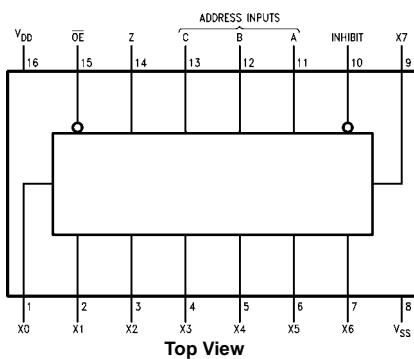


CD4512BC 8-Channel Buffered Data Selector

General Description

The CD4512BC buffered 8-channel data selector is a complementary MOS (CMOS) circuit constructed with N- and P-channel enhancement mode transistors. This data selector is primarily used as a digital signal multiplexer selecting 1 of 8 inputs and routing the signal to a 3-STATE output. A high level at the Inhibit input forces a low level at the output. A high level at the Output Enable (OE) input forces the output into the 3-STATE condition. Low levels at both the Inhibit and (\overline{OE}) inputs allow normal operation.

Features

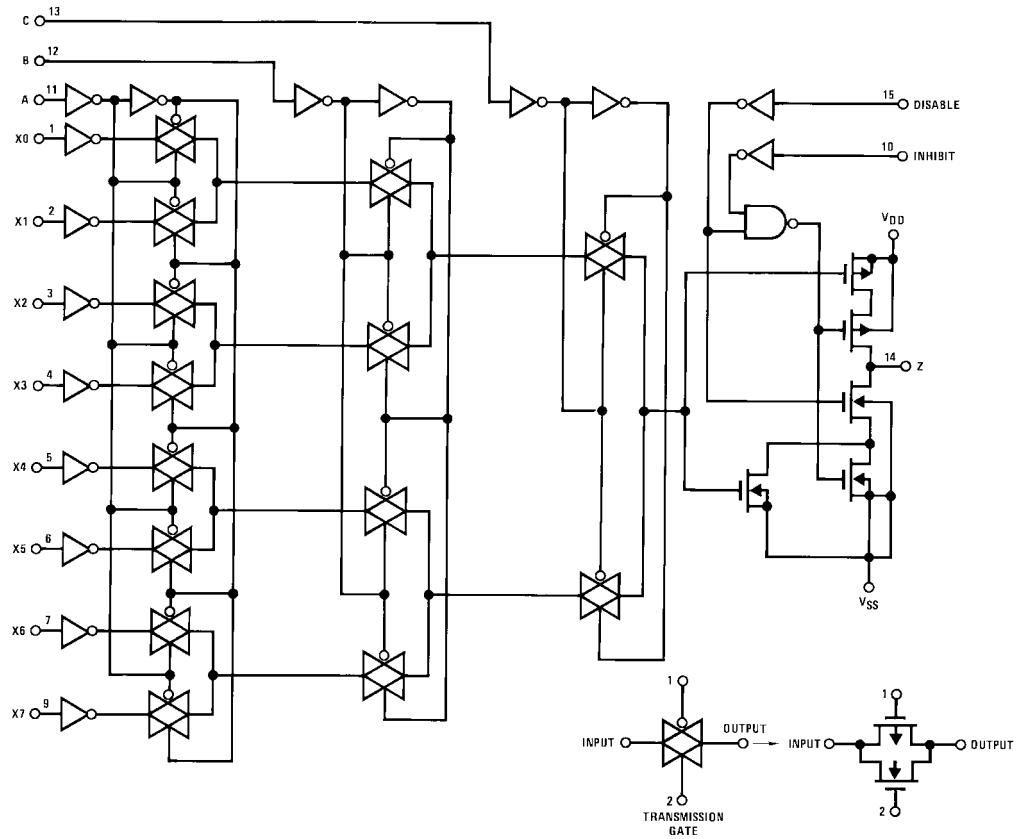

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- 3-STATE output
- Low quiescent power dissipation: 0.25 μ W/package (typ.) @ $V_{CC} = 5.0$ V
- Plug-in replacement for Motorola MC14512

Ordering Code:

Order Number	Package Number	Package Description
CD4512BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4512BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix "X" to the ordering code.

