

SNx4LV4053A Triple 2-Channel Analog Multiplexers or Demultiplexers

1 Features

- 1.65V to 5.5V V_{CC} operation
- Support mixed-mode voltage operation on all ports
- High on-off output-voltage ratio
- Low crosstalk between switches
- Individual switch controls
- Extremely low input current
- Latch-up performance exceeds 250mA per JESD 17
- ESD protection exceeds JESD 22
 - 2000V Human-Body Model (A114-A)
 - 1000V Charged-Device Model (C101)

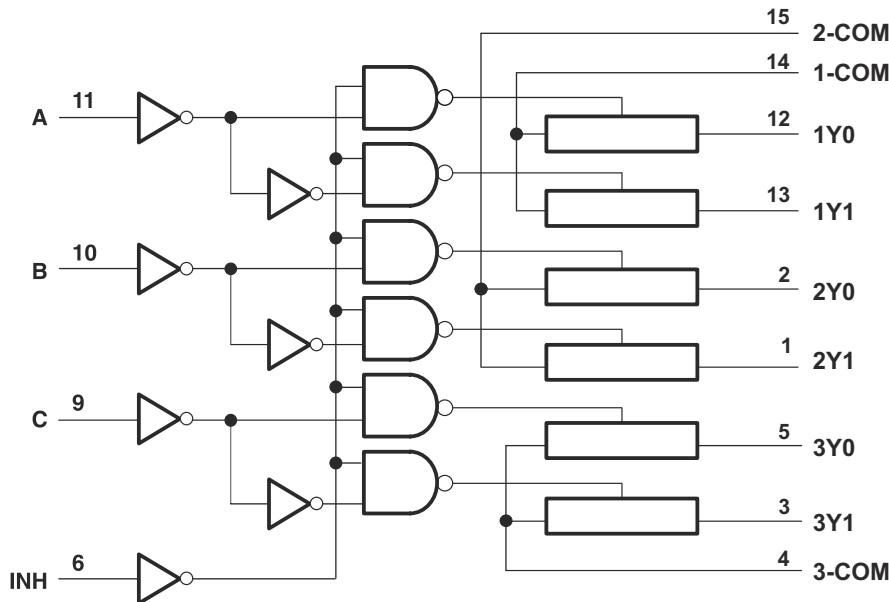
2 Applications

- Telecommunications
- Infotainment
- Signal gating and isolation
- Home appliances
- Programmable logic circuits
- Modulation and demodulation

3 Description

These triple 2-channel CMOS analog multiplexers/demultiplexers are designed for 1.65V to 5.5V V_{CC} operation.

The SNx4LV4053A devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5V (peak) to be transmitted in either direction.


Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

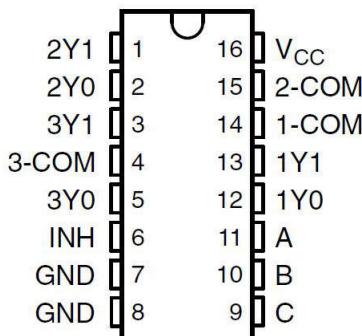
Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
SNx4LV4053A	D (SOIC, 16)	9.9mm × 6mm
	PW (TSSOP, 16)	5mm × 6.4mm
	RGY (VQFN, 16)	4mm × 3.5mm
	DYY (SOT-23-THIN, 16)	4.2mm × 3.26mm

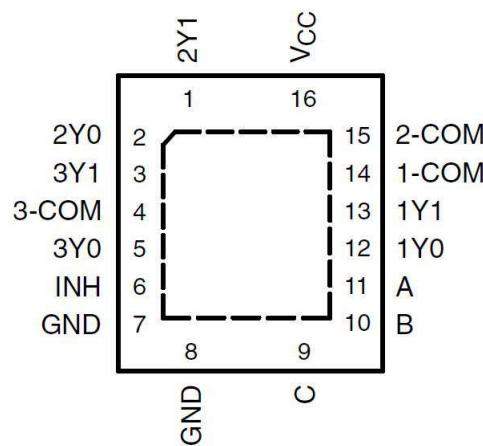
(1) For more information, see [Section 11](#).

(2) The package size (length × width) is a nominal value and includes pins, where applicable.

Functional Block Diagram



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.


Table of Contents

1 Features	1	7.1 Functional Block Diagram.....	14
2 Applications	1	7.2 Device Functional Modes.....	14
3 Description	1	8 Application and Implementation	15
4 Pin Configuration and Functions	3	8.1 Application Information.....	15
5 Specifications	4	8.2 Typical Application.....	15
5.1 Absolute Maximum Ratings.....	4	8.3 Power Supply Recommendations.....	15
5.2 ESD Ratings.....	4	8.4 Layout.....	15
5.3 Thermal Information: SN74LV4053A.....	4	9 Device and Documentation Support	17
5.4 Recommended Operating Conditions.....	5	9.1 Receiving Notification of Documentation Updates....	17
5.5 Electrical Characteristics.....	5	9.2 Support Resources.....	17
5.6 Timing Characteristics $V_{CC} = 2.5\text{ V} \pm 0.2\text{ V}$	7	9.3 Trademarks.....	17
5.7 Timing Characteristics $V_{CC} = 3.3\text{ V} \pm 0.3\text{ V}$	7	9.4 Electrostatic Discharge Caution.....	17
5.8 Timing Characteristics $V_{CC} = 5\text{ V} \pm 0.5\text{ V}$	8	9.5 Glossary.....	17
5.9 AC Characteristics.....	8	10 Revision History	17
6 Parameter Measurement Information	10	11 Mechanical, Packaging, and Orderable	
7 Detailed Description	14	Information	17

4 Pin Configuration and Functions

**Figure 4-1. SN74LV4053A D, PW or DYY Packages,
16-Pin SOIC, TSSOP or SOT-23-THIN (Top View)**

Figure 4-2. SN74LV4053A RGY, 16-Pin VQFN (Top View)

Table 4-1. Pin Functions

PIN		TYPE ⁽²⁾	DESCRIPTION
NAME	NO.		
2Y1	1	I ⁽¹⁾	Input to mux 2
2Y0	2	I ⁽¹⁾	Input to mux 2
3Y1	3	I ⁽¹⁾	Input to mux 3
3-COM	4	O ⁽¹⁾	Output of mux 3
3Y0	5	I ⁽¹⁾	Input to mux 3
INH	6	I	Enables the outputs of the device. Logic low level will turn the outputs on, high level will turn them off.
GND	7	-	Ground
GND	8	-	Ground
C	9	I	Selector line for outputs (see Section 7.2 for specific information)
B	10	I	Selector line for outputs (see Section 7.2 for specific information)
A	11	I	Selector line for outputs (see Section 7.2 for specific information)
1Y0	12	I ⁽¹⁾	Input to mux 1
1Y1	13	I ⁽¹⁾	Input to mux 1
1-COM	14	O ⁽¹⁾	Output of mux 1
2-COM	15	O ⁽¹⁾	Output of mux 2
V _{CC}	16	I	Device power input

(1) These I/O descriptions represent the device when used as a multiplexer, when this device is operated as a demultiplexer pins 1Y0, 1Y1, 2Y0, 2Y1, 3Y0, 3Y1 may be considered outputs (O) and pins 1-COM, 2-COM, and 3-COM may be considered inputs (I).

(2) I = input, O = output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)^{(1) (3)}

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7.0	V
V_I	Logic input voltage range		-0.5	7.0	V
V_{IO}	Switch I/O voltage range ^{(2) (3)}		-0.5	$V_{CC} + 0.5$	V
I_{IK}	Input clamp current	$V_I < 0$	-20		mA
I_{IOK}	Switch IO diode clamp current	$V_{IO} < 0$ or $V_{IO} > V_{CC}$	-50	50	mA
I_T	Switch continuous current	$V_{IO} = 0$ to V_{CC}		± 25	mA
	Continuous current through V_{CC} or GND			± 50	mA
T_J	Junction temperature			150	°C
T_{stg}	Storage temperature		-65	150	°C

- (1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If briefly operating outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (3) This value is limited to 5.5 V maximum

5.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	± 2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	± 1000	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information: SN74LV4053A

THERMAL METRIC ⁽¹⁾		SN74LV4053A				UNIT
		D (SOIC)	PW (TSSOP)	RGY (VQFN)	DYY (SOT)	
		16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.2	140.2	89.4	199.7	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	75.0	72.6	89.7	121.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	76.6	98.7	65.4	129.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	31.3	13.4	25.0	24.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	75.7	97.3	65.2	126.7	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	48.9	N/A	°C/W

- (1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

5.4 Recommended Operating Conditions

 over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		1 ⁽²⁾		5.5	V
V_{IH}	High-level input voltage, logic control inputs	$V_{CC} = 1.65$	1.2	5.5		V
		$V_{CC} = 2\text{ V}$	1.5	5.5		
		$V_{CC} = 2.3\text{ V to }2.7\text{ V}$	$V_{CC} \times 0.7$	5.5		
		$V_{CC} = 3\text{ V to }3.6\text{ V}$	$V_{CC} \times 0.7$	5.5		
		$V_{CC} = 4.5\text{ V to }5.5\text{ V}$	$V_{CC} \times 0.7$	5.5		
V_{IL}	Low-level input voltage, logic control inputs	$V_{CC} = 1.65$	0	0.4		V
		$V_{CC} = 2\text{ V}$	0	0.5		
		$V_{CC} = 2.3\text{ V to }2.7\text{ V}$	0	$V_{CC} \times 0.3$		
		$V_{CC} = 3\text{ V to }3.6\text{ V}$	0	$V_{CC} \times 0.3$		
		$V_{CC} = 4.5\text{ V to }5.5\text{ V}$	0	$V_{CC} \times 0.3$		
V_I	Logic control input voltage		0	5.5		V
V_{IO}	Switch input or output voltage		0	V_{CC}		V
$\Delta t/\Delta V$	Logic input transition rise or fall rate	$V_{CC} = 2.3\text{ V to }2.7\text{ V}$		200		ns/V
		$V_{CC} = 3\text{ V to }3.6\text{ V}$		100		
		$V_{CC} = 4.5\text{ V to }5.5\text{ V}$		20		
T_A	Ambient temperature		-40	125		°C

- All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications of Slow or Floating CMOS Inputs*, SCBA004.
- When using a V_{CC} of $\le 1.2\text{ V}$, it is recommended to use these devices only for transmitting digital signals. When supply voltage is near 1.2 V the analog switch ON resistance becomes very non-linear

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	Condition	T_A	V_{CC}	MIN	TYP	MAX	UNIT	
r_{ON}	ON-state switch resistance	$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	25°C	1.65 V		60	150	Ω
r_{ON}	ON-state switch resistance	$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	-40°C to 85°C	1.65 V		225		Ω
r_{ON}	ON-state switch resistance	$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	-40°C to 125°C	1.65 V		225		Ω
r_{ON}	ON-state switch resistance	$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	25°C	2.3 V	38	180	Ω	
			-40°C to 85°C		225			
			-40°C to 125°C		225			
		$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	25°C	3 V	30	150	Ω	
			-40°C to 85°C		190			
			-40°C to 125°C		190			
		$I_T = 2\text{ mA}$, $V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	25°C	4.5 V	22	75	Ω	
			-40°C to 85°C		100			
			-40°C to 125°C		100			
$r_{ON(p)}$	Peak ON-state resistance	$I_T = 2\text{ mA}$, $V_I = \text{GND to }V_{CC}$, $V_{INH} = V_{IL}$	25°C	1.65 V		220	600	Ω

