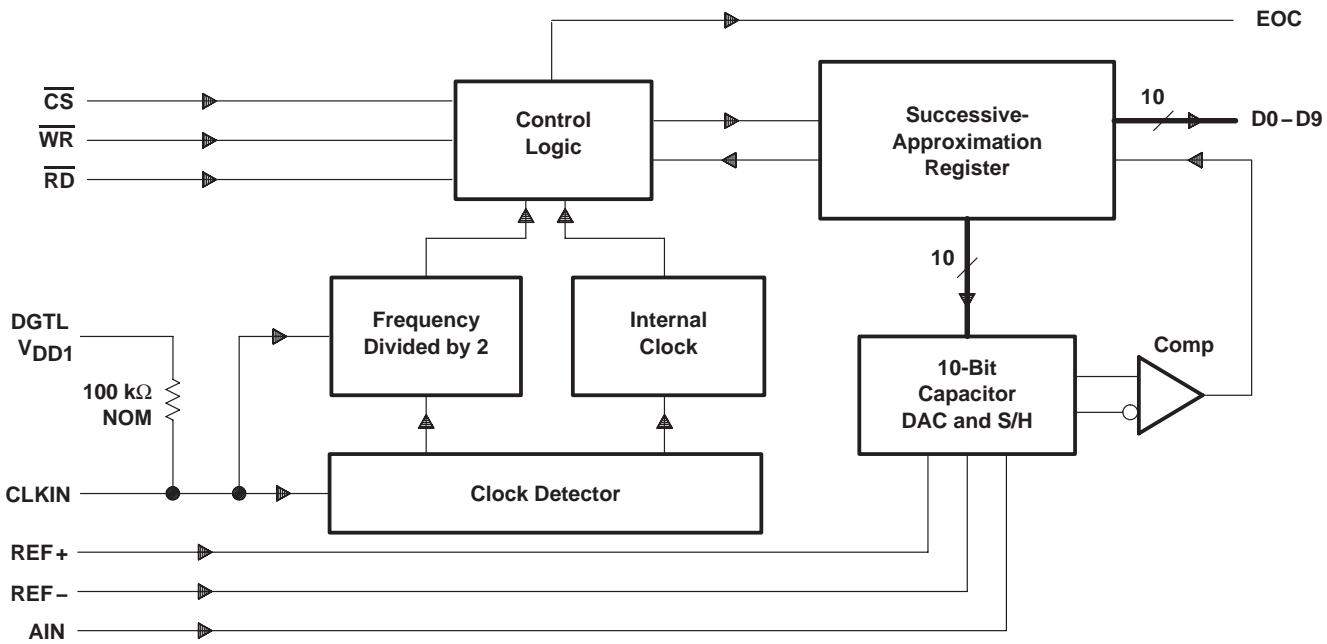
TA	PACKAGE			
	CERAMIC CHIP CARRIER (FK)	PLASTIC CHIP CARRIER (FN)	CERAMIC DIP (J)	SOIC (DW)
-40°C to 85°C	—	TLC1550IFN TLC1551IFN	—	TLC1550IDW TLC1551IDW
-55°C to 125°C	TLC1550MFK	—	TLC1550MJ	—

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either V_{CC} or ground.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinEPIC is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

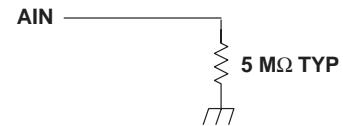

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 2003, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

