

Vishay High Power Products

Thyristor/Thyristor, 150 A (New INT-A-PAK Power Module)

New INT-A-PAK

PRODUCT SUMMARY	
I _{T(AV)}	150 A

FEATURES

- Electrically isolated by DBC ceramic (Al₂O₃)
- 3500 V_{RMS} isolating voltage
- Industrial standard package
- High surge capability
- · Glass passivated chips
- Simple mounting
- UL approved file E78996 😱
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for multiple level

APPLICATIONS

- · Battery charges
- Welders
- Power converters

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{T(AV)}	85 °C	150	A					
I _{T(RMS)}		330						
	50 Hz	4000	Α					
I _{TSM}	60 Hz	4200						
l ² t	50 Hz	80	kA ² s					
1-1	60 Hz	73	KA-S					
l²√t		800	kA²√s					
V _{RRM}		400	V					
T _{Stg}	Range	- 40 to 150	°C					
T_J	Range	- 40 to 125	O					

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} /V _{DSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA					
VSKT152/04PbF	400	500	50					

Document Number: 94514 Revision: 04-May-10

VSKT152/04PbF

Vishay High Power Products Thyristor/Thyristor, 150 A (New INT-A-PAK Power Module)

ON-STATE CONDUCTION						
PARAMETER	SYMBOL		TEST CONDITIO	VALUES	UNITS	
Maximum average on-state current	I _{T(AV)}	180° conductio	on half sine wave		150	А
at case temperature	TI(AV)	100 Conductio	in riair sine wave		85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			330	
		t = 10 ms	No voltage		4000	
Maximum peak, one-cycle on-state, non-repetitive		t = 8.3 ms	reapplied		4200	Α
surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}	Sine half wave, initial $T_J = T_J$ maximum	3350	
		t = 8.3 ms	reapplied		3500	
	l ² t	t = 10 ms	No voltage		80	kA ² s
		t = 8.3 ms	reapplied		73	
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		56	
		t = 8.3 ms	reapplied		51	
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10	0 ms, no voltage r	eapplied	800	kA ^{2√} s
Value of threshold voltage	V _{T(TO)}	T movimum			0.82	V
On-state slope resistance	r _t	T _J maximum		1.44	mΩ	
Maximum on-state voltage drop	V_{TM}	$I_{pk} = \pi \times I_{T(AV)}, T_J = 25 ^{\circ}C$			1.48	V
Maximum holding current	I _H	T _J = 25 °C, anode supply = 6 V, resistive load, gate open circuit			200	mA
Maximum latching current	ΙL	$T_J = 25$ °C, and	ode supply = 6 V,	resistive load	400	

SWITCHING					
PARAMETER	SYMBOL		TEST CONDITIONS	VALUES	UNITS
Typical delay time	t _{gd}	T _{.1} = 25 °C	Gate current = 1 A, dl _g /dt = 1 A/µs	1	
Typical rise time	t _{gr}	1j = 25 C	$V_{d} = 0.67 \% V_{DRM}$	2	μs
Typical turn-off time	t _q	I_{TM} = 300 A, - dl/dt = 15 A/μs; T_J = T_J maximum V_R = 50 V; dV/dt = 20 V/μs; gate 0 V, 100 Ω		50 to 200	

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current	I _{RRM,} I _{DRM}	T _J = 125 °C	50	mA				
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, t = 1 s	3500	V				
Critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, exponential to 67 % rated V_{DRM}	1000	V/µs				

Thyristor/Thyristor, 150 A Vishay High Power Products (New INT-A-PAK Power Module)

TRIGGERING					
PARAMETER	SYMBOL	TEST CON	IDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	t _p ≤ 5 ms, T _J = T _J maxim	um	12	W
Maximum average gate power	P _{G(AV)}	f = 50 Hz, T _J = T _J maxim	um	3	VV
Maximum peak gate current	I _{GM}			3	А
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5 \text{ ms}, T_J = T_J \text{ maxime}$	um	10	
		T _J = - 40 °C		4	V
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		2.5	
voltage to trigger		$T_J = T_J$ maximum	Anode supply = 6 V,	1.7	
		T _J = - 40 °C	resistive load; $R_a = 1 \Omega$	270	
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		150	mA
current to trigger		T _J = T _J maximum		80	
Maximum gate voltage that will not trigger	V_{GD}	T T mayimum rated	M. applied	0.3	V
Maximum gate current that will not trigger	I _{GD}	$T_J = T_J$ maximum, rated V	v _{DRM} applied	10	mA
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} = 4$	100 A rated V _{DRM} applied	300	A/μs

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction operating temperature range	TJ		- 40 to 125	°C			
Maximum storage temperature range			- 40 to 150				
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.18	K/W			
Maximum thermal resistance, case to heatsink per module		Mounting surface smooth, flat and greased	0.05	N/VV			
Mounting IAP to heatsink		A mounting compound is recommended and	41.0	Nice			
torque ± 10 % busbar to IAP		the torque should be rechecked after a period of	4 to 6	Nm			
Approximate weight		3 hours to allow for the spread of the compound.	200	g			
Approximate weight		Lubricated threads.	7.1	OZ.			
Case style			New INT-	-A-PAK			

△R CONDUCTION PER JUNCTION											
DEVICES	SINUSOIDAL CONDUCTION RECTANGULAR CONDUCTION AT T _J MAXIMUM AT T _J MAXIMUM							UNITS			
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VSKT152/04PbF	0.007	0.010	0.013	0.016	0.017	0.009	0.012	0.014	0.016	0.017	K/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay High Power Products Thyristor/Thyristor, 150 A (New INT-A-PAK Power Module)