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	Condition	T _A	V _{CC}	MIN	TYP	MAX	UNIT	
r _{ON(p)}	Peak ON-state resistance	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	–40°C to 85°C	1.65 V		700	Ω	
r _{ON(p)}	Peak ON-state resistance	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	–40°C to 125°C	1.65 V		700	Ω	
r _{ON(p)}	Peak ON-state resistance	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	2.3 V	113	500	Ω	
			–40°C to 85°C		600	600		
			–40°C to 125°C		600	600		
		I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	3 V	54	180	Ω	
			–40°C to 85°C		225	225		
			–40°C to 125°C		225	225		
		I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	4.5 V	31	100	Ω	
			–40°C to 85°C		125	125		
			–40°C to 125°C		125	125		
Δr _{ON}	Difference in ON-state resistance between switches	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	1.65 V		3	40	Ω
Δr _{ON}	Difference in ON-state resistance between switches	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	–40°C to 85°C	1.65 V		50	Ω	
Δr _{ON}	Difference in ON-state resistance between switches	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	–40°C to 85°C	1.65 V		50	Ω	
Δr _{ON}	Difference in ON-state resistance between switches	I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	2.3 V	2.1	30	Ω	
			–40°C to 85°C		40	40		
			–40°C to 125°C		40	40		
		I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	3 V	1.4	20	Ω	
			–40°C to 85°C		30	30		
			–40°C to 125°C		30	30		
		I _T = 2 mA, V _I = GND to V _{CC} , V _{INH} = V _{IL}	25°C	4.5 V	1.3	15	Ω	
			–40°C to 85°C		20	20		
			–40°C to 125°C		20	20		
I _{IH} I _{IL}	Control input current	V _I = 5.5 V or GND	25°C	0 to 5.5 V		0.1	μA	
			–40°C to 85°C			1		
			–40°C to 125°C			2		
I _{S(off)}	OFF-state switch leakage current	V _I = V _{CC} and V _O = GND, or V _I = GND and V _O = V _{CC} , V _{INH} = V _{IH}	25°C	5.5 V		0.1	μA	
			–40°C to 85°C			1		
			–40°C to 125°C			2		
I _{S(on)}	ON-state switch leakage current	V _I = V _{CC} or GND, V _{INH} = V _{IL} (see Figure4)	25°C	5.5 V		0.1	μA	
			–40°C to 85°C			1		
			–40°C to 125°C			2		
I _{CC}	Supply current	V _I = V _{CC} or GND V _{INH} = 0 V	25°C	5.5 V		0.01	μA	
			–40°C to 85°C			20		
			–40°C to 125°C			40		
C _{IC}	Control input capacitance	f = 10 MHz	25°C	3.3 V		2	pF	

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		Condition	T _A	V _{CC}	MIN	TYP	MAX	UNIT
C _{OS}	Switch terminal capacitance	f = 10 MHz	25°C	3.3 V		5		pF
C _{IS}	Common terminal capacitance	f = 10 MHz	25°C	3.3 V		23		pF
C _{OS(on)}	Common terminal ON-capacitance	f = 10 MHz	25°C	3.3 V		23		pF
C _F	Feedthrough capacitance	f = 10 MHz	25°C	3.3 V		0.5		pF
C _{PD}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	25°C	3.3 V		6		pF

5.6 Timing Characteristics V_{CC} = 2.5 V ± 0.2 V

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF	25°C		1.9	10	ns
					-40°C to 85°C		16		
					-40°C to 125°C		18		
t _{PZH} t _{PZL}	Enable delay time	INH	COM or Yn	C _L = 15 pF	25°C		6.6	18	ns
					-40°C to 85°C		23		
					-40°C to 125°C		25		
t _{PHZ} t _{PLZ}	Disable delay time	INH	COM or Yn	C _L = 15 pF	25°C		7.4	18	ns
					-40°C to 85°C		23		
					-40°C to 125°C		25		
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF	25°C		3.8	12	ns
					-40°C to 85°C		18		
					-40°C to 125°C		20		
t _{PZH} t _{PZL}	Enable delay time	INH	COM or Yn	C _L = 50 pF	25°C		7.8	28	ns
					-40°C to 85°C		35		
					-40°C to 125°C		35		
t _{PHZ} t _{PLZ}	Disable delay time	INH	COM or Yn	C _L = 50 pF	25°C		11.5	28	ns
					-40°C to 85°C		35		
					-40°C to 125°C		35		

5.7 Timing Characteristics V_{CC} = 3.3 V ± 0.3 V

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF	25°C		1.2	6	ns
					-40°C to 85°C		10		
					-40°C to 125°C		12		
t _{PZH} t _{PZL}	Enable delay time	INH	COM or Yn	C _L = 15 pF	25°C		4.7	12	ns
					-40°C to 85°C		15		
					-40°C to 125°C		18		
t _{PHZ} t _{PLZ}	Disable delay time	INH	COM or Yn	C _L = 15 pF	25°C		5.7	12	ns
					-40°C to 85°C		15		
					-40°C to 125°C		18		

5.7 Timing Characteristics $V_{CC} = 3.3\text{ V} \pm 0.3\text{ V}$ (continued)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
t_{PLH} t_{PHL}	Propagation delay time	COM or Yn	Yn or COM	$C_L = 50\text{ pF}$	25°C		2.5	9	ns
					-40°C to 85°C			12	
					-40°C to 125°C			14	
t_{PZH} t_{PZL}	Enable delay time	INH	COM or Yn	$C_L = 50\text{ pF}$	25°C		5.5	20	ns
					-40°C to 85°C			25	
					-40°C to 125°C			25	
t_{PHZ} t_{PLZ}	Disable delay time	INH	COM or Yn	$C_L = 50\text{ pF}$	25°C		8.8	20	ns
					-40°C to 85°C			25	
					-40°C to 125°C			25	

5.8 Timing Characteristics $V_{CC} = 5\text{ V} \pm 0.5\text{ V}$

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
t_{PLH} t_{PHL}	Propagation delay time	COM or Yn	Yn or COM	$C_L = 15\text{ pF}$	25°C		0.6	4	ns
					-40°C to 85°C			7	
					-40°C to 125°C			10	
t_{PZH} t_{PZL}	Enable delay time	INH	COM or Yn	$C_L = 15\text{ pF}$	25°C		3.5	8	ns
					-40°C to 85°C			10	
					-40°C to 125°C			12	
t_{PHZ} t_{PLZ}	Disable delay time	INH	COM or Yn	$C_L = 15\text{ pF}$	25°C		4.4	10	ns
					-40°C to 85°C			11	
					-40°C to 125°C			12	
t_{PLH} t_{PHL}	Propagation delay time	COM or Yn	Yn or COM	$C_L = 50\text{ pF}$	25°C		1.5	6	ns
					-40°C to 85°C			8	
					-40°C to 125°C			10	
t_{PZH} t_{PZL}	Enable delay time	INH	COM or Yn	$C_L = 50\text{ pF}$	25°C		4	14	ns
					-40°C to 85°C			18	
					-40°C to 125°C			18	
t_{PHZ} t_{PLZ}	Disable delay time	INH	COM or Yn	$C_L = 50\text{ pF}$	25°C		6.2	14	ns
					-40°C to 85°C			18	
					-40°C to 125°C			18	

5.9 AC Characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Device	CONDITIONS	MIN	TYP	MAX	UNIT
Frequency response (switch on)	COM or Yn	Yn or COM	SN74LV4053	$C_L = 50\text{ pF}$, $R_L = 600\text{ }\Omega$, $F_{in} = 1\text{ MHz}$ (sine wave), (see Figure 7)(1)	$V_{CC} = 2.3\text{ V}$		40	MHz
				$V_{CC} = 3\text{ V}$			45	
				$V_{CC} = 4.5\text{ V}$			60	
Charge Injection (control input to signal output)	INH	COM or Yn		$C_L = 50\text{ pF}$, $R_L = 600\text{ }\Omega$, $F_{in} = 1\text{ MHz}$ (sine wave) (see Figure 9)	$V_{CC} = 2.3\text{ V}$		20	mV
				$V_{CC} = 3\text{ V}$			35	
				$V_{CC} = 4.5\text{ V}$			60	

5.9 AC Characteristics (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Device	CONDITIONS	MIN	TYP	MAX	UNIT
Feedthrough attenuation (switch off)	COM or Yn	Yn or COM		$C_L = 50 \text{ pF}$, $R_L = 600 \Omega$, $F_{in} = 1 \text{ MHz}$ (sine wave) (see Figure 10) (2)	$V_{CC} = 2.3 \text{ V}$		–45	dB
					$V_{CC} = 3 \text{ V}$		–45	
					$V_{CC} = 4.5 \text{ V}$		–45	
Crosstalk (between any switches)	COM or Yn	Yn or COM		$C_L = 50 \text{ pF}$, $R_L = 600 \Omega$, $F_{in} = 1 \text{ MHz}$ (sine wave) (see Figure 8)(2)	$V_{CC} = 2.3 \text{ V}$		–45	dB
					$V_{CC} = 3 \text{ V}$		–45	
					$V_{CC} = 4.5 \text{ V}$		–45	
Sine-wave distortion	COM or Yn	Yn or COM		$C_L = 50 \text{ pF}$, $R_L = 10 \text{ k}\Omega$, $F_{in} = 1 \text{ kHz}$ (sine wave) (see Figure 11)	$V_I = 2 V_{p-p}$ $V_{CC} = 2.3 \text{ V}$		0.1	%
					$V_I = 2.5 V_{p-p}$ $V_{CC} = 3 \text{ V}$		0.1	
					$V_I = 4 V_{p-p}$ $V_{CC} = 4.5 \text{ V}$		0.1	