**TLC1550I, TLC1550M, TLC1551I
10-BIT ANALOG-TO-DIGITAL CONVERTERS
WITH PARALLEL OUTPUTS**

SLAS043G – MAY 1991 – REVISED NOVEMBER 2003

functional block diagram



typical equivalent inputs

INPUT CIRCUIT IMPEDANCE DURING SAMPLING MODE

INPUT CIRCUIT IMPEDANCE DURING HOLD MODE

Terminal Functions

TERMINAL			DESCRIPTION
NAME	NO. [†]	NO. [‡]	
ANLG GND	4	3	Analog ground. The reference point for the voltage applied on terminals ANLG V _{DD} , AIN, REF+, and REF-.
AIN	5	4	Analog voltage input. The voltage applied to AIN is converted to the equivalent digital output.
ANLG V _{DD}	6	5	Analog positive power supply voltage. The voltage applied to this terminal is designated V _{DD3} .
CLKIN	26	22	Clock input. CLKIN is used for external clocking instead of using the internal system clock. It usually takes a few microseconds before the internal clock is disabled. To use the internal clock, CLKIN should be tied high or left unconnected.
CS	25	21	Chip-select. CS must be low for RD or WR to be recognized by the A/D converter.
D0	13	11	Data bus output. D0 is bit 1 (LSB).
D1	14	12	Data bus output. D1 is bit 2.
D2	16	13	Data bus output. D2 is bit 3.
D3	17	14	Data bus output. D3 is bit 4.
D4	18	15	Data bus output. D4 is bit 5.
D5	19	16	Data bus output. D5 is bit 6.
D6	20	17	Data bus output. D6 is bit 7.
D7	21	18	Data bus output. D7 is bit 8.
D8	23	19	Data bus output. D8 is bit 9.
D9	24	20	Data bus output. D9 is bit 10 (MSB).
DGTL GND1	7	6	Digital ground 1. The ground for power supply DGTL V _{DD1} and is the substrate connection
DGTL GND2	9	7	Digital ground 2. The ground for power supply DGTL V _{DD2}
DGTL V _{DD1}	10	8	Digital positive power-supply voltage 1. DGTL V _{DD1} supplies the logic. The voltage applied to DGTL V _{DD1} is designated V _{DD1} .
DGTL V _{DD2}	11	9	Digital positive power-supply voltage 2. DGTL V _{DD2} supplies only the higher-current output buffers. The voltage applied to DGTL V _{DD2} is designated V _{DD2} .
EOC	12	10	End-of-conversion. EOC goes low indicating that conversion is complete and the results have been transferred to the output latch. EOC can be connected to the μ P- or DSP-interrupt terminal or can be continuously polled.
RD	28	24	Read input. When CS is low and RD is taken low, the data is placed on the data bus from the output latch. The output latch stores the conversion results at the most recent negative edge of EOC. The falling edge of RD resets EOC to a high within the t _d (EOC) specifications.
REF+	2	1	Positive voltage-reference input. Any analog input that is greater than or equal to the voltage on REF+ converts to 1111111111. Analog input voltages between REF+ and REF- convert to the appropriate result in a ratiometric manner.
REF-	3	2	Negative voltage reference input. Any analog input that is less than or equal to the voltage on REF- converts to 0000000000.
WR	27	23	Write input. When CS is low, conversion is started on the rising edge of WR. On this rising edge, the ADC holds the analog input until conversion is completed. Before and after the conversion period, which is given by t _{conv} , the ADC remains in the sampling mode.

[†] Terminal numbers for FK and FN packages.

[‡] Terminal numbers for J, DW, and NW packages.

TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS

SLAS043G – MAY 1991 – REVISED NOVEMBER 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: V_{DD1} is the voltage measured at DGTL V_{DD1} with respect to DGND1. V_{DD2} is the voltage measured at DGTL V_{DD2} with respect to the DGND2. V_{DD3} is the voltage measured at ANLG V_{DD} with respect to AGND. For these specifications, all ground terminals are tied together (and represent 0 V). When V_{DD1} , V_{DD2} , and V_{DD3} are equal, they are referred to simply as V_{DD} .

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V_{DD1} , V_{DD2} , V_{DD3}	4.75	5	5.5	V
Positive reference voltage, V_{REF+} (see Note 2)			V_{DD3}	V
Negative reference voltage, V_{REF-} (see Note 2)			0	V
Differential reference voltage, $V_{REF+} - V_{REF-}$ (see Note 2)			V_{DD3}	V
Analog input voltage range	0		V_{DD3}	V
High-level control input voltage, V_{IH}	2			V
Low-level control input voltage, V_{IL}			0.8	V
Input clock frequency, $f_{(CLKIN)}$	0.5	7.8		MHz
Setup time, \overline{CS} low before \overline{WR} or \overline{RD} goes low, $t_{su}(CS)$	0			ns
Hold time, \overline{CS} low after \overline{WR} or \overline{RD} goes high, $t_h(CS)$	0			ns
\overline{WR} or \overline{RD} pulse duration, $t_w(WR)$	50			ns
Input clock low pulse duration, $t_w(L-CLKIN)$	40% of period	80% of period		
Operating free-air temperature, T_A	TLC155xl	-40	85	°C
	TLC1550M	-55	125	

NOTE 2: Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied to REF- convert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V.

