SY89833L

3.3V Ultra-Precision 1:4 LVDS Fanout Buffer/Translator with Internal Termination

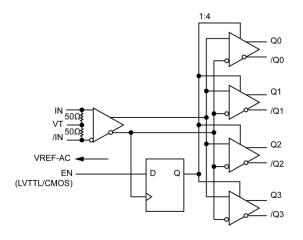
General Description

The SY89833L is a 3.3V, high-speed 2GHz differential Low Voltage Differential Swing (LVDS) 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 20ps over supply voltage and temperature.

The differential input buffer has a unique internal termination design that allows access to the termination network through a VT pin. This feature allows the device to easily interface to different logic standards. A VREF-AC reference is included for AC-coupled applications.

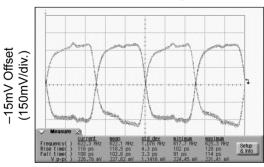
The SY89833L is part of Micrel's high-speed clock synchronization family. For 2.5V applications, the SY89832U provides similar functionality while operating from a 2.5V ±5% supply. For applications that require a different I/O combination, consult the Micrel website at: www.micrel.com, and choose from a comprehensive product line of high speed, low-skew fanout buffers, translators and clock generators.

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.


Features

- Guaranteed AC performance over temperature and voltage:
 - DC-to > 2GHz throughput
 - <600ps propagation delay (IN-to-Q)</p>
 - <20ps within-device skew</p>
 - <150ps rise/fall times</p>
- Ultra-low jitter design
 - 150fs RMS phase jitter
- Patented Any-In input termination and VT pin accepts DC- and AC-coupled inputs
- High-speed LVDS outputs
- 3.3V power supply operation
 - Industrial temperature range: -40°C to +85°C
- Available in 16-pin (3mm x 3mm) QFN package

Applications


- · Processor clock distribution
- SONET clock distribution
- Fibre Channel clock distribution
- Gigabit Ethernet clock distribution.

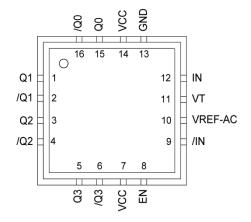
Functional Block Diagram

Typical Performance

622MHz Output

TIME (321.9ps/div.)

Precision Edge is a registered trademark of Micrel, Inc.


Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89833LMG	QFN-16	Industrial	833L with Pb-Free bar line indicator	NiPdAu Pb-Free
SY89833LMGTR ⁽²⁾	QFN-16	Industrial	833L with Pb-Free bar line indicator	NiPdAu Pb-Free

Note:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
15, 16	Q0, /Q0	LVDS Differential (Outputs): Normally terminated with 100Ω across the pair (Q, /Q). See "LVDS Outputs"
1, 2	Q1, /Q1	section, Figure 2a. Unused outputs should be terminated with a 100Ω resistor across each pair.
3, 4	Q2, /Q2	
5, 6	Q3, /Q3	
8	EN	This single-ended TTL/CMOS-compatible input functions as a synchronous output enable. The synchronous enable ensures that enable/disable will only occur when the outputs are in a logic LOW state. Note that this input is internally connected to a $25k\Omega$ pull-up resistor and will default to logic HIGH state (enabled) if left open.
9, 12	/IN, IN	Differential Inputs: These input pairs are the differential signal inputs to the device. Inputs accept AC- or DC-Coupled differential signs as small as 100mV. Each pin of a pair internally terminates to a VT pin through 50Ω. Note that these inputs will default to an intermediate state if left open. Please refer to the "Input Interface Applications" section for more details.
10	VREF-AC	Reference Voltage: These outputs bias to V_{CC} -1.4V.They are used when AC coupling the inputs(IN, /IN). For AC-Coupled applications, connect VREF-AC to VT pin and bypass with 0.01 μ F low ESR capacitor to V_{CC} . See "Input Interface Applications" section for more details. Maximum sink/source current is ± 1.5 mA. Due to the limited drive capability, each VREF-AC pin is only intended to drive its respective VT pin.
11	VT	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.
13	GND	Ground. GND pins and exposed pad must be connected to the most negative potential of the device ground.
7, 14	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors and place as close to each VCC pin as possible.

Truth Tables

IN	/IN	EN	q	/Q
0	1	1	0	1
1	0	1	1	0
Х	Х	0	0 ⁽³⁾	1 ⁽³⁾

Note:

3. On next negative transition of the input signal (IN).

Absolute Maximum Ratings(4)

Supply Voltage (V _{CC})	0.5V to +4.0V
Input Voltage (V _{IN})	-0.5 to V_{CC} +0.3 V
LVDS Output Current (I _{OUT})	+10mA
Input Current	
Source or Sink Current on (I _{VT})	±2mA
Maximum Operating Junction Temperature	e 125°C
Lead Temperature (Soldering, 20 sec.)	260°C
Storage Temperature (Ts)	65°C to +150°C

Operating Ratings⁽⁵⁾

Supply Voltage Range	+3.0V to +3.6\
Ambient Temperature (T _A)	40°C to +85°C
Junction Thermal Resistance ⁽⁶⁾	
QFN (θ_{JA})	
Still-Air	60°C/V
QFN (Ψ _{JB})	33°C/W