6 Parameter Measurement Information



Figure 6-1. On-State Resistance Test Circuit

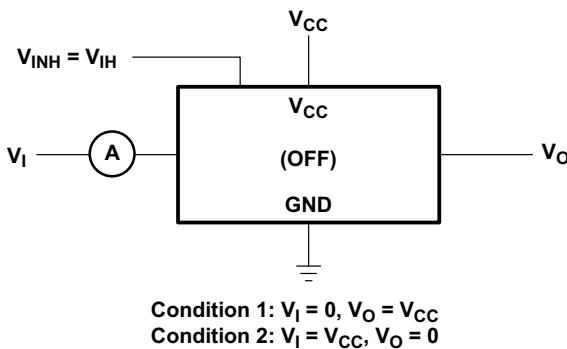


Figure 6-2. Off-State Switch Leakage-Current Test Circuit

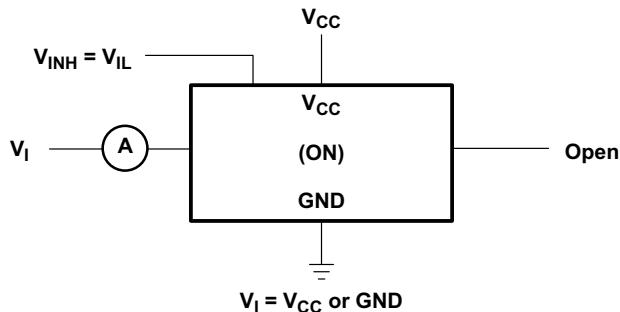


Figure 6-3. On-State Switch Leakage-Current Test Circuit

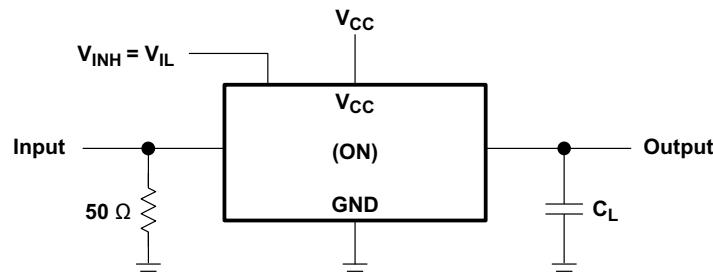
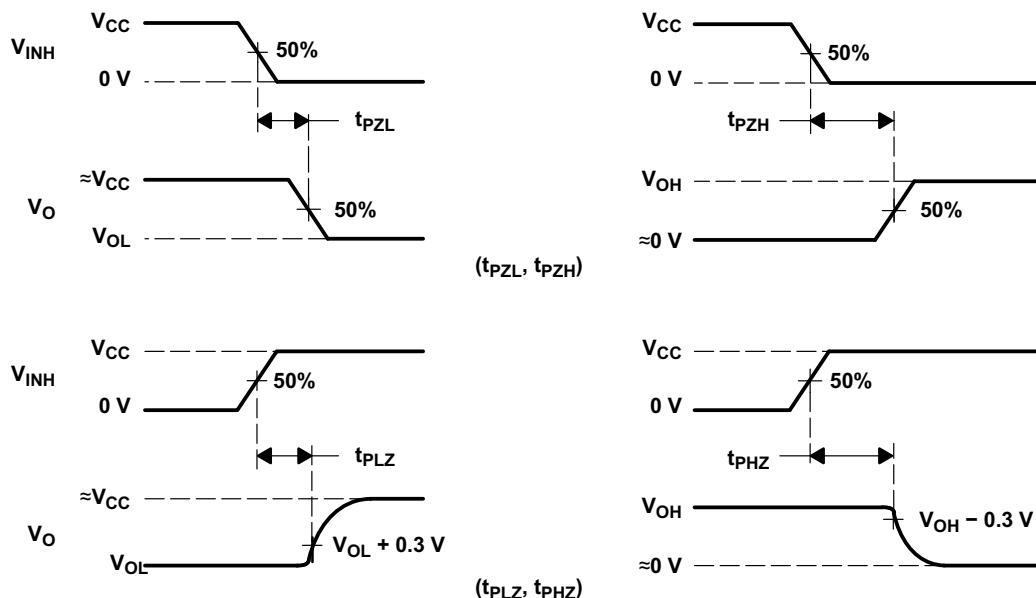
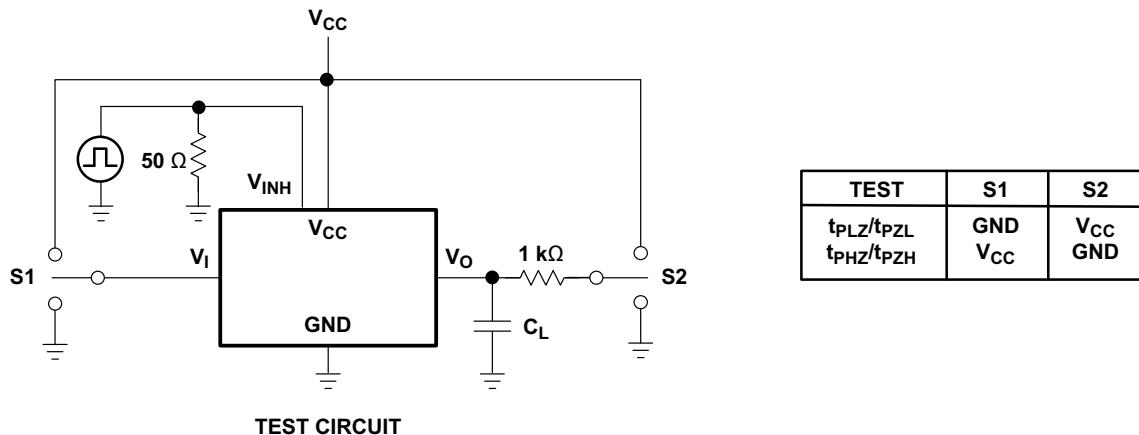
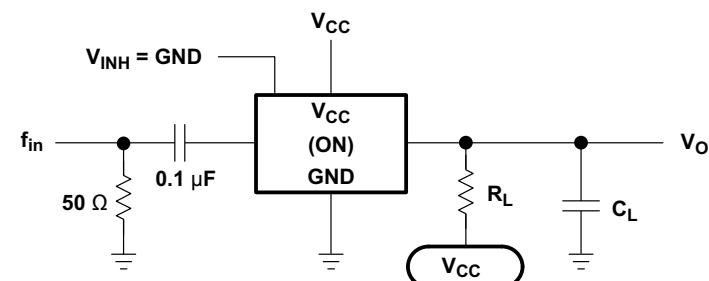





Figure 6-4. Propagation Delay Time, Signal Input to Signal Output

Figure 6-5. Switching Time (t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}), Control to Signal Output

Figure 6-6. Frequency Response (Switch On)

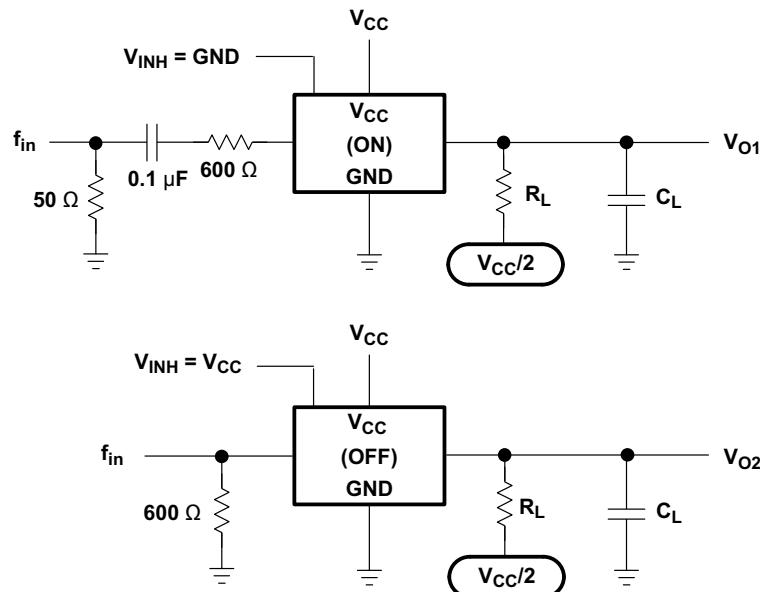


Figure 6-7. Crosstalk Between Any Two Switches

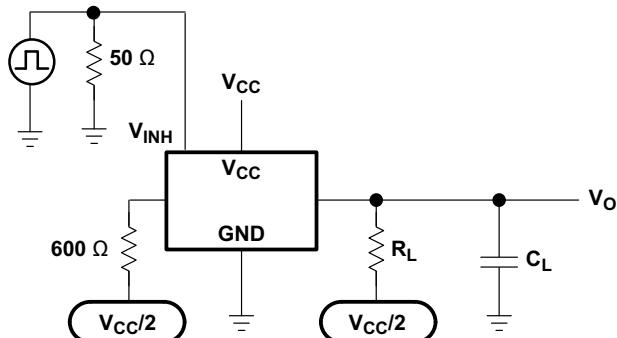


Figure 6-8. Crosstalk Between Control Input and Switch Output

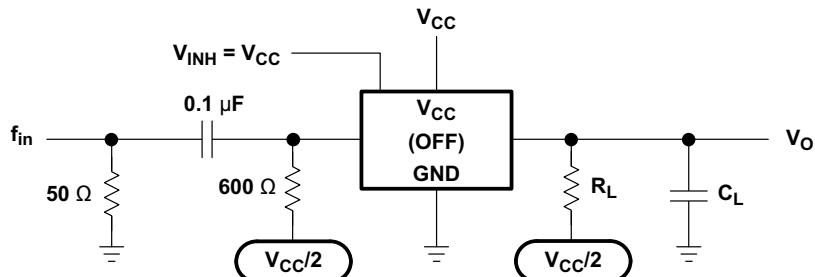


Figure 6-9. Feedthrough Attenuation (Switch Off)

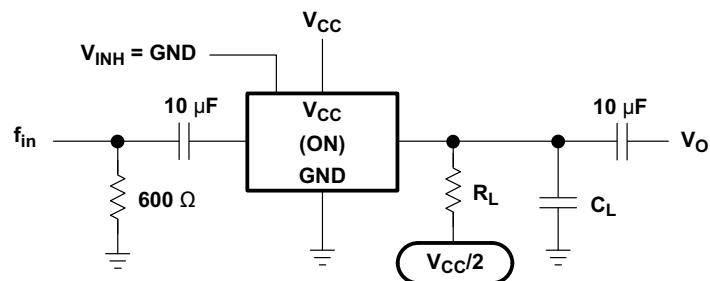
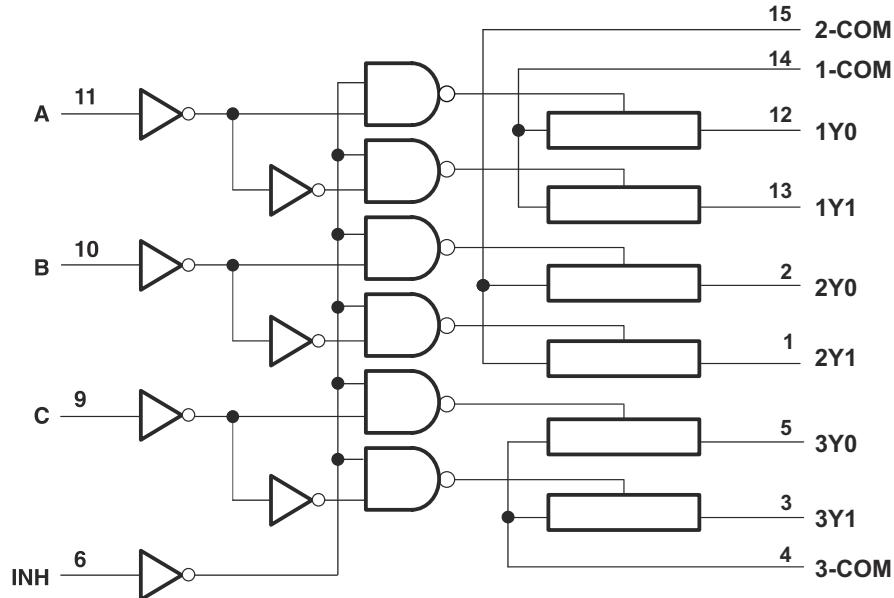



Figure 6-10. Sine-Wave Distortion

7 Detailed Description

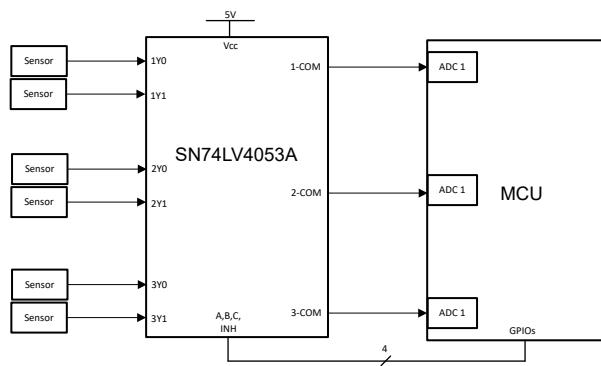
7.1 Functional Block Diagram

7.2 Device Functional Modes

Function Table

INPUTS				ON CHANNEL
INH	C	B	A	
L	L	L	L	1Y0, 2Y0, 3Y0
L	L	L	H	1Y1, 2Y0, 3Y0
L	L	H	L	1Y0, 2Y1, 3Y0
L	L	H	H	1Y1, 2Y1, 3Y0
L	H	L	L	1Y0, 2Y0, 3Y1
L	H	L	H	1Y1, 2Y0, 3Y1
L	H	H	L	1Y0, 2Y1, 3Y1
L	H	H	H	1Y1, 2Y1, 3Y1
H	X	X	X	None

8 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

A multiplexer is used in applications where multiple signals share a resource. In the following example, several different sensors are connected to the analog-to-digital converter (ADC) of a microcontroller (MCU).