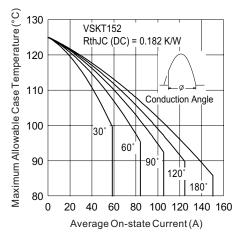


Fig. 1 - Current Ratings Characteristics

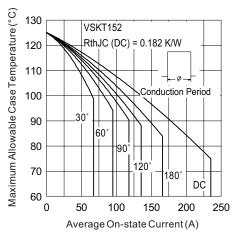


Fig. 2 - Current Ratings Characteristics

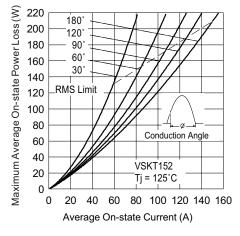


Fig. 3 - Forward Power Loss Characteristics

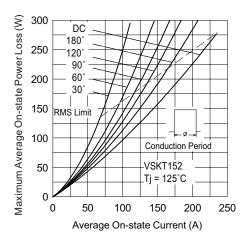


Fig. 4 - Forward Power Loss Characteristics

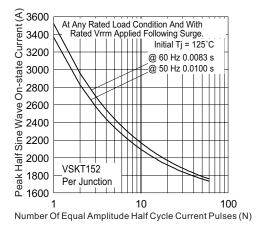


Fig. 5 - Maximum Non-Repetitive Surge Current

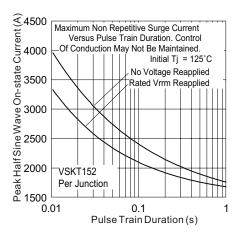


Fig. 6 - Maximum Non-Repetitive Surge Current

Thyristor/Thyristor, 150 A Vishay High Power Products (New INT-A-PAK Power Module)

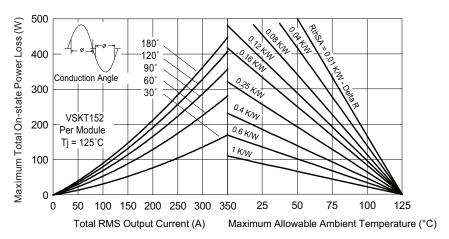


Fig. 7 - On-State Power Loss Characteristics

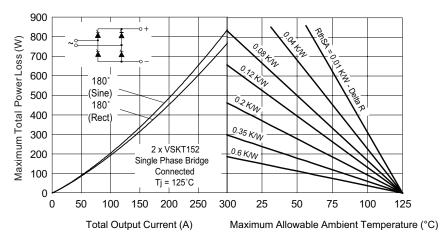


Fig. 8 - On-State Power Loss Characteristics

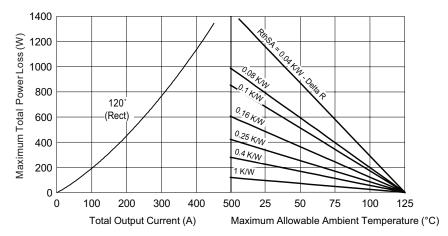


Fig. 9 - On-State Power Loss Characteristics

Vishay High Power Products Thyristor/Thyristor, 150 A (New INT-A-PAK Power Module)

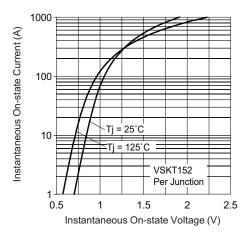


Fig. 10 - On-State Voltage Drop Characteristics

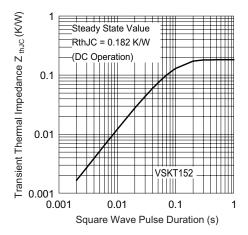
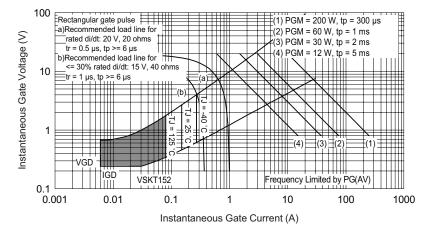
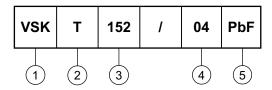


Fig. 11 - Thermal Impedance Z_{thJC} Characteristics




Fig. 12 - Gate Characteristics

Thyristor/Thyristor, 150 A Vishay High Power Products (New INT-A-PAK Power Module)

ORDERING INFORMATION TABLE

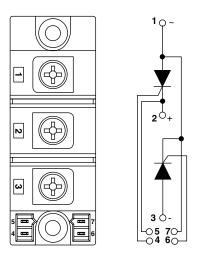
Device code

1 - Module type

2 - Circuit configuration:

T = Two SCR doubler configuration

3 - Current rating

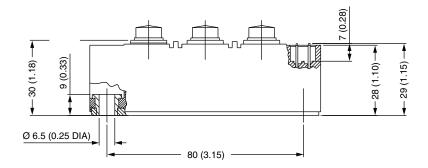

4 - Voltage rating (04 = 400 V)

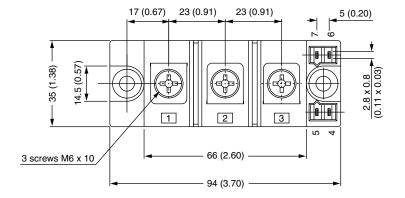
5 - PbF = Lead (Pb)-free

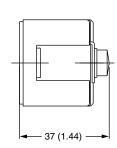
Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95067			




Vishay Semiconductors

INT-A-PAK IGBT/Thyristor

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

VS-VSKT152/04PBF