TLC1550I, TLC1550M, TLC1551I
10-BIT ANALOG-TO-DIGITAL CONVERTERS
WITH PARALLEL OUTPUTS

SLAS043G – MAY 1991 – REVISED NOVEMBER 2003

**electrical characteristics over recommended operating free-air temperature range,
 $V_{DD} = V_{REF+} = 4.75$ V to 5.5 V and $V_{REF-} = 0$ (unless otherwise noted)**

PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
V_{OH} High-level output voltage		$V_{DD} = 4.75$ V, $I_{OH} = -360$ μ A		2.4		V	
V_{OL} Low-level output voltage	$I_{OL} = 2.4$ mA	$V_{DD} = 4.75$ V, $T_A = 25^\circ\text{C}$		0.4		0.5	V
		$T_A = -55^\circ\text{C}$ to 125°C					
I_{OZ} Off-state (high-impedance-state) output current	$V_O = V_{DD}$, \overline{CS} and \overline{RD} at V_{DD}			10		-10	μ A
	$V_O = 0$, \overline{CS} and \overline{RD} at V_{DD}						
I_{IH} High-level input current	$V_I = V_{DD}$			0.005		2.5	μ A
I_{IL} Low-level input current (except CLKIN)	$V_I = 0$			-2.5		-0.005	μ A
I_{IL} Low-level input current (CLKIN)				-50		-50	μ A
I_{OS} Short-circuit output current	$V_O = 5$ V, $T_A = 25^\circ\text{C}$			7		14	mA
	$V_O = 0$, $T_A = 25^\circ\text{C}$			-12		-6	
$I_{(DD)}$ Operating supply current	\overline{CS} low and \overline{RD} high			2		8	mA
C_i Input capacitance	Analog inputs	See typical equivalent inputs TLC1550/11		60		90*	pF
	Digital inputs			5		15*	

* On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

† All typical values are at $V_{DD} = 5$ V, $T_A = 25^\circ\text{C}$.

**TLC1550I, TLC1550M, TLC1551I
10-BIT ANALOG-TO-DIGITAL CONVERTERS
WITH PARALLEL OUTPUTS**

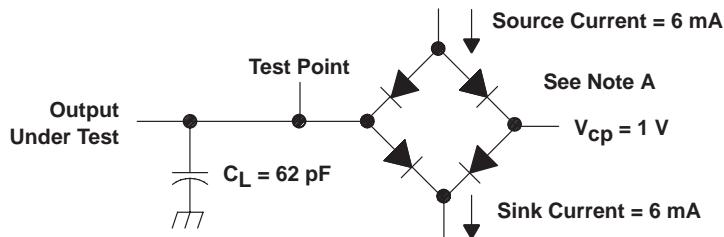
SLAS043G – MAY 1991 – REVISED NOVEMBER 2003

operating characteristics over recommended operating free-air temperature range with internal clock and minimum sampling time of 4 μ s, $V_{DD} = V_{REF+} = 5$ V and $V_{REF-} = 0$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T_A^\dagger	MIN	TYP‡	MAX	UNIT
E_L	Linearity error	See Note 3	Full range		± 0.5		LSB
			Full range		± 1		
			25°C		± 0.5		
			Full range		± 1		
E_{ZS}	Zero-scale error	See Notes 2 and 4	Full range		± 0.5		LSB
			Full range		± 1		
			25°C		± 0.5		
			Full range		± 1		
E_{FS}	Full-scale error	See Notes 2 and 4	Full range		± 0.5		LSB
			Full range		± 1		
			25°C		± 0.5		
			Full range		± 1		
Total unadjusted error		See Note 5	Full range		± 0.5		LSB
			Full range		± 1		
			25°C		± 1		
t_c	Conversion time	$f_{clock(external)} = 4.2$ MHz or internal clock			6	μ s	
$t_a(D)$	Data access time after \overline{RD} goes low	See Figure 3			35	ns	
$t_v(D)$	Data valid time after \overline{RD} goes high				5	ns	
$t_{dis}(D)$	Disable time, delay time from \overline{RD} high to high impedance				30	ns	
$t_d(EOC)$	Delay time, \overline{RD} low to \overline{EOC} high			0	15	ns	

† Full range is –40°C to 85°C for the TL1550I devices and –55°C to 125°C for the TLC1550M.

‡ All typical values are at $V_{DD} = 5$ V, $T_A = 25^\circ$ C.


NOTES: 2. Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied to REF– convert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V.

3. Linearity error is the difference between the actual analog value at the transition between any two adjacent steps and its ideal value after zero-scale error and full-scale error have been removed.

4. Zero-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified zero scale. Full-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified full scale.

5. Total unadjusted error is the difference between the actual analog value at the transition between any two adjacent steps and its ideal value. It includes contributions from zero-scale error, full-scale error, and linearity error.