8.2 Typical Application

Figure 8-1. Typical Application Schematic

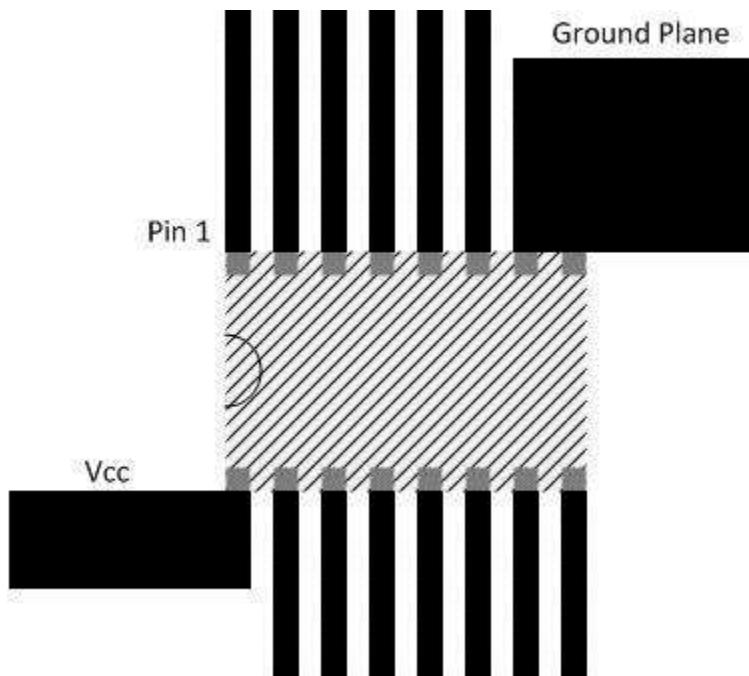
8.2.1 Design Requirements

Processing 8 different analog signals would normally require 8 separate ADCs, but the previous figure shows how to achieve this using only 2 ADCs and 3 GPIOs (general purpose input/outputs).

8.2.2 Detailed Design Procedure

To design with the SNx4LV4053A, a stable input voltage between 2V (see *Recommended Operating Conditions* for details) and 5.5V must be available. The characteristics of the signal that is being multiplexed so that no important information is lost due to timing or voltage level incompatibility with this device is another important design consideration.

8.3 Power Supply Recommendations


Most systems have a common 3.3V or 5V rail that may be used to supply the V_{CC} pin of this device. If this is not available, then a Switch-Mode-Power-Supply (SMPS) or a Linear Dropout Regulator (LDO) may be used to supply this device from a higher voltage rail.

8.4 Layout

8.4.1 Layout Guidelines

In general, it is best to keep signal lines as short and as straight as possible. Incorporation of microstrip or stripline techniques is also recommended when signal lines are greater than 1 inch in length. These traces must be designed with a characteristic impedance of either 50Ω or 75Ω, as required by the application. Be careful when placing this device too close to high voltage switching components, as they may cause interference.

8.4.2 Layout Example

Figure 8-2. Layout Example Schematic

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision L (June 2024) to Revision M (September 2024)	Page
• Added DYY package and size.....	1
• Added DYY package.....	3
• Added DYY package.....	4

Changes from Revision K (April 2005) to Revision L (June 2024)	Page
• Changed the numbering format for tables, figures, and cross-references throughout the document	1
• Added new VIH and VIL Specifications at 1.65V Vcc.....	5
• Increased max ambient temperature max to 125C.....	5
• Added Ron, Ron Peak, and Delta Ron Specifications at 1.65V Vcc.....	5
• Added Ron, Ron Peak, and Delta Ron Specifications at 125C.....	5
• Added Timing Specifications at 125C.....	7

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74LV4053AD	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	LV4053A
SN74LV4053ADBR	NRND	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053ADBR.A	NRND	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053ADGVR	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053ADGVR.A	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053ADR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4053A
SN74LV4053ADR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4053A
SN74LV4053ADYYR	Active	Production	SOT-23-THIN (DYY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4053
SN74LV4053ADYYR.A	Active	Production	SOT-23-THIN (DYY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4053
SN74LV4053AN	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74LV4053AN
SN74LV4053AN.A	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74LV4053AN
SN74LV4053ANSR	NRND	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV4053A
SN74LV4053ANSR.A	NRND	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV4053A
SN74LV4053APW	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	LW053A
SN74LV4053APWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053APWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053APWRG4	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	LW053A
SN74LV4053APWT	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	LW053A
SN74LV4053ARGYR	Active	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A
SN74LV4053ARGYR.A	Active	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW053A

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

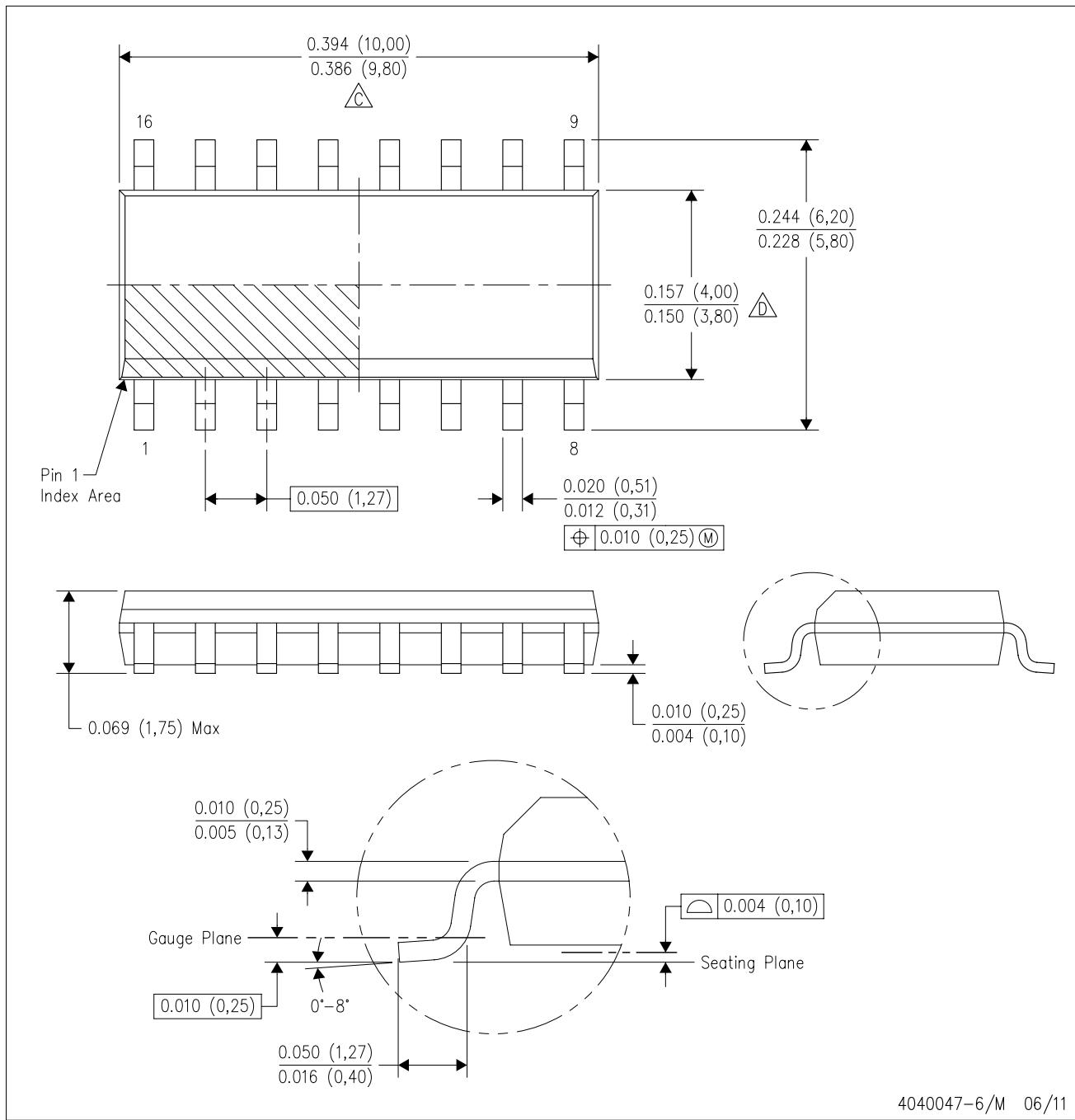
(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV4053A :


- Automotive : [SN74LV4053A-Q1](#)
- Enhanced Product : [SN74LV4053A-EP](#)

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product - Supports Defense, Aerospace and Medical Applications

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

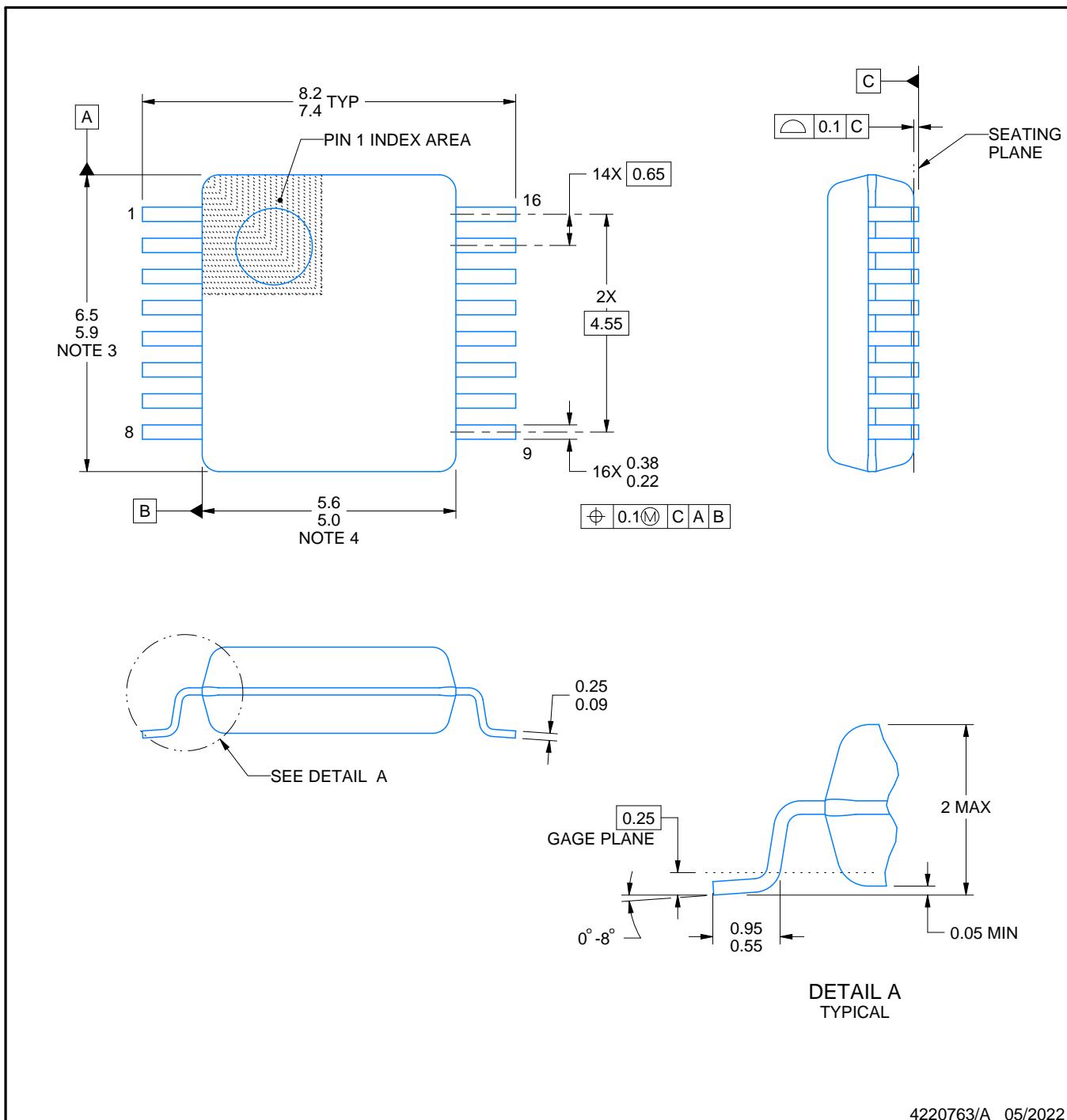
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