Connection Diagram


Truth Table

Address Inputs			Control Inputs		Output
C	B	A	Inhibit	\overline{OE}	Z
0	0	0	0	0	X0
0	0	1	0	0	X1
0	1	0	0	0	X2
0	1	1	0	0	X3
1	0	0	0	0	X4
1	0	1	0	0	X5
1	1	0	0	0	X6
1	1	1	0	0	X7
2	1	1	1	0	0
2	2	2	2	1	Hi-Z

2 = Don't care
Hi-Z = 3-STATE condition
Xn = Data at input n

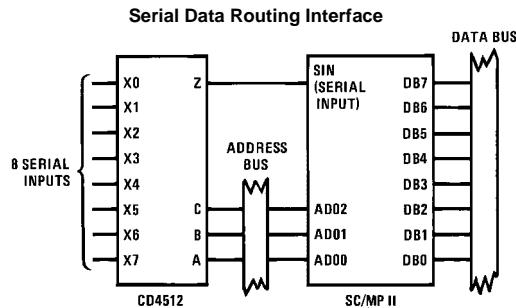
CD4512BC

Logic Diagram

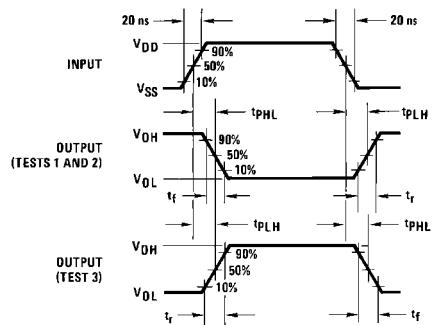
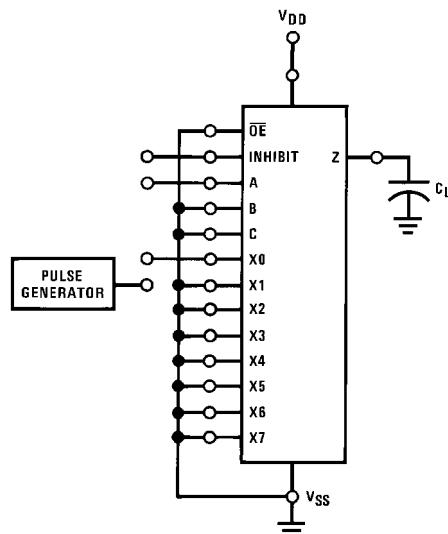
Absolute Maximum Ratings (Note 1)			Recommended Operating Conditions (Note 2)						
(Note 2)									
Supply Voltage (V_{DD})	-0.5 to +18 V_{DC}		DC Supply Voltage (V_{DD})	3.0 to 15 V_{DC}					
Input Voltage (V_{IN})	-0.5 to V_{DD} + 0.5 V_{DC}		Input Voltage (V_{IN})	0 to V_{DD} V_{DC}					
Storage Temperature Range (T_S)	-65°C to +150°C		Operating Temperature Range (T_A)	-55°C to +125°C					
Power Dissipation (P_D)			Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The Recommended Operating Conditions and Electrical Characteristics table provide conditions for actual device operation.						
Dual-In-Line	700 mW		Note 2: $V_{SS} = 0V$ unless otherwise specified.						
Small Outline	500 mW								
Lead Temperature, (T_L) (Soldering, 10 seconds)	260°C								
DC Electrical Characteristics (Note 2)									
Symbol	Parameter	Conditions	-55°C		+25°C		+125°C		Units
			Min	Max	Min	Typ	Max	Min	
I_{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD}$ or V_{SS} $V_{DD} = 10V, V_{IN} = V_{DD}$ or V_{SS} $V_{DD} = 15V, V_{IN} = V_{DD}$ or V_{SS}		5 10 20		0.005 0.010 0.015	5 10 20		150 300 600 μA
V_{OL}	LOW Level Output Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ $ I_{OL} < 1 \mu A$ $V_{DD} = 15V$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 V
V_{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ $ I_{OH} < 1 \mu A$ $V_{DD} = 15V$		4.95 9.95 14.95		4.95 9.95 14.95	5.0 10.0 15.0		4.95 9.95 14.95 V
V_{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V$ $V_{DD} = 10V, V_O = 1.0V$ $V_{DD} = 15V, V_O = 1.5V$		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0 V
V_{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_O = 4.5V$ $V_{DD} = 10V, V_O = 9.0V$ $V_{DD} = 15V, V_O = 13.5V$		3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0 V
I_{OL}	LOW Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 0.4V$ $V_{DD} = 10V, V_O = 0.5V$ $V_{DD} = 15V, V_O = 1.5V$		0.64 1.6 4.2		0.51 1.3 3.4	0.78 2.0 7.8		0.36 0.9 2.4 mA
I_{OH}	HIGH Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 4.6V$ $V_{DD} = 10V, V_O = 9.5$ $V_{DD} = 15V, V_O = 13.5V$		-0.25 -0.62 -1.8		-0.2 -0.5 -1.5			-0.14 -0.35 -1.1 mA
I_{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.1 0.1		-10 ⁻⁵ 10 ⁻⁵	-0.1 0.1		-1.0 1.0 μA
I_{OZ}	3-STATE Output Current	$V_{DD} = 15V, V_O = 0V$ $V_{DD} = 15V, V_O = 15V$		± 1.0		$\pm 10^{-5}$	± 1.0		± 3.0 μA

Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 4) $T_A = 25^\circ\text{C}$, $t_r = t_f = 20 \text{ ns}$, $C_L = 50 \text{ pF}$

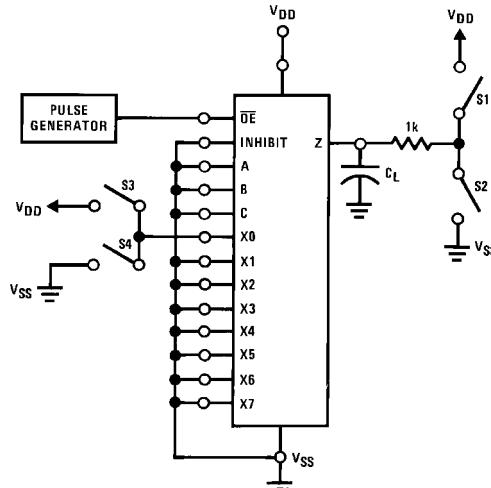

Symbol	Parameter	Conditions	CD4512BM			CD4512BC			Units
			Min	Typ	Max	Min	Typ	Max	
t_{PHL}	Propagation Delay HIGH-to-LOW Level	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	225 75 57	500 175 130		225 75 57	750 200 150		ns
t_{PLH}	Propagation Delay LOW-to-HIGH Level	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	225 75 57	500 175 130		225 75 57	750 200 150		ns
t_{THL}, t_{TLH}	Transition Time	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	70 35 25	200 100 80		70 35 25	200 100 80		ns
t_{PHZ}, t_{PLZ}	Propagation Delay into 3-STATE from Logic Level	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	50 25 19	125 75 60		50 25 19	125 75 60		ns
t_{PZH}, t_{PZL}	Propagation Delay to Logic Level from 3-STATE	$V_{DD} = 5\text{V}$ $V_{DD} = 10\text{V}$ $V_{DD} = 15\text{V}$	50 25 19	125 75 60		50 25 19	125 75 60		ns
C_{IN}	Input Capacitance	(Note 5)		7.5	15		7.5	15	pF
C_{OUT}	3-STATE Output Capacitance	(Note 5)		7.5	15		7.5	15	pF
C_{PD}	Power Dissipation Capacity	(Note 6)		150			150		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

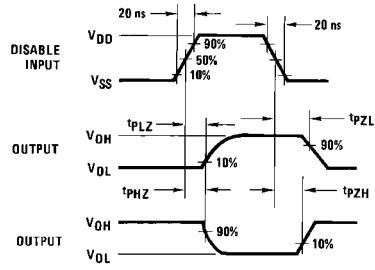


Note 5: Capacitance guaranteed by periodic testing.