PARAMETER MEASUREMENT INFORMATION

V_{cp} = voltage commutation point for switching between source and sink currents

NOTE A: Equivalent load circuit of the Teradyne A500 tester for timing parameter measurement

Figure 1. Test Load Circuit

TLC1550I, TLC1550M, TLC1551I 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS

SLAS043G – MAY 1991 – REVISED NOVEMBER 2003

APPLICATION INFORMATION

simplified analog input analysis

Using the circuit in Figure 2, the time required to charge the analog input capacitance from 0 to V_S within 1/2 LSB can be derived as follows:

The capacitance charging voltage is given by

$$V_C = V_S \left(1 - e^{-t_C/R_t C_i}\right) \quad (1)$$

Where:

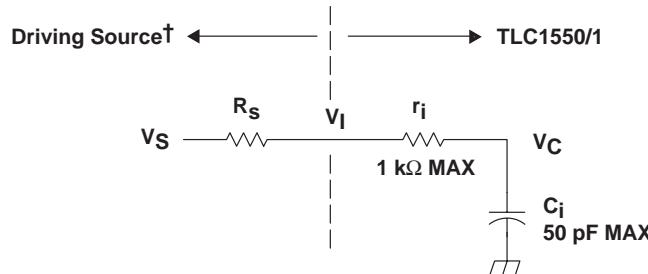
$$R_t = R_S + r_i$$

The final voltage to 1/2 LSB is given by

$$V_C (1/2 \text{ LSB}) = V_S - (V_S/1024) \quad (2)$$

Equating equation 1 to equation 2 and solving for time t_C gives

$$V_S - (V_S/512) = V_S \left(1 - e^{-t_C/R_t C_i}\right) \quad (3)$$


and

$$t_C (1/2 \text{ LSB}) = R_t \times C_i \times \ln(1024) \quad (4)$$

Therefore, with the values given, the time for the analog input signal to settle is

$$t_C (1/2 \text{ LSB}) = (R_S + 1 \text{ k}\Omega) \times 60 \text{ pF} \times \ln(1024) \quad (5)$$

This time must be less than the converter sample time shown in the timing diagrams.

V_I = Input voltage at AIN
 V_S = External driving source voltage
 R_S = Source resistance
 r_i = Input resistance
 C_i = Input capacitance

† Driving source requirements:

- Noise and distortion for the source must be equivalent to the resolution of the converter.
- R_S must be real at the input frequency.

Figure 2. Input Circuit Including the Driving Source

PRINCIPLES OF OPERATION

The operating sequence for complete data acquisition is shown in Figure 3. Processors can address the TLC1550 and TLC1551 as an external memory device by simply connecting the address lines to a decoder and the decoder output to \overline{CS} . Like other peripheral devices, the write (\overline{WR}) and read (\overline{RD}) input signals are valid only when \overline{CS} is low. Once \overline{CS} is low, the onboard system clock permits the conversion to begin with a simple write command and the converted data to be presented to the data bus with a simple read command. The device remains in a sampling (track) mode from the rising edge of \overline{EOC} until conversion begins with the rising edge of \overline{WR} , which initiates the hold mode. After the hold mode begins, the clock controls the conversion automatically. When the conversion is complete, the end-of-conversion (\overline{EOC}) signal goes low indicating that the digital data has been transferred to the output latch. Lowering \overline{CS} and \overline{RD} then resets \overline{EOC} and transfers the data to the data bus for the processor read cycle.