E. Reference JEDEC MS-012 variation AC.

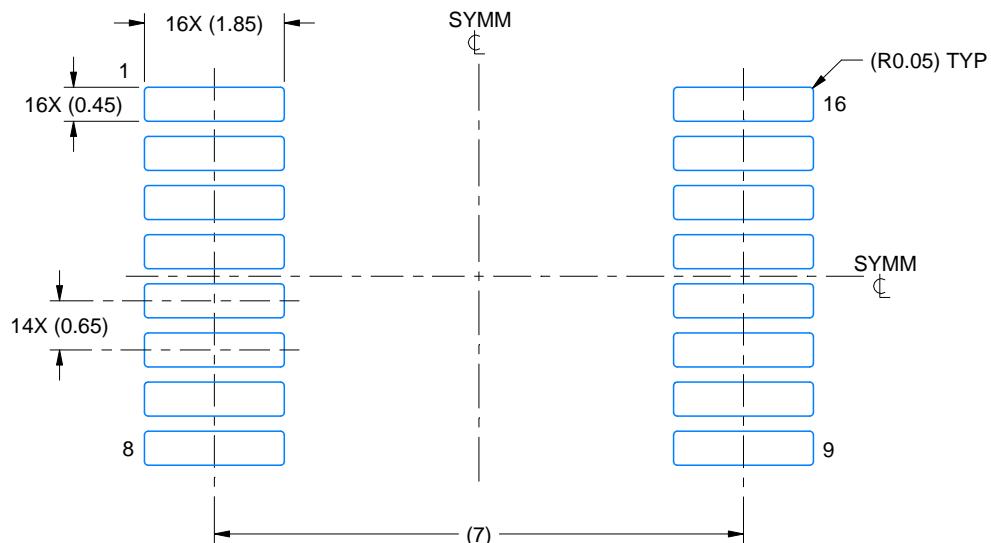

PACKAGE OUTLINE

DB0016A

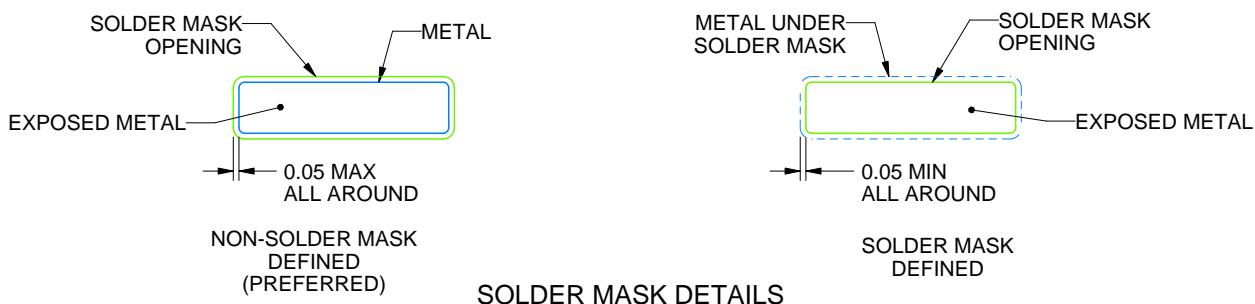
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-150.

EXAMPLE BOARD LAYOUT


DB0016A

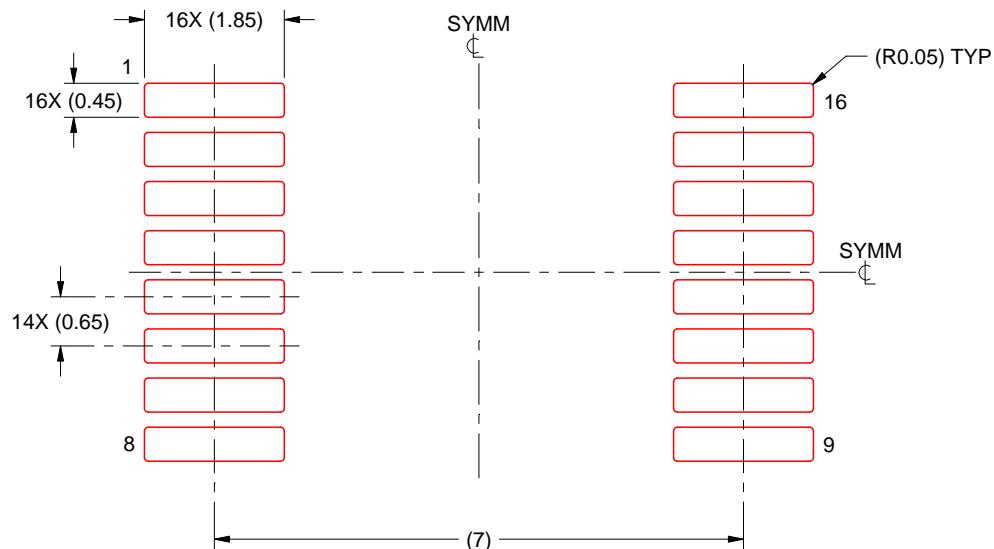
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X

4220763/A 05/2022

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DB0016A

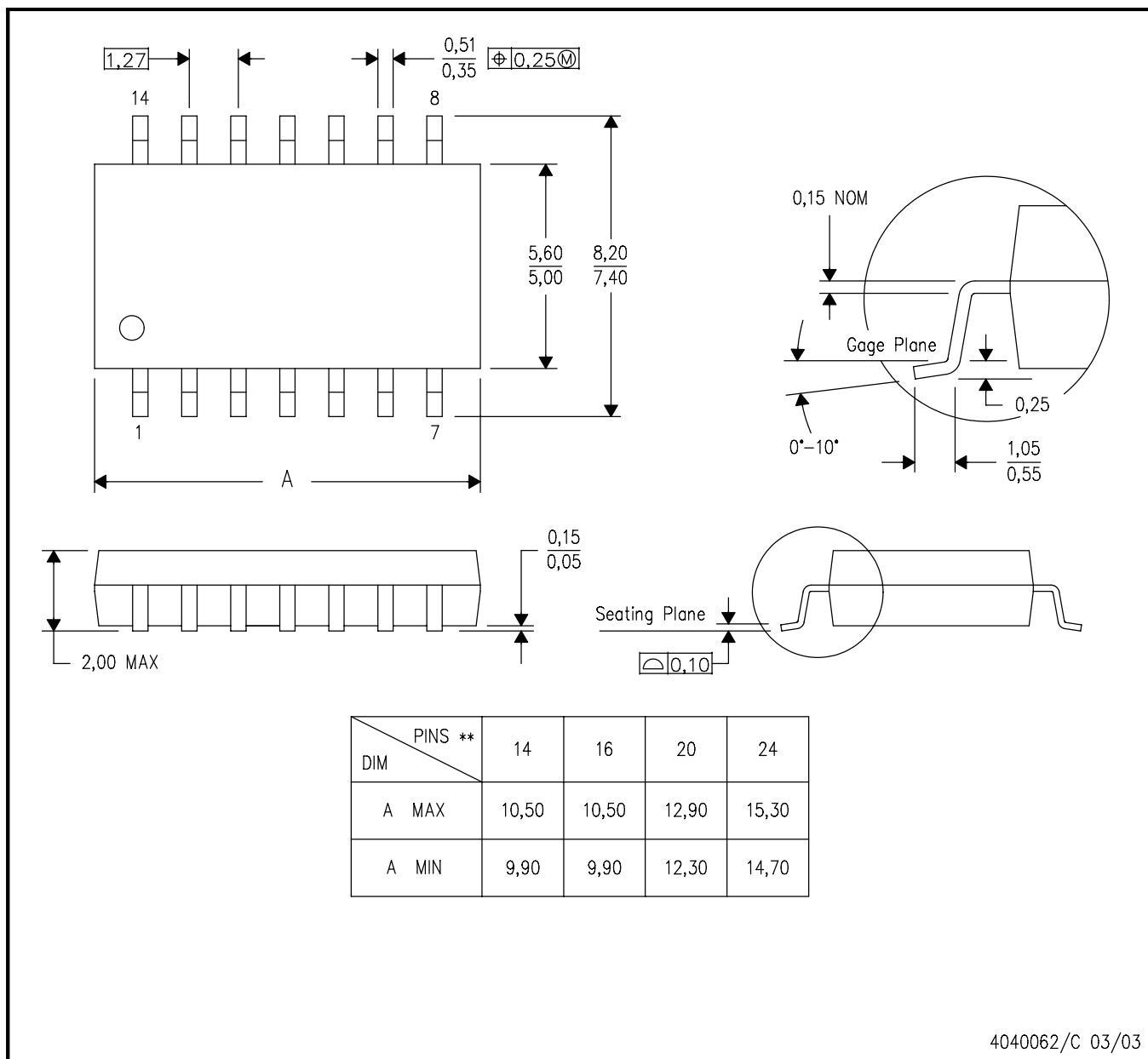
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X

4220763/A 05/2022

NOTES: (continued)

