

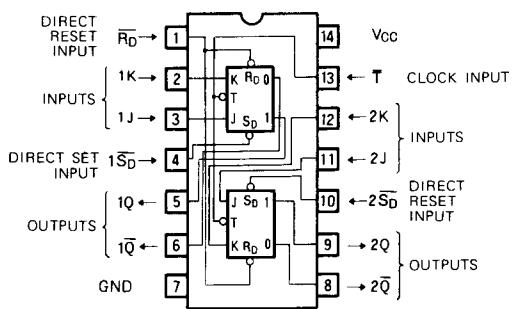
DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOP WITH SET, COMMON RESET, AND COMMON CLOCK

DESCRIPTION

The M74LS114AP is a semiconductor integrated circuit containing 2 J-K flip-flop circuits with common terminals for clock input \bar{T} and direct reset input \bar{R}_D and discrete terminals for inputs J and K and direct set inputs \bar{S}_D .

FEATURES

- Negative edge-triggering
- Common clock input and direct reset input
- Discrete direct set input
- Q and \bar{Q} outputs
- Wide operating temperature range ($T_a = -20\text{~}+75^\circ\text{C}$)


APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

While \bar{T} is high, signals J and K are put in the read-in state, and when \bar{T} changes from high to low, the J and K signals immediately before the change emerge in outputs Q and \bar{Q} in accordance with the function table. By using \bar{S}_D and \bar{R}_D this IC can be made into a direct R-S clip-flop. When both \bar{S}_D and \bar{R}_D are low, $Q = \bar{Q} = \text{high}$. However, when both of them change to high at the same time, the status of Q and \bar{Q} cannot be anticipated. For use as a J-K flip-flop, \bar{S}_D and \bar{R}_D must be kept in high.

PIN CONFIGURATION (TOP VIEW)

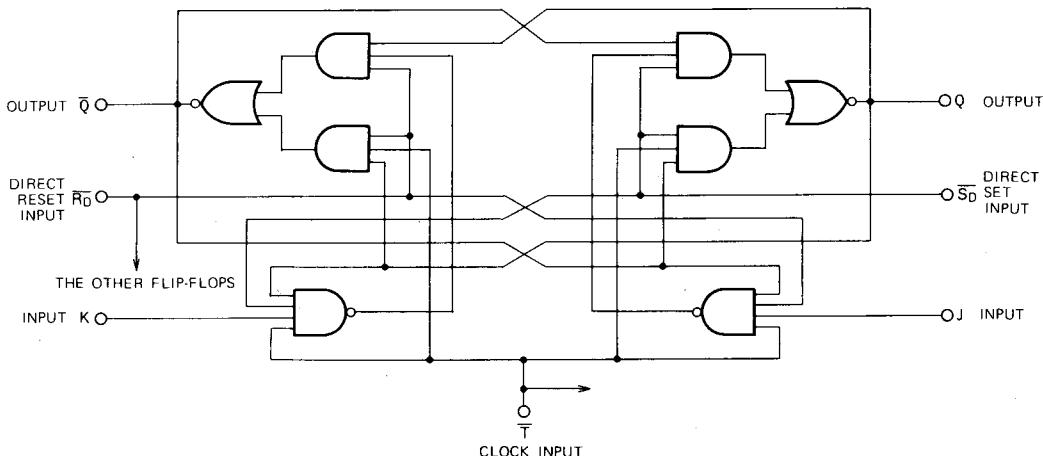
Outline 14P4

FUNCTION TABLE (Note 1)

\bar{T}	\bar{S}_D	\bar{R}_D	J	K	Q	\bar{Q}
X	L	H	X	X	H	L
X	H	L	X	X	L	H
X	L	L	X	X	H*	H*
↓	H	H	H	H	Toggle	
↓	H	H	L	H	L	H
↓	H	H	H	L	H	L
↓	H	H	L	L	Q ⁰	\bar{Q}^0

Note 1 ↓ : Transition from high to low-level (negative edge trigger)

X : Irrelevant


* : $Q = \bar{Q} = \text{high}$ when $\bar{S}_D = \bar{R}_D = \text{low}$ and so when both \bar{S}_D and \bar{R}_D are set high, the status of Q and \bar{Q} cannot be anticipated.

Q^0 : Status of output before ↓ change.

\bar{Q}^0 : level of Q before the indicated steady-state input conditions were established.