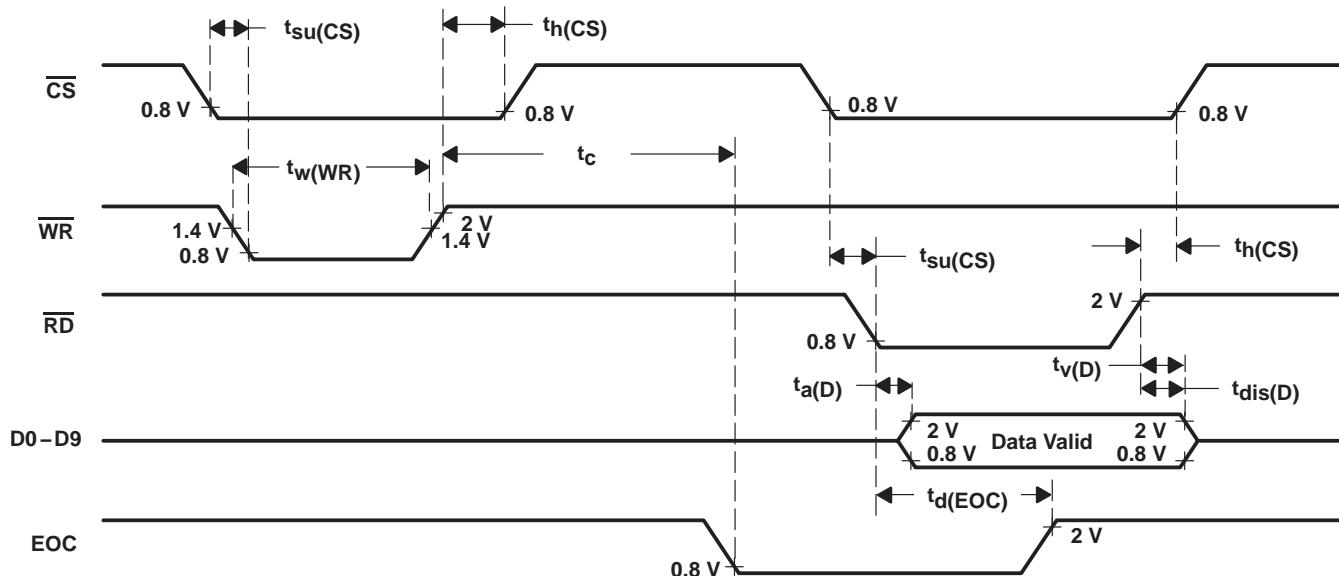


Figure 3. TLC1550 or TLC1551 Operating Sequence

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLC1550IDW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1550I	Samples
TLC1550IDWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1550I	Samples
TLC1550IDWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1550I	Samples
TLC1550IFN	ACTIVE	PLCC	FN	28	37	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1550IFN	Samples
TLC1550IFNR	ACTIVE	PLCC	FN	28	750	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1550IFN	Samples
TLC1550INW	OBsolete	PDIP	NW	24		TBD	Call TI	Call TI	-40 to 85		
TLC1550MFKB	OBsolete	LCCC	FK	28		TBD	Call TI	Call TI	-55 to 125		
TLC1550MJ	OBsolete	CDIP	J	24		TBD	Call TI	Call TI	-55 to 125		
TLC1550MJB	OBsolete	CDIP	J	24		TBD	Call TI	Call TI	-55 to 125		
TLC1551IDW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1551I	Samples
TLC1551IDWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1551I	Samples
TLC1551IDWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1551I	Samples
TLC1551IFN	ACTIVE	PLCC	FN	28	37	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1551IFN	Samples
TLC1551IFNG4	ACTIVE	PLCC	FN	28	37	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC1551IFN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

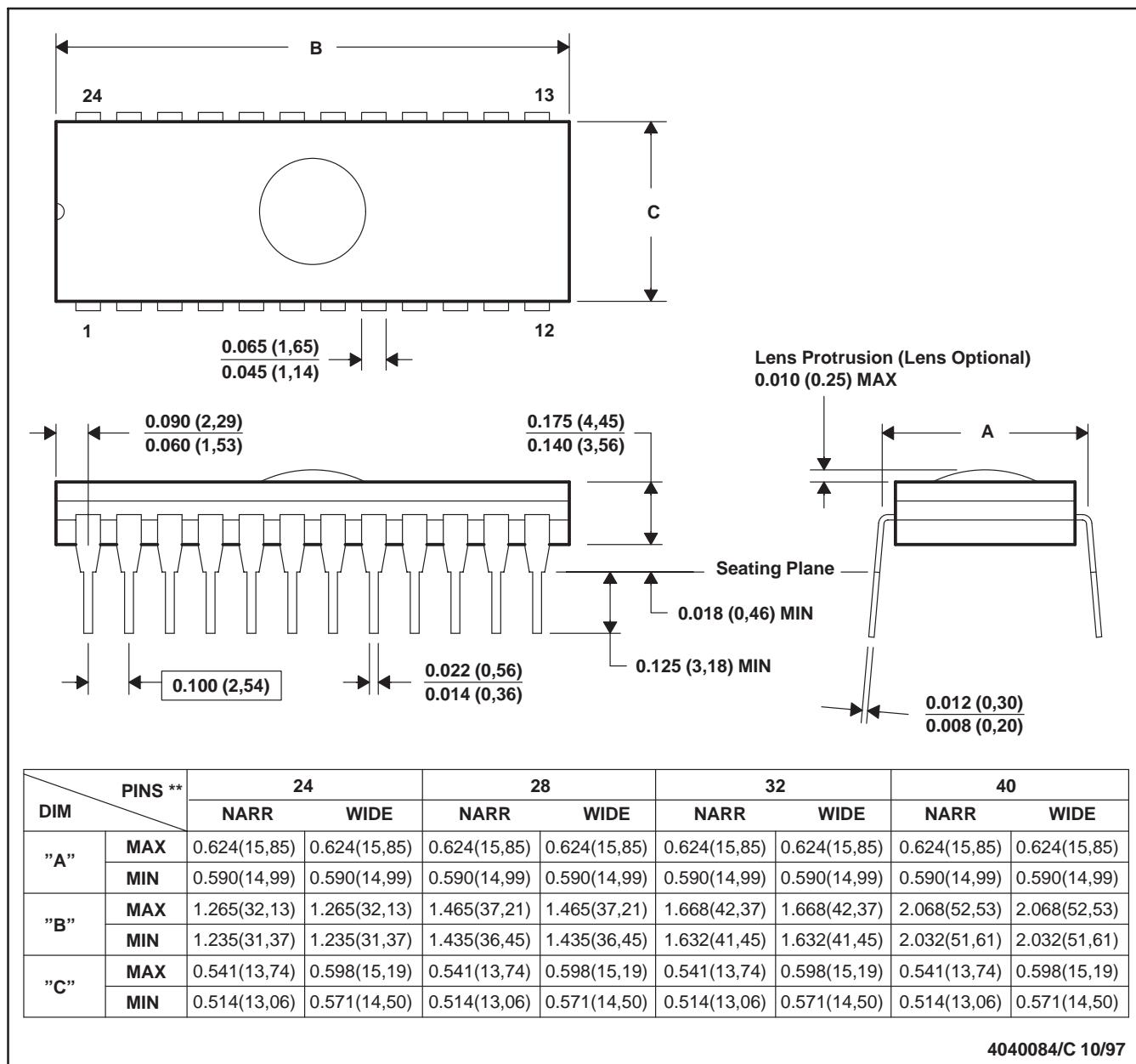
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