Electrical Characteristics⁽⁷⁾

 $T_A = -40$ °C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power Supply Voltage Range		3.0	3.3	3.6	V
I _{CC}	Power Supply Current	No load, max. V _{CC}		75	100	mA
R _{IN}	Input Resistance (IN-to-VT)		45	50	55	Ω
R _{DIFF-IN}	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V _{IH}	Input HIGH Voltage (IN-to-/IN)		0.1		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage (IN-to-/IN)		-0.3		V _{IH} – 0.1	V
V _{IN}	Input Voltage Swing (IN-to-/IN)	Note 8, see Figure 2c.	0.1		V _{CC}	V
V _{DIFF_IN}	Differential Input Voltage	Note 8, see Figure 2d.	0.2			V
IIN	Input Current IN, /IN	Note 8.			45	mA
V _{REF-AC}	Reference Voltage		V _{CC} - 1.525	V _{CC} - 1.425	V _{CC} - 1.325	V

Notes:

- 4. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 5. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 6. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψυΒ and θυΑ values are determined for a 4-layer board in still-air number, unless otherwise stated.
- 7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- 8. Due to the internal termination (see "Input Buffer Structure" section) the input current depends on the applied voltages at IN, /IN and VT inputs. Do not apply a combination of voltages that causes the input current to exceed the maximum limit!

LVDS Outputs DC Electrical Characteristics⁽⁹⁾

 $V_{CC}=3.3V\pm10\%,\,R_L=100\Omega$ across the outputs; $T_A=-40^{\circ}C$ to +85°C.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OUT}	Output Voltage Swing	See Figure 2c.	250	325		mV
V_{DIFF_OUT}	Differential Output Voltage Swing	See Figure 2d.	500	650		mV
V _{OCM}	Output Common Mode Voltage		1.125		1.275	V
ΔVосм	Change in Common Mode Voltage		-50		50	mV

LVTTL/CMOS DC Electrical Characteristics⁽⁹⁾

 $V_{CC} = 3.3V \pm 10\%$, $T_A = -40$ °C to +85°C.

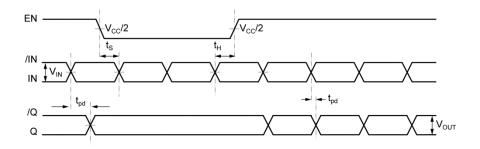
Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0		Vcc	V
V _{IL}	Input LOW Voltage		0		0.8	V
I _{IH}	Input HIGH Current		-125		30	V
I _{IL}	Input LOW Current				-300	mV

Note:

AC Electrical Characteristics(10)

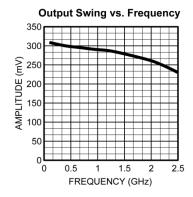
 $V_{CC} = 3.3V \pm 10\%$, $R_L = 100\Omega$ across the outputs; $T_A = -40$ °C to +85°C unless otherwise stated.

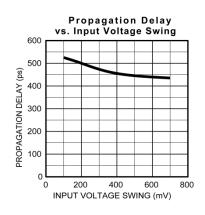
Symbol	Parameter		Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Frequency		V _{OUT} ≥ 200mV	2.0			GHz
t _{pd}	Propagation Delay IN-to-Q		V _{IN} < 400mV	400	500	600	ps
		IN-to-Q	V _{IN} ≥ 400mV	330	440	530	ps
t _{SKEW}	Within-Device Skev	v	Note 11		4	20	ps
	Part-to-Part Skew		Note 12			200	ps
t _S	Set-up Time	EN to IN, /IN	Note 13	300			ps
t _H	Hold Time	EN to IN, /IN	Note 13	500			ps
t _{JITTER}	Additive Jitter		Output = 622MHz Integration range: 12kHz – 20MHz		150		fs
t _r , t _f	Output Rise/Fall Tir (20% to 80%)	nes	At full output swing.	60	110	190	ps


Notes:

- 10. High-frequency AC parameters are guaranteed by design and characterization.
- 11. Within device skew is measured between two different outputs under identical input transitions.
- 12. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.
- 13. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold times do not apply.

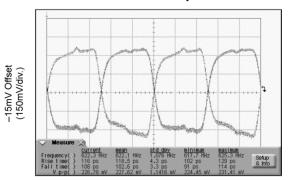
^{9.} The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.


SY89833L Micrel, Inc.

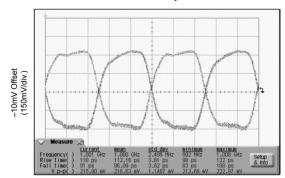

Timing Diagram

Typical Operating Characteristics


 V_{CC} = 3.3V, GND = 0V, V_{IN} = 400mV, R_L = 100 Ω across the outputs; T_A = 25°C unless otherwise stated.