Toggle : complement of previous state with ↓ transition of outputs

BLOCK DIAGRAM (EACH FLIP-FLOP)

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOP WITH SET, COMMON RESET, AND COMMON CLOCK

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
V_{CC}	Supply voltage		$-0.5 \sim +7$	V
V_I	Input voltage		$-0.5 \sim +15$	V
V_O	Output voltage	High-level state	$-0.5 \sim V_{CC}$	V
T_{OPR}	Operating free-air ambient temperature range		$-20 \sim +75$	$^\circ\text{C}$
T_{STG}	Storage temperature range		$-65 \sim +150$	$^\circ\text{C}$

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 \sim +75^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage	4.75	5	5.25	V
I_{OH}	High-level output current	$V_{OH} \geq 2.7\text{V}$	0	-400	μA
I_{OL}	Low-level output current	$V_{OL} \leq 0.4\text{V}$	0	4	mA
		$V_{OL} \leq 0.5\text{V}$	0	8	mA

ELECTRICAL CHARACTERISTICS ($T_a = -20 \sim +75^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ *	Max	
V_{IH}	High-level input voltage		2			V
V_{IL}	Low-level input voltage				0.8	V
V_{IC}	Input clamp voltage	$V_{CC} = 4.75\text{V}$, $I_{IC} = -18\text{mA}$			-1.5	V
V_{OH}	High-level output voltage	$V_{CC} = 4.75\text{V}$, $V_I = 0.8\text{V}$ $V_I = 2\text{V}$, $I_{OH} = -400\mu\text{A}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$V_{CC} = 4.75\text{V}$, $I_{OL} = 4\text{mA}$	0.25	0.4		V
		$V_I = 0.8\text{V}$, $V_I = 2\text{V}$, $I_{OL} = 8\text{mA}$	0.35	0.5		V
I_{IH}	High-level input current	J, K			20	
		\bar{S}_D			60	
		\bar{R}_D			120	
		\bar{T}			160	μA
I_{IL}	Low-level input current	J, K			0.1	
		\bar{S}_D			0.3	
		\bar{R}_D			0.6	
		\bar{T}			0.8	
		$V_{CC} = 5.25\text{V}$, $V_I = 10\text{V}$				
		J, K			-0.4	
		\bar{S}_D			-0.8	
		\bar{R}_D			-1.6	
I_{OS}	Short-circuit output current (Note 3)	$V_{CC} = 5.25\text{V}$, $V_O = 0\text{V}$	20		-100	mA
I_{CC}	Supply current	$V_{CC} = 5.25\text{V}$ (Note 4)		4	6	mA

* : All typical values are at: $V_{CC} = 5\text{V}$, $T_a = 25^\circ\text{C}$ Note 2: \bar{S}_D and \bar{R}_D should not both be set to 0.4V simultaneously.

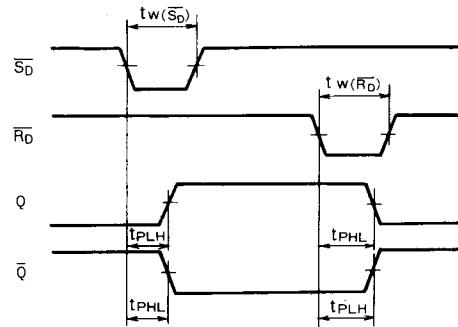
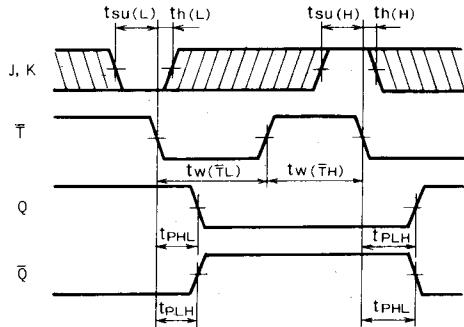

Note 3: All measurements should be done quickly and not more than one output should be shorted at a time.

Note 4: Supply current measurements should be done with Q and \bar{Q} set alternately high and \bar{T} should be set low during actual measurement.SWITCHING CHARACTERISTICS ($V_{CC} = 5\text{V}$, $T_a = 25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Typ	Max	
f_{max}	Maximum clock frequency		30	45		MHz
t_{PLH}	Low-to-high-level, high-to-low-level output propagation time, from \bar{T} to Q , \bar{Q}			7	20	ns
t_{PHL}	Low-to-high-level, high-to-low-level output propagation time, from \bar{S}_D , \bar{R}_D to Q , \bar{Q}	$C_L = 15\text{pF}$ (Note 4)		7	20	ns
t_{PLH}	Low-to-high-level, high-to-low-level output propagation time, from \bar{S}_D , \bar{R}_D to Q , \bar{Q}			8	20	ns
t_{PHL}				7	20	ns

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOP WITH SET, COMMON RESET, AND COMMON CLOCK

Note 4: Measurement circuit

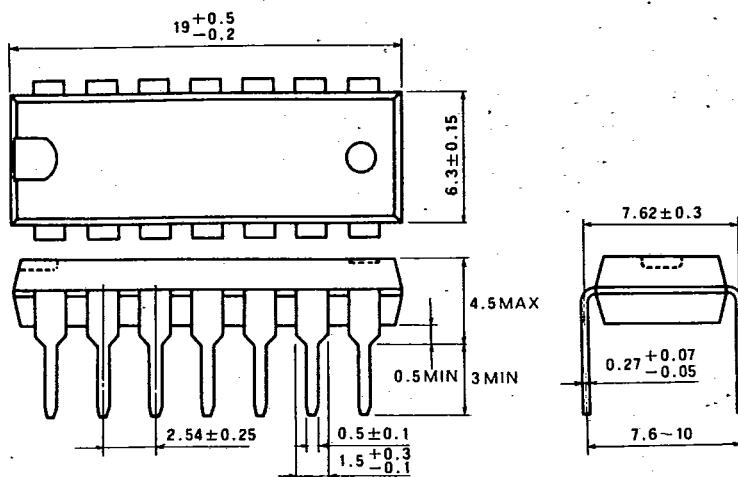
(1) The pulse generator (PG) has the following characteristics:

PRR = 1MHz, $t_r = 6\text{ns}$, $t_f = 6\text{ns}$, $t_w = 500\text{ns}$,
 $V_p = 3\text{V.p.p.}$, $Z_o = 50\Omega$.(2) C_L includes probe and jig capacitance.TIMING REQUIREMENTS ($V_{cc}=5\text{V}$, $T_a=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions			Unit
		Min	Type	Max	
$t_{w(\bar{T}H)}$	Clock input \bar{T} high pulse width	20	12		ns
$t_{w(\bar{S}_D, \bar{R}_D)}$	Direct set, reset pulse width		25	4	
t_r	Clock rise time	650		100	ns
t_f	Clock fall time		900	100	
$t_{su(H)}$	Setup time high J, K to \bar{T}	20	11		ns
$t_{su(L)}$	Setup time low J, K to \bar{T}	20	13		ns
$t_{h(H)}$	Hold time high J, K to \bar{T}	0	-11		ns
$t_{h(L)}$	Hold time low J, K to \bar{T}	0	-6		ns

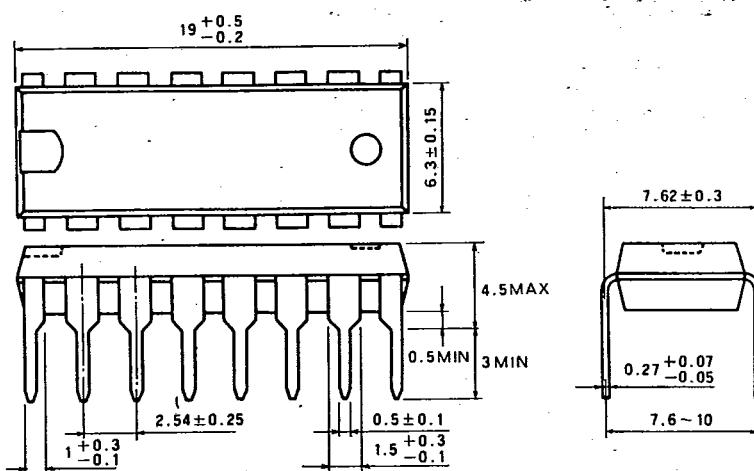
TIMING DIAGRAM (Reference level = 1.3V)

Note 5: The shaded areas indicate when the input is permitted to change for predictable output performance.

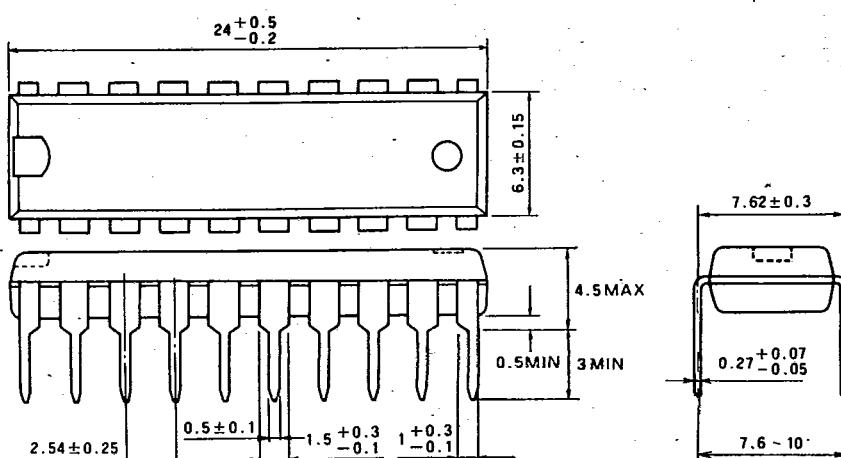

MITSUBISHI LSTTLs
PACKAGE OUTLINES

MITSUBISHI {DGTL LOGIC} 07E D 6249827 0013561 3

T-90-20


TYPE 14P4 14-PIN MOLDED PLASTIC DIL

Dimension in mm


TYPE 16P4 16-PIN MOLDED PLASTIC DIL

Dimension in mm

TYPE 20P4 20-PIN MOLDED PLASTIC DIL

Dimension in mm