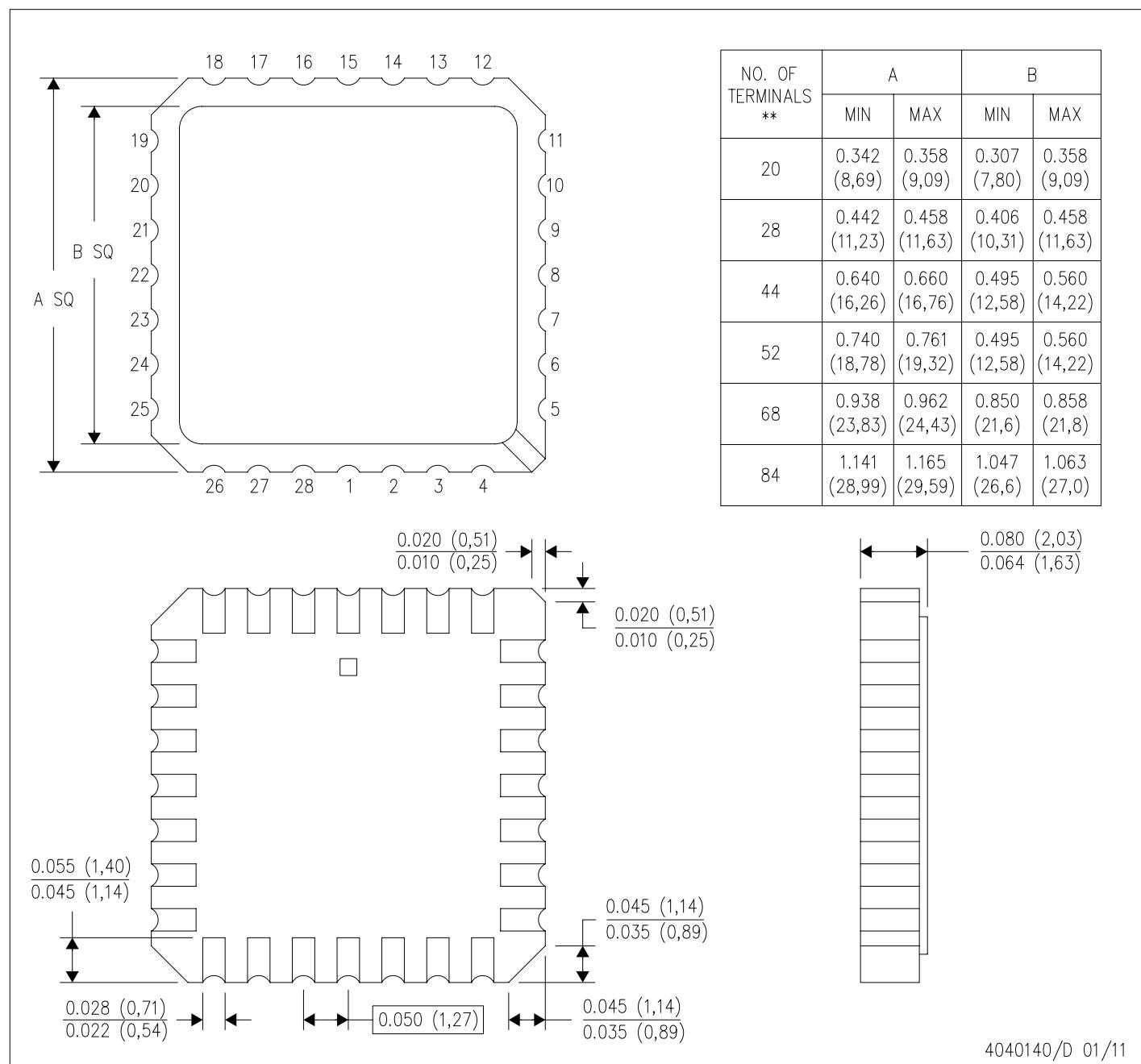

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**)

CERAMIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN

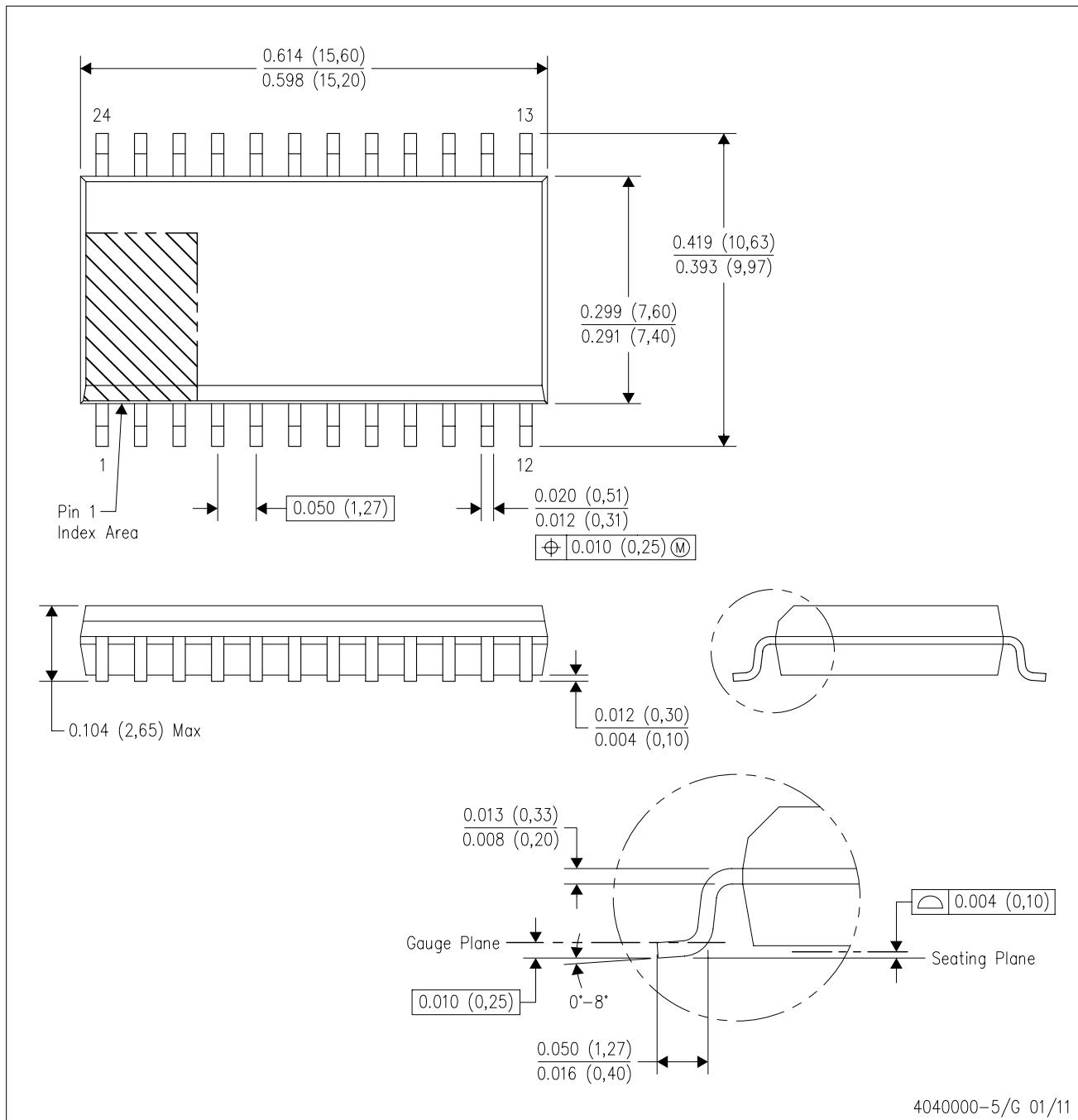


NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
 D. This package can be hermetically sealed with a ceramic lid using glass frit.
 E. Index point is provided on cap for terminal identification.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