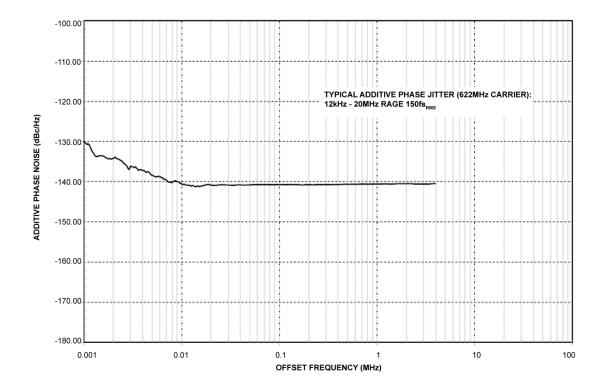

Functional Characteristics

155MHz Output


TIME (1.29ns/div.)

622MHz Output

TIME (321.9ps/div.)


1GHz Output

TIME (200ps/div.)

Additive Phase Noise Plot

 V_{CC} = +3.3V, GND = 0, R_L = 50 $\!\Omega$ to $V_{CC}\!\!-\!\!2V,\,T_A$ = 25°C

Input Stage

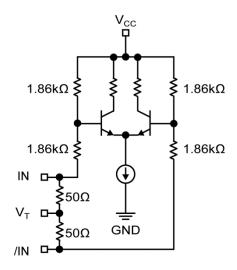


Figure 1. Simplified Differential Input Buffer

LVDS Outputs

LVDS specifies a small swing of 325mV typical, on a nominal 1.20V common mode above ground. The common mode voltage has tight limits to permit large variations in ground noise between a LVDS driver and receiver.

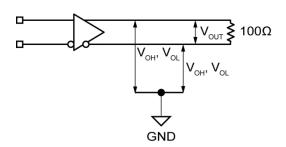


Figure 2. LVDS Differential Measurement

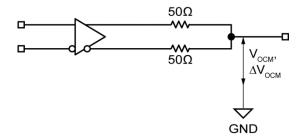


Figure 3. LVDS Common Mode Measurement

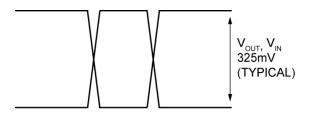


Figure 4. Single-Ended Swing

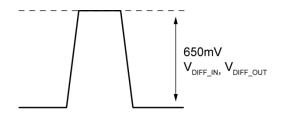


Figure 5. Differential Swing

Input Interface Applications

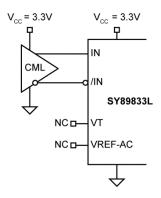


Figure 6. DC-Coupled CML Input Interface

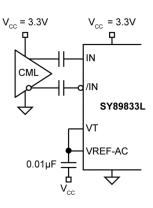


Figure 7. AC-Coupled CML Input Interface

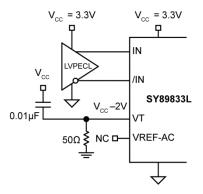


Figure 8. DC-Coupled LVPECL Input Interface

Figure 9. AC-Coupled LVPECL Input Interface

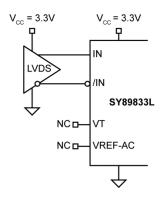
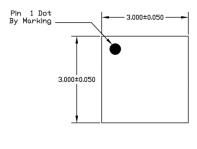
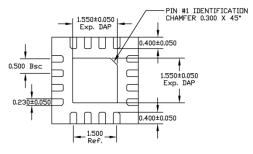



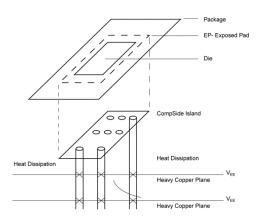
Figure 10. LVDS Input Interface

Related Product and Support Documents


Part Number	Function	Data Sheet Link
SY89830U	2.5V/3.3/5V 2.5GHz 1:4 PECL/ECL Clock Driver With 2:1 Differential Input MUX	http://www.micrel.com/_PDF/HBW/sy89830u.pdf
SY89831U	Ultra-Precision 1:4 LVPECL Fanout Buffer/Translator With Internal Termination	http://www.micrel.com/_PDF/HBW/sy89831u.pdf
SY89832U	2.5V Ultra-Precision 1:4 LVDS Fanout Buffer / Translator With Internal Termination	http://www.micrel.com/ PDF/HBW/sy89832u.pdf
SY89834U	2.5V/3.3V Two Input, 1GHz LVTTL/CMOSTO- LVPECL 1:4 Fanout Buffer/Translator With 2:1 Input MUX	http://www.micrel.com/ PDF/HBW/sy89834u.pdf
HBW Solutions		http://www.micrel.com/index.php/en/products/clock- timing.html

Package Information⁽¹⁴⁾

TOP VIEW



VIEW

NOTE

- ALL DIMENSIONS ARE IN MILLIMETERS.
 MAX. PACKAGE WARPAGE IS 0.05 mm.
 MAXIMUM ALLUWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
 PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

PCB Thermal Consideration for 16-Pin QFN Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

- 1. Package meets Level 2 moisture sensitivity classification, and are shipped in dry-pack form.
- 2. Exposed pads must be soldered to a ground for proper thermal management

16-Pin QFN (code)

Note:

14. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchase May 5, 2014 indemnify Micrel for any damages resulting from such use or sale. 050514-2.0