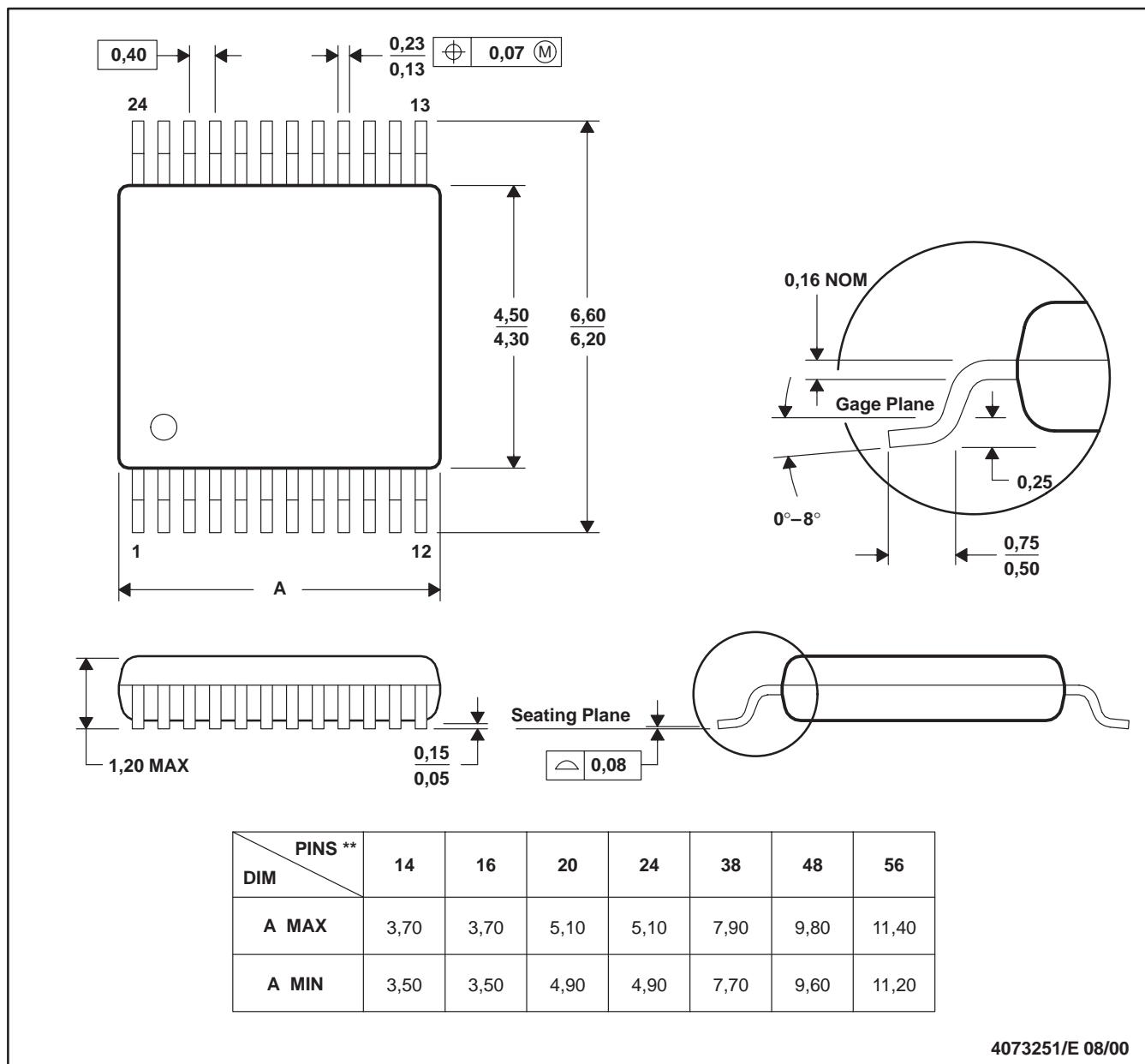

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

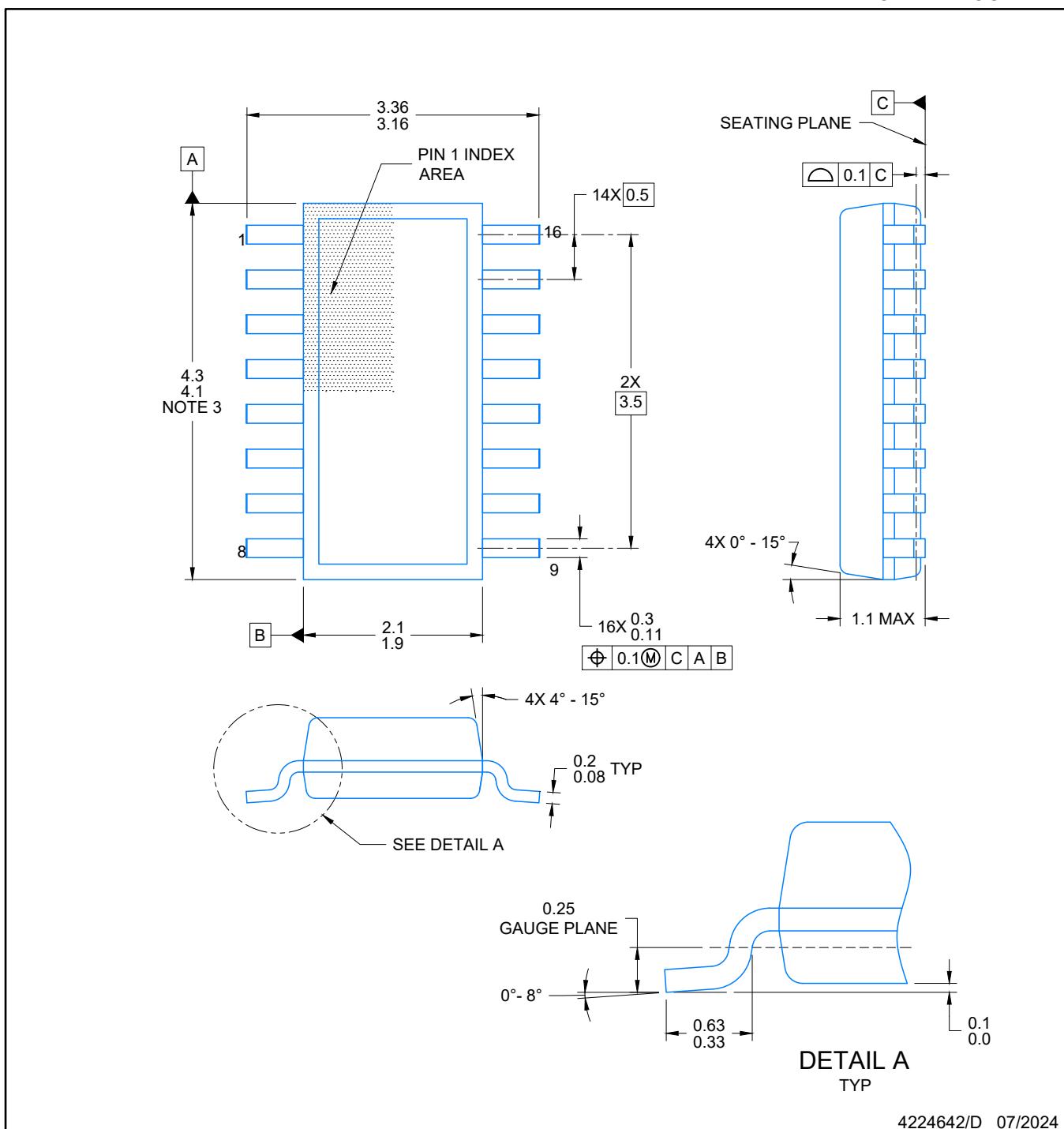

4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DGV (R-PDSO-G**)

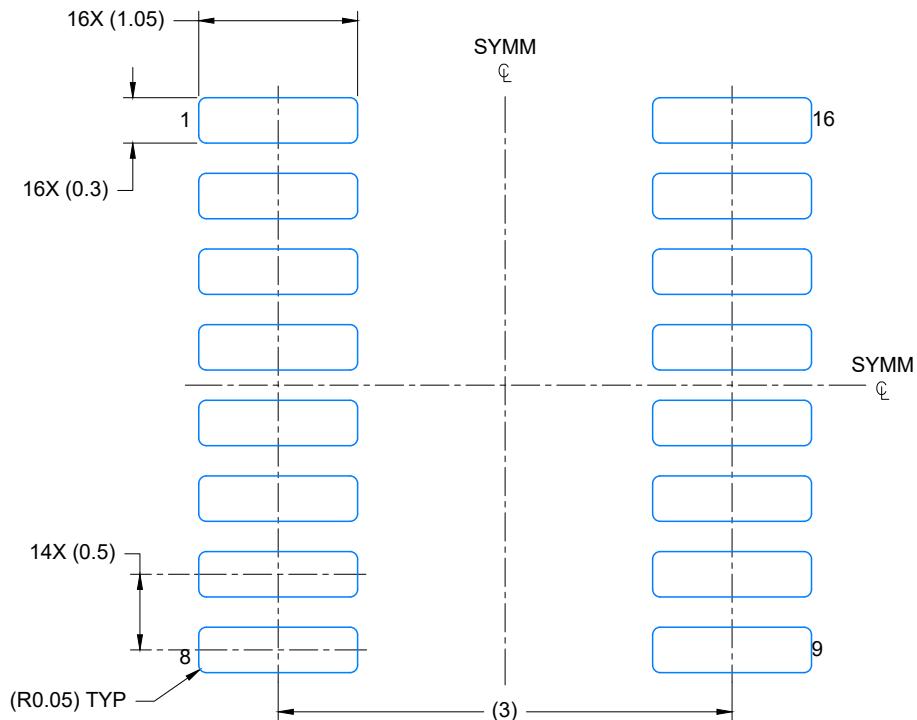
PLASTIC SMALL-OUTLINE

24 PINS SHOWN

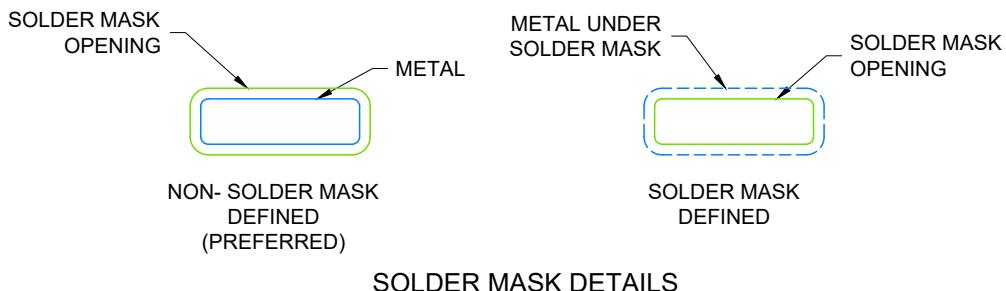

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
 D. Falls within JEDEC: 24/48 Pins – MO-153
 14/16/20/56 Pins – MO-194

PACKAGE OUTLINE

DYY0016A


SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE



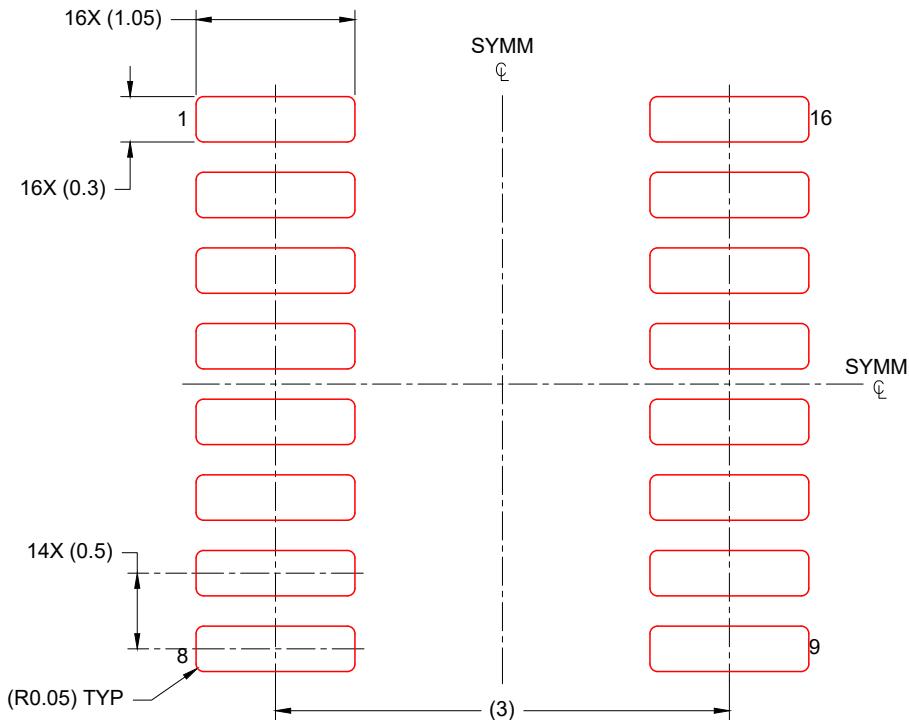
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
5. Reference JEDEC Registration MO-345, Variation AA