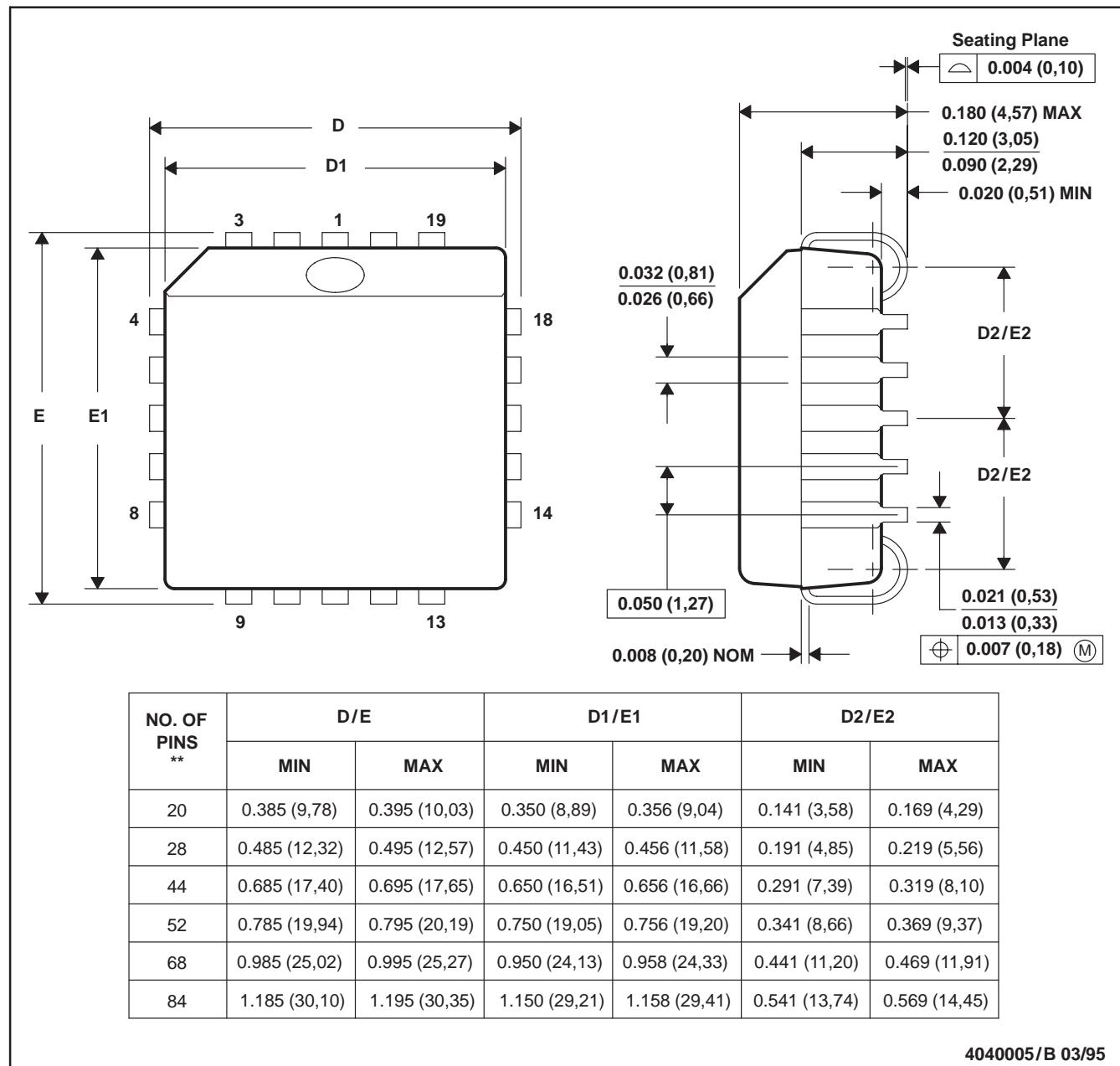

NOTES:

- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- This package can be hermetically sealed with a metal lid.
- Falls within JEDEC MS-004

4040140/D 01/11

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES:

- All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MS-013 variation AD.

FN (S-PQCC-J**)

20 PIN SHOWN

PLASTIC J-LEADED CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Falls within JEDEC MS-018

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com