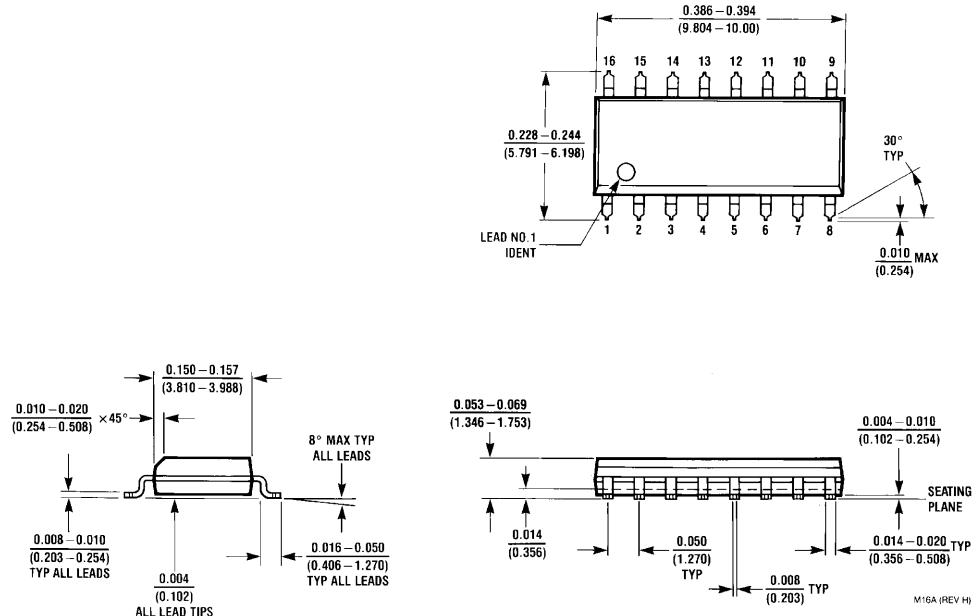
Note 6: C_{PD} determines the no load AC power of any CMOS device. For complete explanation, see Family Characteristics Application Note, AN-90.

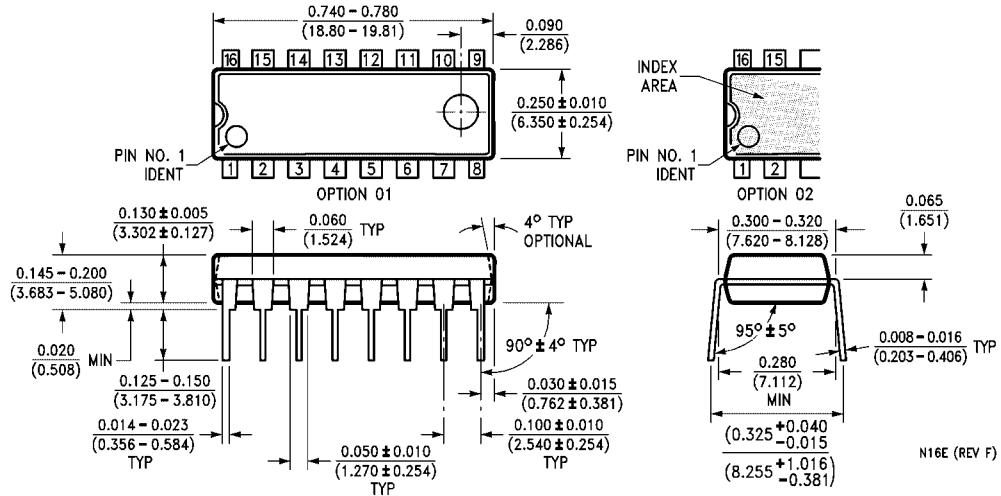
Typical Application


AC Test Circuit and Switching Time Waveforms

Input Connections for t_r , t_f , t_{PHI} , t_{PHI}


Test	Inhibit	A	X0
1	PG	GND	V_{DD}
2	GND	PG	V_{DD}
3	GND	GND	PG


3-STATE AC Test Circuit and Switching Time Waveforms


Switch Positions for 3-STATE Test

Test	S1	S2	S3	S4
t_{PHZ}	Open	Closed	Closed	Open
t_{PLZ}	Closed	Open	Open	Closed
t_{PZL}	Closed	Open	Open	Closed
t_{PZH}	Open	Closed	Closed	Open

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com