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 20X

4224642/D 07/2024

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

SOT-23-THIN - 1.1 mm max height

DYY0016A

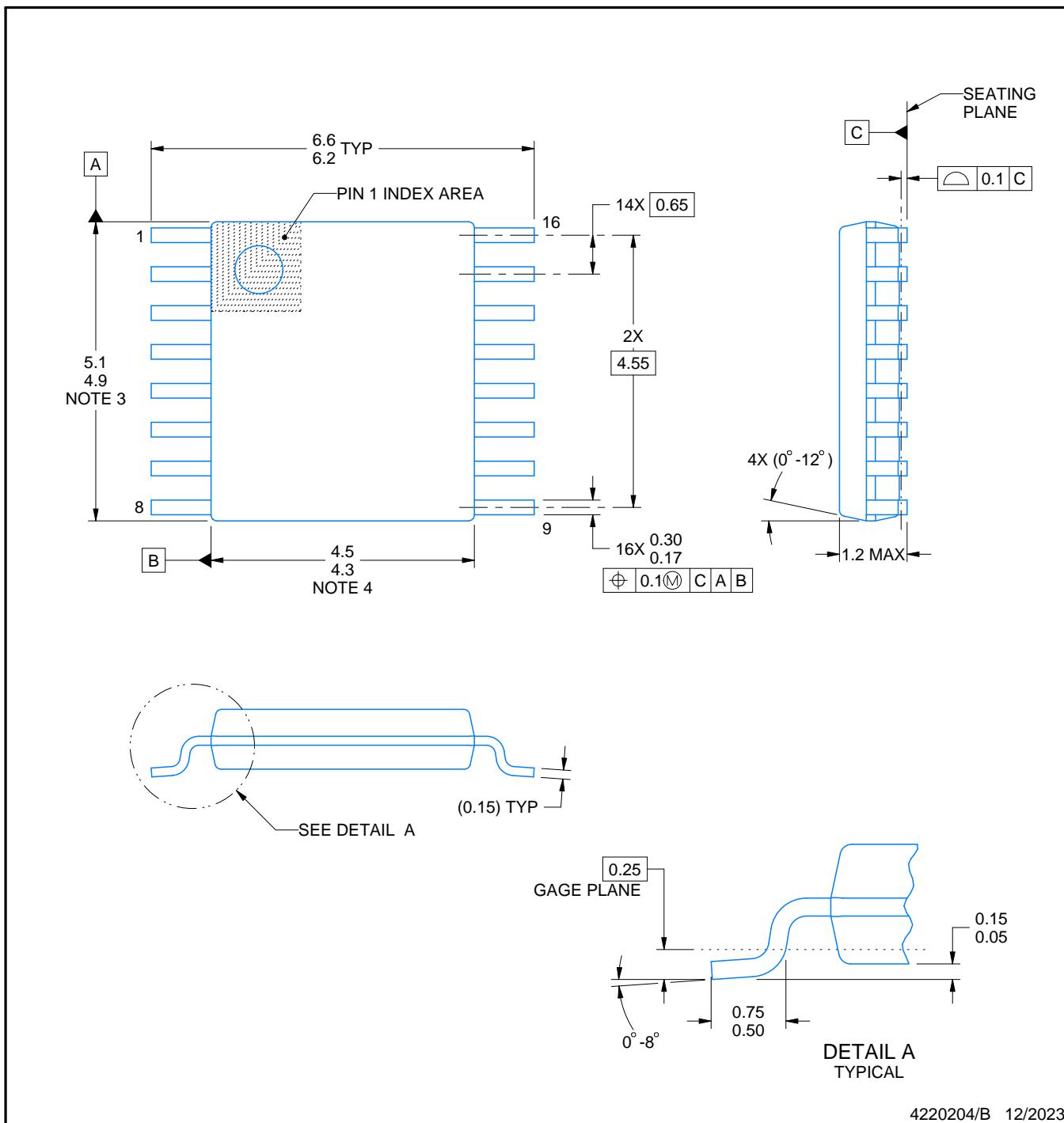
PLASTIC SMALL OUTLINE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 20X

4224642/D 07/2024

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

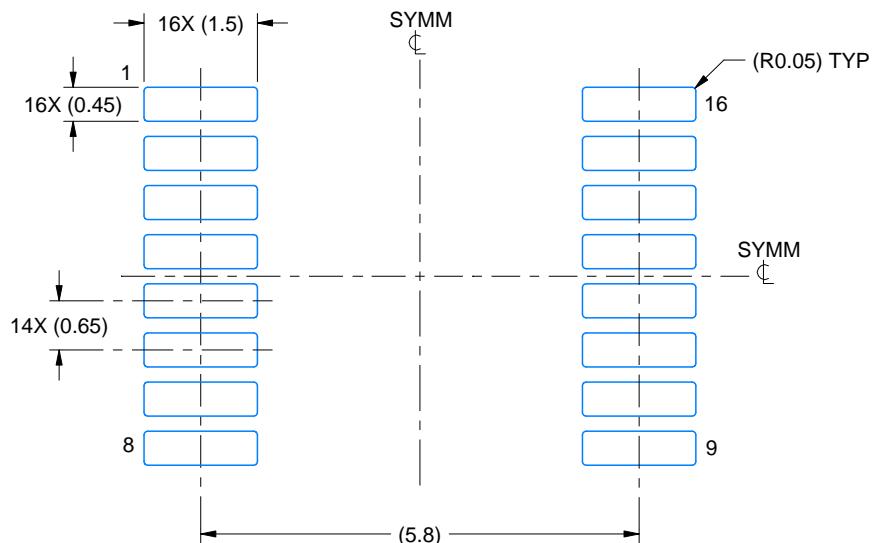

PACKAGE OUTLINE

PW0016A

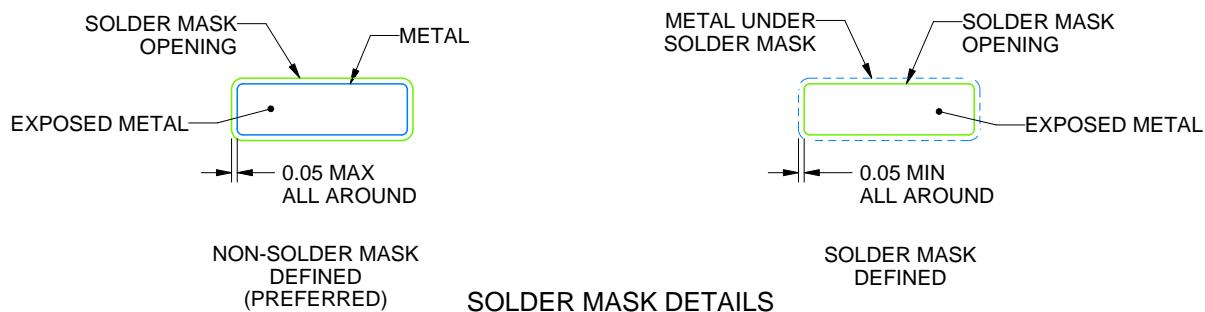
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT


PW0016A

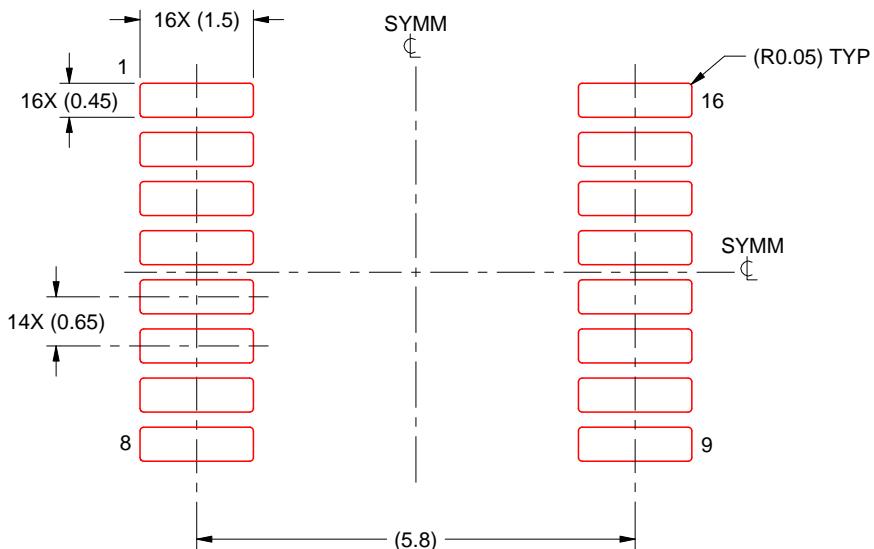
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X

4220204/B 12/2023

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

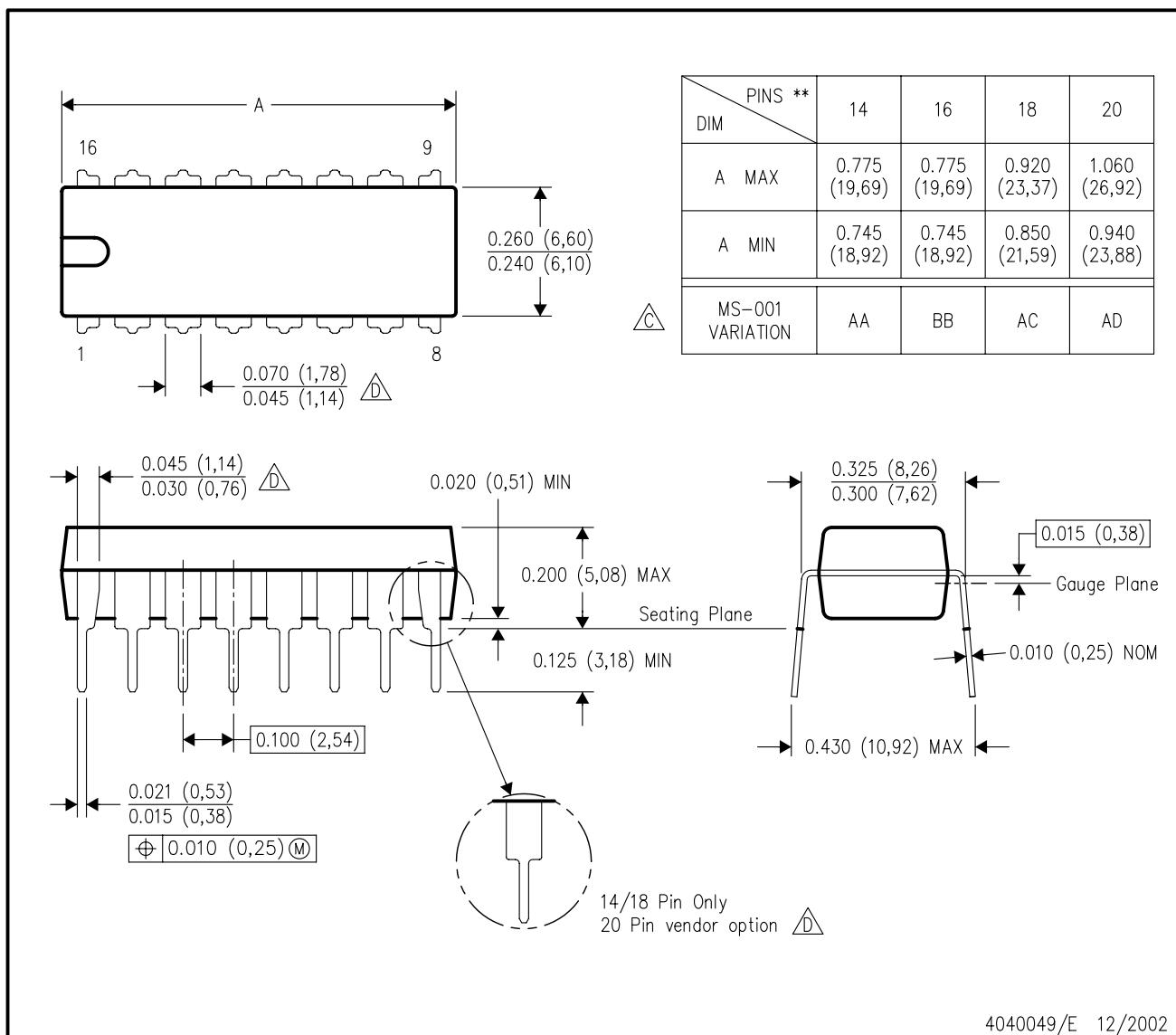
PW0016A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X

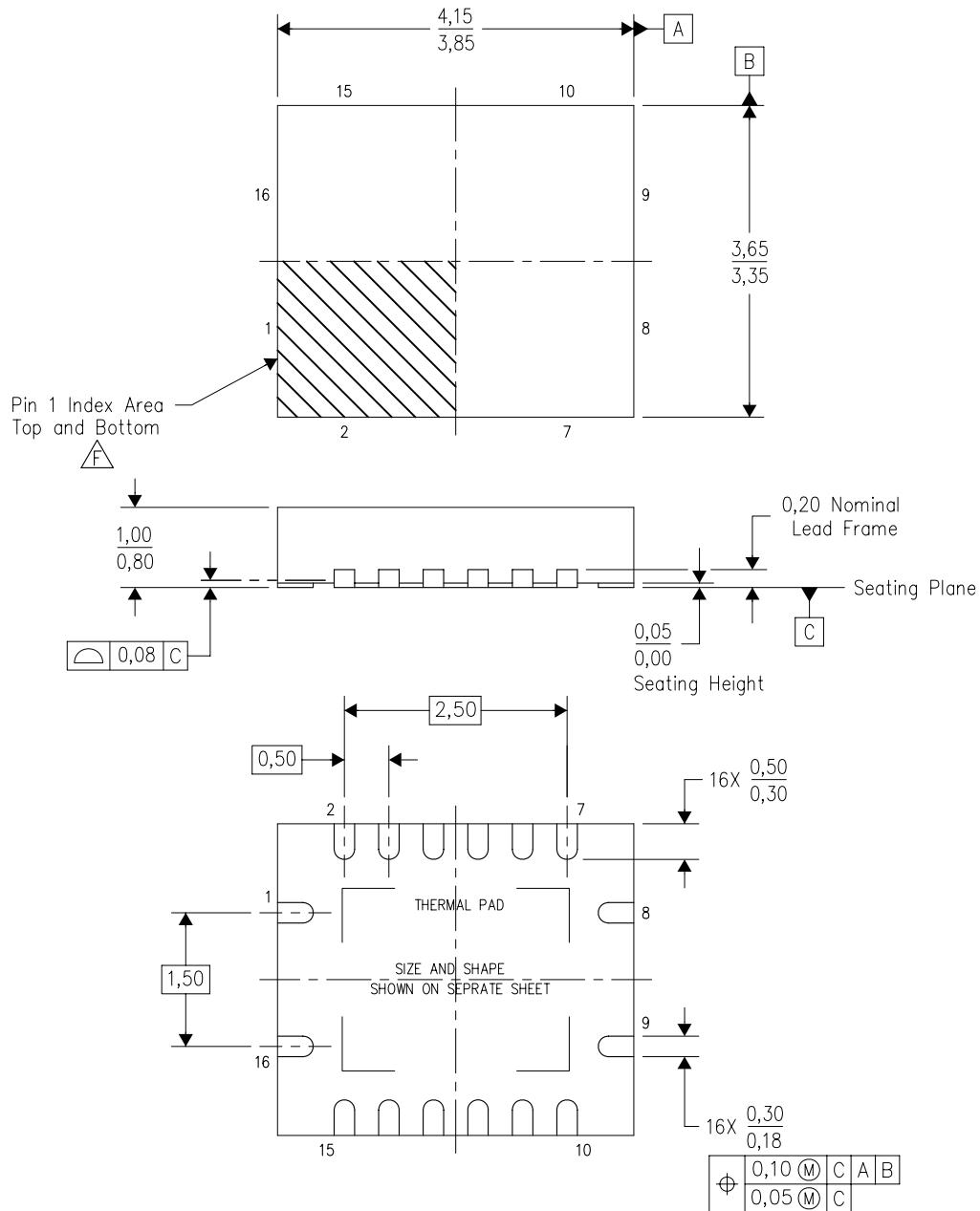
4220204/B 12/2023


NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

16 PINS SHOWN


PLASTIC DUAL-IN-LINE PACKAGE

MECHANICAL DATA

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

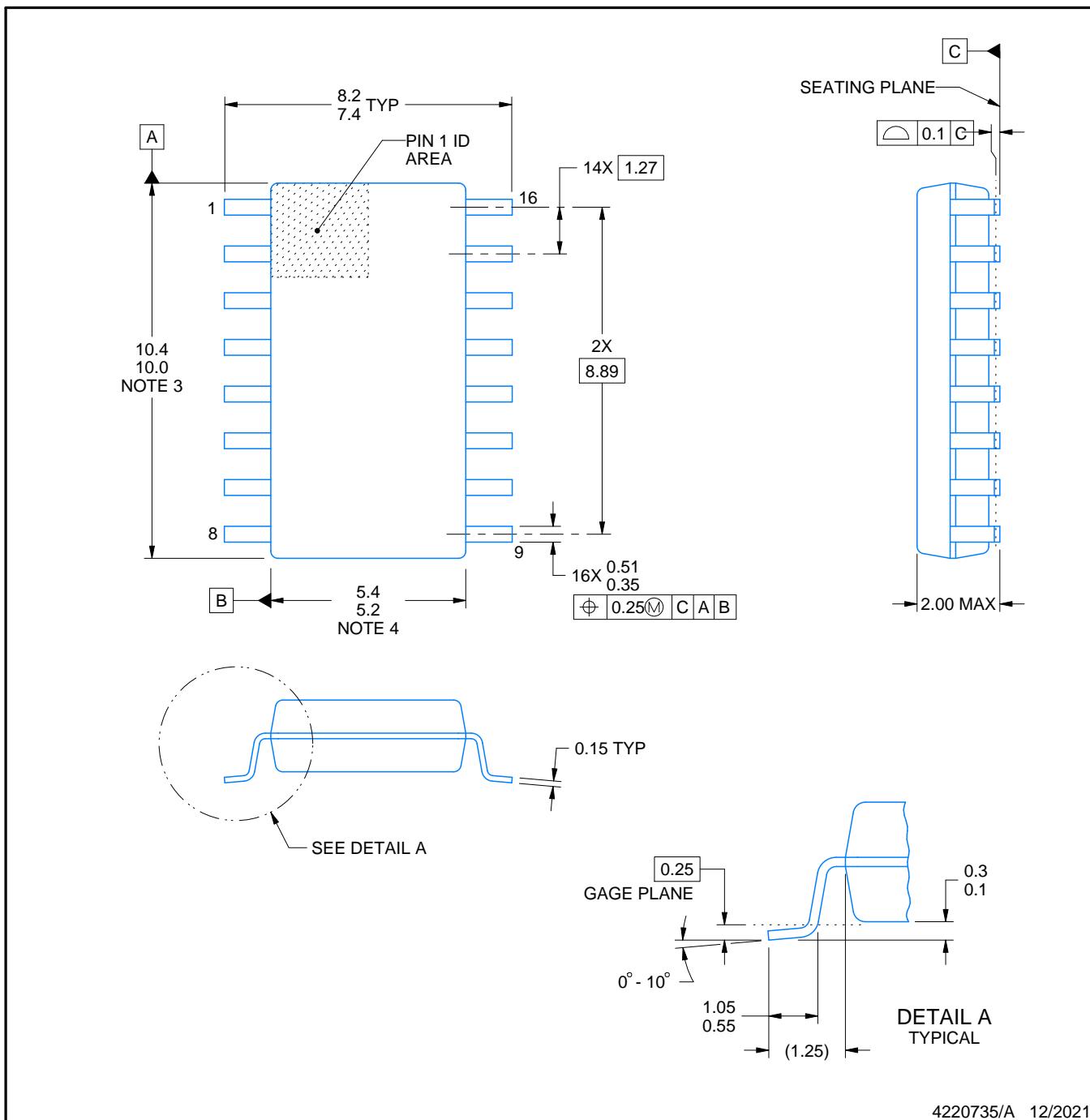
Bottom View

4203539-3/l 06/2011

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

 F. Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
The Pin 1 identifiers are either a molded, marked, or metal feature.


- G. Package complies to JEDEC MO-241 variation BA.

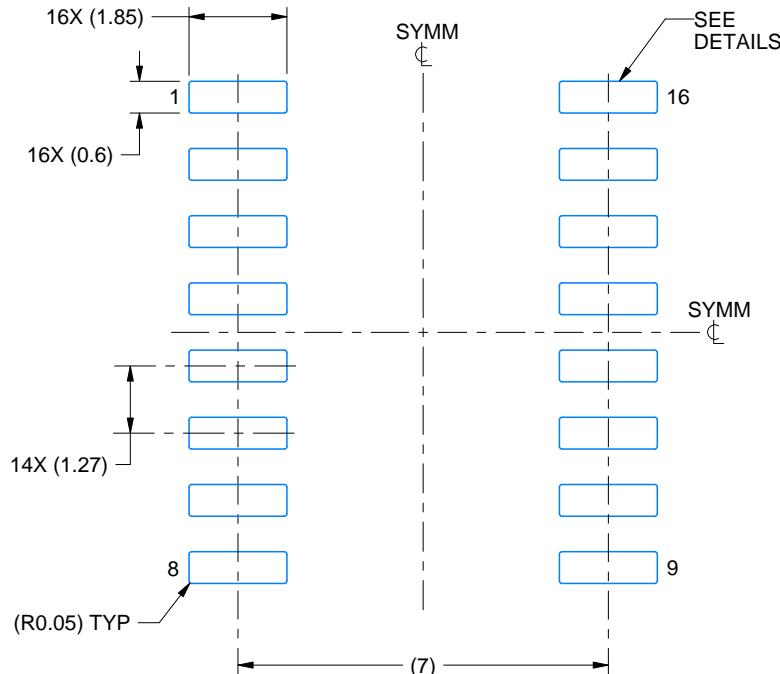
PACKAGE OUTLINE

SOP - 2.00 mm max height

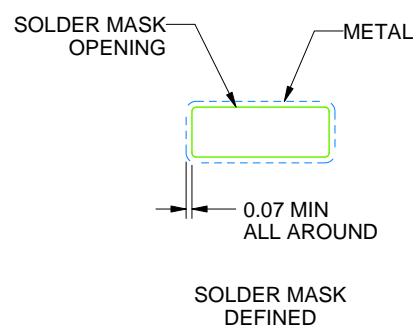
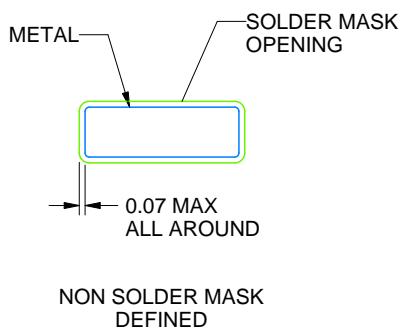
SOP

4220735/A 12/2021

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

EXAMPLE BOARD LAYOUT



NS0016A

SOP - 2.00 mm max height

SOP

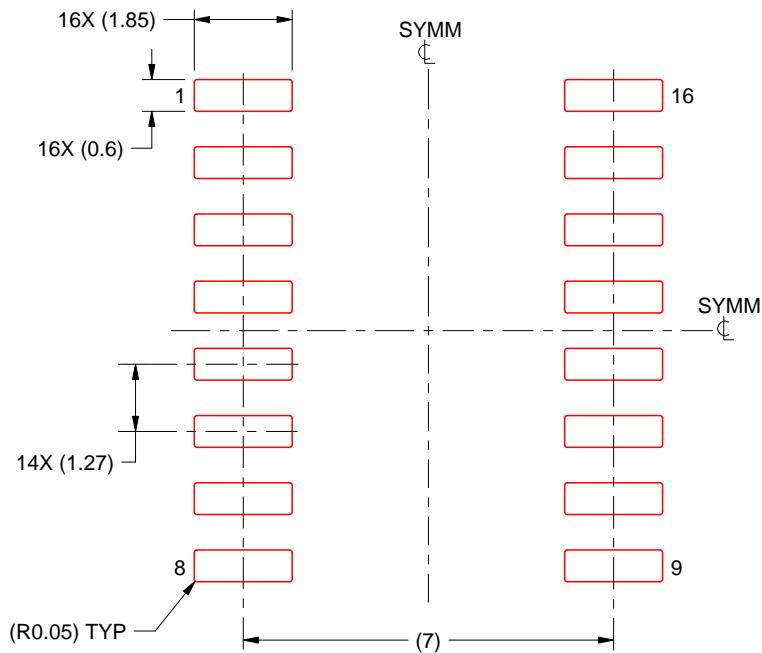
LAND PATTERN EXAMPLE
SCALE:7X

SOLDER MASK DETAILS

4220735/A 12/2021

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.


6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

NS0016A

SOP - 2.00 mm max height

SOP

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:7X

4220735/A 12/2021

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated