Data Book

16bit Micro controller TLCS-900/L1 series

**TMP91C829F** 

**REV1.2 September 7, 2001** 

# **Table of Contents**

# TLCS-900/L1 Devices

# TMP91C829F

| 1. | OUTLINE AND DEVICE CHARACTERISTICS           | TMP91C829-1   |
|----|----------------------------------------------|---------------|
| 2. | PIN ASSIGNMENT AND PIN FUNCTIONS             | TMP91C829-4   |
| 3. | OPERATION                                    | TMP91C829-8   |
| 3. | 1 CPU                                        | TMP91C829-8   |
| 3. | 2 Outline of Operation Modes                 | TMP91C829-10  |
| 3. | 3 Memory Map                                 | TMP91C829-11  |
| 3. | 4 Triple Clock Function and Standby Function | TMP91C829-12  |
| 3. | 5 Interrupts                                 | TMP91C829-25  |
| 3. | 6 Ports Functions                            | TMP91C829-41  |
| 3. | 7 Chip Select/Wait Controller                | TMP91C829-67  |
| 3. | 8 8-bit Timers (TMRA)                        | TMP91C829-77  |
| 3. | 9 16-Bit Timer/Event Counters (TMRB)         | TMP91C829-101 |
| 3. | 10Serial Channel                             | TMP91C829-112 |
| 3. | 11Analog/Digital Converter                   | TMP91C829-140 |
| 3. | 12Watchdog timer (runaway detection timer)   | TMP91C829-149 |
| 3. | 13 Multi-Vector Control                      | TMP91C829-154 |
| 4. | ELECTRICAL CHARACTERISTICS                   | TMP91C829-163 |
| 5. | Table of SFRs                                | TMP91C829-172 |
| 6. | POINTS TO NOTE AND RESTRICTIONS              | TMP91C829-192 |

| REV | PAGE | Modification Item                          |
|-----|------|--------------------------------------------|
| 1.2 | 169  | Serial Channel Timing modified "14X"→"16X" |

# CMOS 16-Bit Microcontrollers TMP91C829F

## OUTLINE AND FEATURES

TMP91C829 is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment. With 2 Kbytes of boot ROM included, it allows your programs to be erased and rewritten on board.

TMP91C829 comes in a 100-pin flat package.

Listed below are the features.

- (1) High-speed 16-bit CPU (900/L1 CPU)
  - Instruction mnemonics are upward-compatible with TLCS-90/900
  - 16 Mbytes of linear address space
  - General-purpose registers and register banks
  - 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
  - Micro DMA: Four-channels (444 ns/2 bytes at 36 MHz)
- (2) Minimum instruction execution time: 111 ns (at 36 MHz)
- (3) Built-in RAM: 8 Kbytes Built-in ROM: None

Built-in Boot ROM: 2 Kbytes

- (4) External memory expansion
  - Expandable up to 16 Mbytes (shared program/data area)
  - Can simultaneously support 8-/16-bit width external data bus
    - ... Dynamic data bus sizing
- (5) 8-bit timers: 6 channels
- (6) 16-bit timer/event counter: 1 channel
- (7) Serial bus interface: 2 channel

980508TBA1

<sup>•</sup> For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

<sup>•</sup> TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

<sup>•</sup> The products described in this document are subject to foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

(8) 10-bit AD converter: 8 channels

(9) Watchdog timer

(10) Chip Select/Wait controller: 4 blocks

(11) Interrupts: 33 interrupts

• 9 CPU interrupts: Software interrupt instruction and illegal instruction

• 17 internal interrupts: 7 priority levels are selectable.

• 7 external interrupts: 7 priority levels are selectable.

(Level mode, rising edge mode and falling edge mode are selectable)

(12) Input/output ports: 54 pins

(13) Standby function

Three Halt modes: Idle2 (programmable), Idle1, Stop

(14) Operating voltage

• VCC (5V) = 4.75 V to 5.25 V (fc max = 36 MHz)

• VCC (3V) = 3.0 V to 3.6 V (fc max = 36 MHz)

(15) Package

• 100-pin QFP: P-LQFP100-1414-0.50B/D

Power on and power off of the supply

Power on and power off of the supply require the simultaneous execution of the 5 V power suply and 3.3 V power supply. When power on and power off of the supply is performed on eigher of them, overlap current may run into the internal logic. Leaving overlap current running results in increase of power dissipation and short LSI life.

Please avoid leaving either of power supplies on.

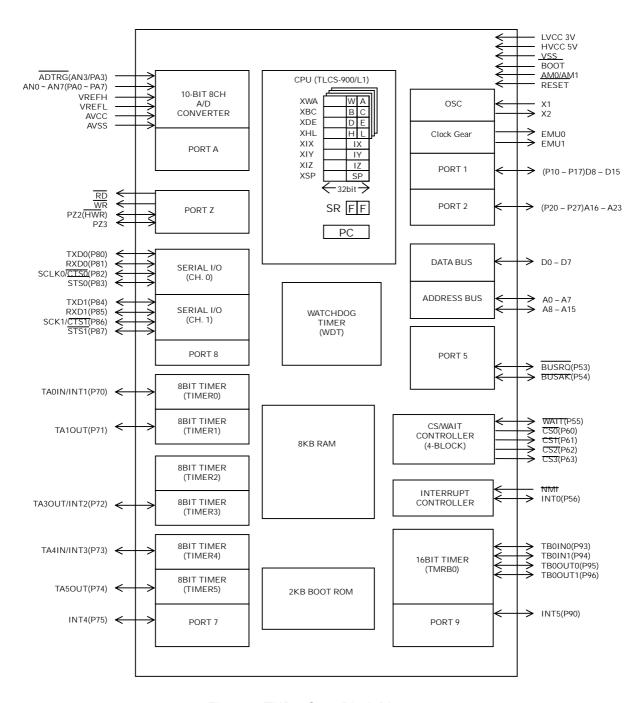



Figure 1 TMP91C829 Block Diagram

## 2. PIN ASSIGNMENT AND PIN FUNCTIONS

The assignment of input/output pins for the TMP91C829F, their names and functions are as follows:

# 2.1 Pin Assignment Diagram

Figure 2.1 shows the pin assignment of the TMP91C829F.

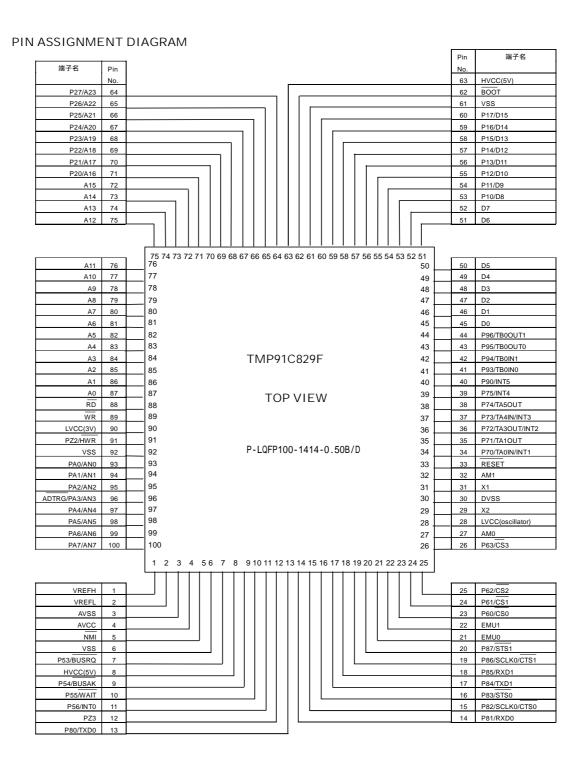



Figure 2.1 Pin assignment diagram (100-pin LQFP)

# 2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below.

Table 2.2 Pin names and functions.

| Pin Name   | Number of Pins                                   | I/O    | Functions                                                                                             |  |  |  |
|------------|--------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------|--|--|--|
| D0 to D7   | 8                                                | I/O    | Data (lower): bits 0 to 7 of data bus                                                                 |  |  |  |
| P10 to P17 | 8                                                | I/O    | Port 1: I/O port that allows I/O to be selected at the bit level (When used to the external 8bit bus) |  |  |  |
|            |                                                  |        | Data (upper): bits 8 to15 of data bus                                                                 |  |  |  |
| D8 to D15  |                                                  | I/O    | Data (upper): bits 8 to15 of data bus                                                                 |  |  |  |
| P20 to P27 | 8                                                | Output | Port 2: Output port                                                                                   |  |  |  |
| A16 to A23 |                                                  | Output | Address: bits 16 to 23 of address bus                                                                 |  |  |  |
| A8 to A15  | 8                                                | Output | Address: bits 8 to 15 of address bus                                                                  |  |  |  |
| A0 to A7   | 8                                                | Output | Address: bits 0 to 7 of address bus                                                                   |  |  |  |
| RD         | 1                                                | Output | Read: strobe signal for reading external memory                                                       |  |  |  |
| WR         | 1                                                | Output | Write: strobe signal for writing data to pins D0 to D7                                                |  |  |  |
| P53        | 1                                                | I/O    | Port 53: I/O port (with pull-up resistor)                                                             |  |  |  |
| BUSRQ      |                                                  | Input  | Bus Request: signal used to request Bus Release (high-impedance)                                      |  |  |  |
| P54        | 1                                                | I/O    | Port 54: I/O port (with pull-up resistor)                                                             |  |  |  |
| BUSAK      |                                                  | Output | Bus Acknowledge: signal used to acknowledge Bus Release                                               |  |  |  |
|            |                                                  | ·      | (high-impedance)                                                                                      |  |  |  |
| P55        | 1                                                | I/O    | Port 55: I/O port (with pull-up resistor)                                                             |  |  |  |
| WAIT       |                                                  | Input  | Wait: pin used to request CPU bus wait.                                                               |  |  |  |
| P56        | 1                                                | I/O    | Port 56: I/O port (with pull-up resistor)                                                             |  |  |  |
| INT0       |                                                  | Input  | Interrupt request pin0: Interrupt request pin with programmable level / rising                        |  |  |  |
|            |                                                  |        | edge/ falling edge                                                                                    |  |  |  |
| P60        | 1                                                | Output | Port 60:Output port                                                                                   |  |  |  |
| CS0        |                                                  | Output | Chip select 0: Outputs "0" when address is within specified address area.                             |  |  |  |
| <u>P61</u> | 1                                                | Output | Port 61:Output port                                                                                   |  |  |  |
| CS1        |                                                  | Output | Chip Select 1: outputs "0" when address is within specified address area                              |  |  |  |
| <u>P62</u> | 1                                                | Output | Port 62: Output port                                                                                  |  |  |  |
| CS2        | _ '                                              | Output | Chip Select 2: outputs "0" when address is within specified address area                              |  |  |  |
| <u>P63</u> | 1                                                | Output | Port 63:Output port                                                                                   |  |  |  |
| CS3        | <u> </u>                                         | Output | Chip Select 3: outputs "0" when address is within specified address area                              |  |  |  |
| P70        | 1                                                | I/O    | Port 70: I/O port                                                                                     |  |  |  |
| TA0IN      |                                                  | Input  | Timer A0 Input                                                                                        |  |  |  |
| INT1       |                                                  | Input  | Interrupt request pin2: Interrupt request pin with programmable level / rising                        |  |  |  |
| _          |                                                  |        | edge / falling edge                                                                                   |  |  |  |
| P71        | 1                                                | 1/0    | Port 71: I/O port                                                                                     |  |  |  |
| TA1OUT     | <del>                                     </del> | Output | TimerA0 or Timer A1 Output                                                                            |  |  |  |
| P72        | 1                                                | 1/0    | Port 72: I/O port                                                                                     |  |  |  |
| TA3OUT     |                                                  | Output | Timer A2 or Timer A3 Output:                                                                          |  |  |  |
| INT2       |                                                  | Input  | Interrupt request pin2: Interrupt request pin with programmable level / rising                        |  |  |  |
|            |                                                  |        | edge /falling edge                                                                                    |  |  |  |

| Pin Name     | Number of Pins | I/O          | Functions                                                                      |
|--------------|----------------|--------------|--------------------------------------------------------------------------------|
| P73          | 1              | I/O          | Port 73: I/O port                                                              |
| TA4IN        |                | Input        | Timer A4 Input                                                                 |
| INT3         |                | Input        | Interrupt request pin3: Interrupt request pin with programmable level / rising |
|              |                |              | edge/ falling edge.                                                            |
| P74          | 1              | I/O          | Port 74: I/O port                                                              |
| TA5OUT       |                | Output       | Timer A4 or Timer A5 output                                                    |
| P75          | 1              | I/O          | Port 75: I/O port                                                              |
| INT4         |                | Input        | Interrupt request pin4 : Interrupt request pin with programmable               |
| P80          | 1              | I/O          | Port 80: I/O port (with pull-up resistor)                                      |
| TXD0         |                | Output       | Serial Send Data 0:Programmable open drain outpin output pin                   |
| P81          | 1              | I/O          | Port 81: I/O port (with pull-up resistor)                                      |
| RXD0         |                | Input        | Serial Receive Data 0                                                          |
| P82          | 1              | I/O          | Port 82: I/O port: (With pull-up resistor)                                     |
| SCLK0        |                | Input        | Serial Clock I/O 0                                                             |
| CTS0         |                | I/O          | Serial Data Send Enable 0 (Clear to Send)                                      |
| P83          | 1              | I/O          | Port 83: I/O port (With pull-up resistor)                                      |
| STS0         | '              | 1/0          | Port 63. 1/O port (With pull-up resistor)                                      |
| P84          | 1              | I/O          | Port 84: I/O port (With pull-up resistor)                                      |
| TXD1         | '              | Output       | Serial Send Data 0:Programmable open drain outpin output pin                   |
|              | 1              |              |                                                                                |
| P85<br>RXD1  | '              | I/O          | Port 85: I/O port (with pull-up resistor)                                      |
|              | 1              | Input        | Serial Receive Data 1                                                          |
| P86<br>SCLK1 | 1              | I/O          | Port 86: I/O port: (With pull-up resistor)                                     |
| CTS1         |                | Input<br>I/O | Serial Clock I/O 1                                                             |
|              | +              |              | Serial Data Send Enable 1 (Clear to Send)                                      |
| P87          | 1              | I/O          | Port 87: I/O port (With pull-up resistor)                                      |
| STS1         | +              |              |                                                                                |
| P90          | 1              | I/O          | Port 90: I/O port                                                              |
| INT5         |                | Input        | Interrupt Request Pin 5: interrupt request pin with programmable level/rising  |
|              |                |              | edge/ falling edge                                                             |
| P93          | 1              | 1/0          | Port 93: I/O port                                                              |
| TB0IN0       | 1              | Input        | Timer B0 Input 0                                                               |
| P94          | 1              | I/O          | Port 94: I/O port                                                              |
| TB0IN1       | 1              | Input        | Timer B0 Input 1                                                               |
| P95          | 1              | I/O          | Port 95: I/O port                                                              |
| TB0OUT0      |                | Output       | Timer B0 Output 0                                                              |
| P96          | 1              | I/O          | Port 96: I/O port                                                              |
| TB0OUT1      |                | Output       | Timer B0 Output 1                                                              |
| PA0 to PA7   | 8              | Input        | Port A0 to A7: Pin used to input port                                          |
| AN0 to AN7   |                | Input        | Analog input 0 to 7: Pins used to input to A/D converter                       |
| ADTRG        |                | Input        | A/D trigger: signal used to request A/D start (PA3)                            |
| PZ2          | 1              | I/O          | Port Z2: I/O port (with pull-up resistor)                                      |
| HWR          |                | Output       | High Write: strobe signal for writing data to pins D8 to D15                   |
| PZ3          | 1              | I/O          | Port Z3: I/O port (with pull-up resistor)                                      |

| Pin Name | Number of Pins | I/O    | Functions                                                               |
|----------|----------------|--------|-------------------------------------------------------------------------|
| BOOT     | 1              | Input  | This pin sets boot mode (with pull-up resistor)                         |
| NMI      | 1              | Input  | Non-Maskable Interrupt Request Pin: interrupt request pin with          |
|          |                |        | programmable falling edge level or with both edge levels programmable   |
| AM0 to 1 | 2              | Input  | Address mode: External data bus with select pin                         |
|          |                |        | When external 16-bit bus is fixed or external 8/16 bit buses are mixed, |
|          |                |        | AM1="0" , AM0= "1"                                                      |
|          |                |        | When external 8-bit bus is fixed,                                       |
|          |                |        | AM1="0" , AM0="0"                                                       |
| RESET    | 1              | Input  | Reset: initializes TMP91C219F. (With pull-up resistor)                  |
| VREFH    | 1              | Input  | Pin for reference voltage input to AD converter (H)                     |
| VREFL    | 1              | Input  | Pin for reference voltage input to AD converter (L)                     |
| AVCC     | 1              | I/O    | Power supply pin for A/D converter                                      |
| AVSS     | 1              |        | GND supply pin for A/D converter                                        |
| X1/X2    | 2              |        | Oscillator connection pins                                              |
| HVCC     | 2              |        | Power supply pins(5V)                                                   |
| LVCC     | 2              |        | Power supply pins(3V)                                                   |
| DVSS     | 3              |        | GND pins (0 V)                                                          |
| EMU0     | 1              | Output | Open pin                                                                |
| EMU1     | 1              | output | Open pin                                                                |

Note: An external DMA controller cannot access the device's built-in memory or built-in I/O devices using the  $\overline{\text{BUSRQ}}$  and  $\overline{\text{BUSAK}}$  signal.

Note: All pins which have a built-in pull-up resistor (other than the RESET pin and the BOOT pin ) can be dicsonnected from the resistor in software.

# 3. Operation

This section describes the basic components, functions and operation of the TMP91C829. Notes and restrictions which apply to the various items described here are outlined in Section 7. Precautions and Restrictions at the end of this databook.

#### 3.1 CPU

The TMP91C829 incorporates a high-performance 16-bit CPU (the 900/L1 CPU). For a description of this CPU's operation, please refer to the section of this databook which describes the TLCS-900/L1 CPU.

The following sub-sections describe functions peculiar to the CPU used in the TMP91C829; these functions are not covered in the section devoted to the TLCS-900/L1 CPU.

#### 3.1.1 Reset

When resetting the TMP91C829 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the RESET input Low for at least 10 system clocks (ten states: 8.89  $\mu s$  at 36 MHz). And clock gear is initialized to 1/16 mode after reset is released, so clock mode start at 1/16 of maximum speed mode.

When the Reset has been accepted, the CPU performs the following:

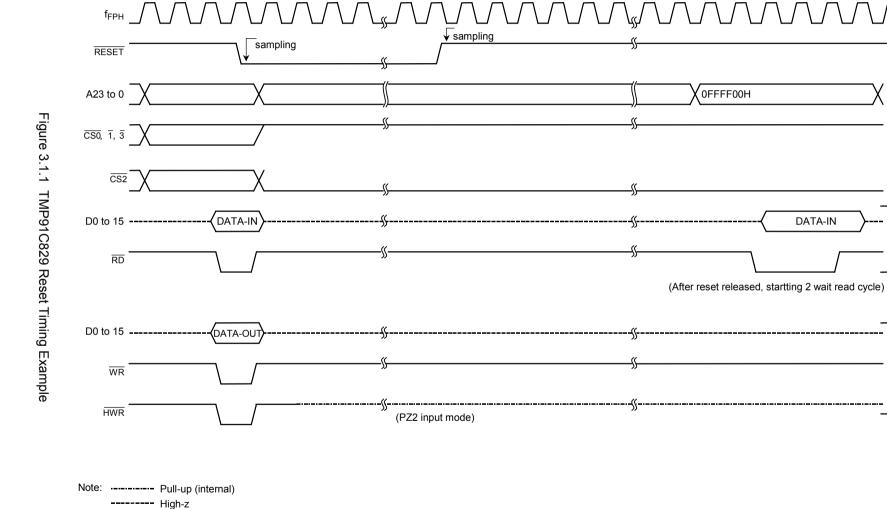
 Sets the Program Counter (PC) as follows in accordance with the Reset Vector stored at address FFFF00H to FFFF02H:

```
PC<0 to 7> ← data in location FFFF00H

PC<8 to 15> ← data in location FFFF01H

PC<16 to 23> ← data in location FFFF02H
```

- Sets the Stack Pointer (XSP) to 100H.
- Sets bits <IFF0 to IFF2> of the Status Register (SR) to 111 (thereby setting the Interrupt Level Mask Register to level 7).
- Sets the <MAX> bit of the Status Register to 1 (MAX Mode).
   (Note: As this product does not support MIN Mode, do not write a 0 to the <MAX> bit.)
- Clears bits <RFP0 to RFP2> of the Status Register to 000 (thereby selecting Register Bank 0).


When the Reset is cleared, the CPU starts executing instructions according to the Program Counter settings. CPU internal registers not mentioned above do not change when the Reset is cleared.

When the Reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to General-Purpose Input or Output Port Mode.

Note: The CPU internal register (except to PC, SR, XSP) and internal RAM data do not change by resetting.

Figure 3.1.1 shows the timing of a Reset for the TMP91C829.



# 3.2 Outline of Operation Modes

There are multi-chip and multi-boot modes. Which mode is selected depends on the device's pin state after a reset.

• Multi-chip mode: The device nomally operations in this mode. After a reset, the device starts executing the external memory program.

 Multi-boot mode: This mode is used to rewrite the external flash memory by serial transfer (UART) or ATAPI transfer.

After a reset, internal boot program starts up, executing a on-board rewrite program.

Table 3.2.1 Operation Mode Setup Table

| Operation Made  | Mode Setup Input Pin |      |  |  |
|-----------------|----------------------|------|--|--|
| Operation Mode  | RESET                | BOOT |  |  |
| Multi-chip Mode | 1                    | Н    |  |  |
| Multi-boot Mode |                      | L    |  |  |

# 3.3 Memory Map

Figure 3.3.1 is a memory map of the TMP91C829F.

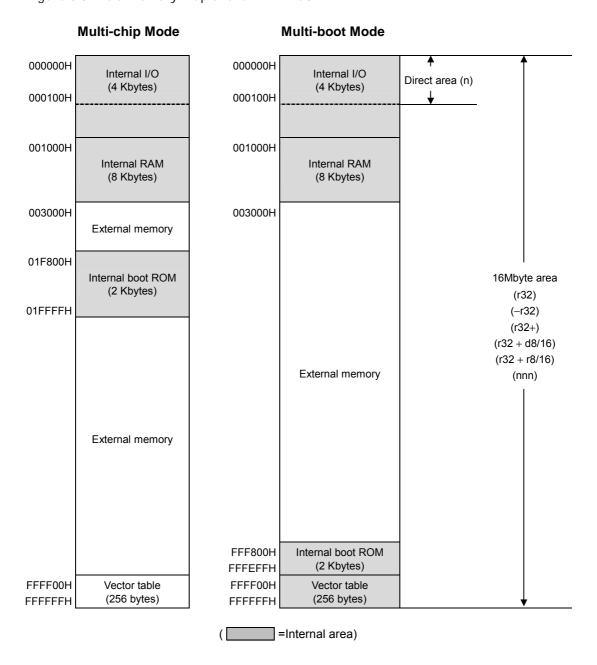



Figure 3.3.1 TMP91C829 Memory Map

# 3.4 Triple Clock Function and Standby Function

The TMP91C829 contains (1) a clock gearing system, (2) a standby controller and (3) a noise-reducing circuit. It is used for low-power, low-noise systems.

The clock operating mode is as follows: (a) Single Clock Mode (X1, X2 pins only).

Figure 3.4.1 shows a transition figure.

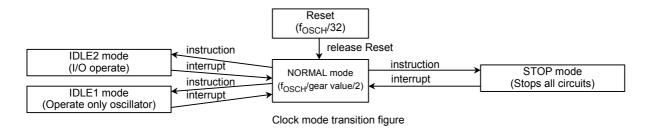
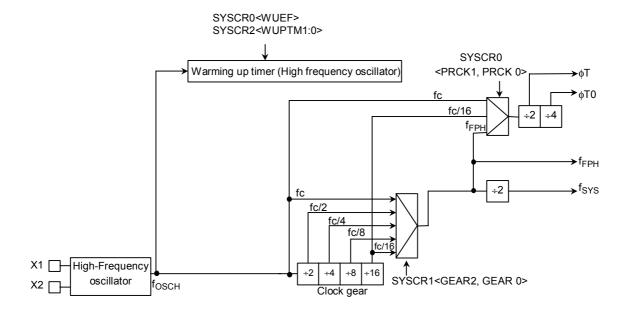




Figure 3.4.1 System clock block diagram

The clock frequency input from the X1 and X2 pins is called fc . In case of TMP91C829, fc =  $f_{FPH}$ . The system clock  $f_{SYS}$  is defined as the divided clock of  $f_{FPH}$ , and one cycle of  $f_{SYS}$  is regreed to as one state.

# 3.4.1 Block diagram of system clock



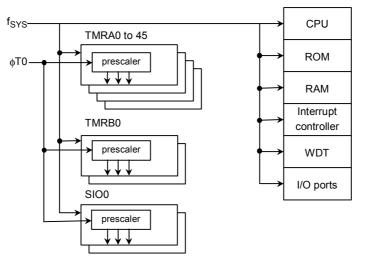



Figure 3.4.2 Block Diagram of System clock

# 3.4.2 SFR

|         |             | 7                 | 6                 | 5                                                                                                        | 4                 | 3                                                                        | 2                                                                                                                                                                | 1                                                                                  | 0                                                    |  |
|---------|-------------|-------------------|-------------------|----------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|--|
| SYSCR0  | Bit symbol  | _                 | _                 | _                                                                                                        | _                 | _                                                                        | WUEF                                                                                                                                                             | PRCK1                                                                              | PRCK0                                                |  |
| (00E0H) | Read/Write  | R/W               |                   |                                                                                                          |                   |                                                                          |                                                                                                                                                                  |                                                                                    |                                                      |  |
|         | After reset | 1                 | 0                 | 1                                                                                                        | 0                 | 0                                                                        | 0                                                                                                                                                                | 0                                                                                  | 0                                                    |  |
|         | Function    | Always<br>Write 1 | Always<br>Write 0 | Always<br>Write 1                                                                                        | Always<br>Write 0 | Always<br>Write 0                                                        | Warm-up<br>Timer<br>Write 0:<br>Don't care<br>Write 1:<br>start timer<br>Read 0:<br>end<br>warm-up<br>Read 1:<br>do not end<br>warm-up                           | Select presca<br>00: f <sub>FPH</sub><br>01: reserved<br>10: fc/16<br>11: reserved | aler clock                                           |  |
|         |             | 7                 | 6                 | 5                                                                                                        | 4                 | 3                                                                        | 2                                                                                                                                                                | 1                                                                                  | 0                                                    |  |
| SYSCR1  | Bit symbol  |                   |                   |                                                                                                          |                   | _                                                                        | GEAR2                                                                                                                                                            | GEAR1                                                                              | GEAR0                                                |  |
| (00E1H) | Read/Write  |                   |                   |                                                                                                          |                   | R/W                                                                      |                                                                                                                                                                  |                                                                                    |                                                      |  |
|         | After reset |                   |                   |                                                                                                          |                   | 0                                                                        | 0                                                                                                                                                                | 0                                                                                  | 0                                                    |  |
|         | Function    |                   |                   |                                                                                                          |                   | Always<br>Write 0                                                        | Select gear value of high frequency (fo<br>000: fc<br>001: fc/2<br>010: fc/4<br>011: fc/8<br>100: fc/16<br>101: (reserved)<br>110: (reserved)<br>111: (reserved) |                                                                                    |                                                      |  |
|         |             | 7                 | 6                 | 5                                                                                                        | 4                 | 3                                                                        | 2                                                                                                                                                                | 1                                                                                  | 0                                                    |  |
| SYSCR2  | Bit symbol  |                   | _                 | WUPTM1                                                                                                   | WUPTM0            | HALTM1                                                                   | HALTM0                                                                                                                                                           |                                                                                    | DRVE                                                 |  |
| (00E2H) | Read/Write  |                   | R/W               | R/W                                                                                                      | R/W               | R/W                                                                      | R/W                                                                                                                                                              |                                                                                    | R/W                                                  |  |
|         | After reset |                   | 0                 | 1                                                                                                        | 0                 | 1                                                                        | 1                                                                                                                                                                |                                                                                    | 0                                                    |  |
|         | Function    |                   | Always<br>Write 0 | Warm-Up Tir<br>00: reserved<br>01: 2 <sup>8</sup> /inputte<br>10: 2 <sup>14</sup><br>11: 2 <sup>16</sup> |                   | HALT mode<br>00: reserved<br>01: STOP mo<br>10: IDLE1 mo<br>11: IDLE2 mo | ode                                                                                                                                                              |                                                                                    | 1: Drive the<br>pin during<br>STOP/<br>IDLE1<br>mode |  |

Figure 3.4.3 SFR for system clock

|         |             | 7       | 6                                                     | 5   | 4   | 3                 | 2                    | 1                 | 0                 |
|---------|-------------|---------|-------------------------------------------------------|-----|-----|-------------------|----------------------|-------------------|-------------------|
| EMCCR0  | Bit symbol  | PROTECT | _                                                     | _   | _   | _                 | EXTIN                | _                 | _                 |
| (00E3H) | Read/Write  | R       | R/W                                                   | R/W | R/W | R/W               | R/W                  | R/W               | R/W               |
|         | After reset | 0       | 0                                                     | 1   | 0   | 0                 | 0                    | 1                 | 1                 |
|         | Function    | -       | Always<br>Write 0                                     | -   | ,   | Always<br>Write 0 | 1: External<br>clock | Always<br>Write 1 | Always<br>Write 1 |
| EMCCR1  | Bit symbol  |         |                                                       |     |     |                   |                      |                   |                   |
| (00E4H) | Read/Write  |         | Writing 1FH turns protections off.                    |     |     |                   |                      |                   |                   |
|         | After reset |         | Writing any value other than 1FH turns protection on. |     |     |                   |                      |                   |                   |
|         | Function    |         |                                                       |     |     |                   |                      |                   |                   |

Figure 3.4.4 SFR for noise-reducing

## 3.4.3 System clock controller

The system clock controller generates the system clock signal (fsys) for the CPU core and internal I/O. It contains a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<GEAR0 to GEAR2> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The initialization < GEAR0 to GEAR2> = 100 will cause the system clock (f<sub>SYS</sub>) to be set to fc/32 (fc/16  $\times$  1/2) after a Reset.

For example, fsys is set to 1.125 MHz when the 36 MHz oscillator is connected to the X1 and X2 pins.

#### (1) Clock gear controller

The f<sub>FPH</sub> is set according to the contents of the Clock Gear Select Register SYSCR1<GEAR0 to GEAR2> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of f<sub>FPH</sub> reduces power consumption.

Example: Changing to a high-frequency gear

SYSCR1 EQU 00E1H

LD (SYSCR1), XXXX0000B ; Changes  $f_{SYS}$  to fc/2.

#### X: Don't care

(Changing to high-frequency clock gear)

To change the clock gear, write the appropriate value to the SYSCR1<GEAR0 to GEAR2> register. The value of  $f_{\text{FPH}}$  will not change until a period of time equal to the warm-up time has elapsed from the point at which the register is written to.

There is a possibility that the instruction immediately following the instruction which changes the clock gear will be executed before the new clock setting comes into effect. To ensure that this does not happen, insert a dummy instruction (to execute a Write cycle) as follows:

#### Example:

SYSCR1 EQU 00E1H

#### (2) Internal clock pin output function

The P84/SCOUT pin outputs an internal clock: fFPH.

The following combination of settings – Port 8 Control Register P8CR<P84C> = 1 and P8FC<P84F> = 1 – specifies that a clock signal will be output on the SCOUT pin.

Table 3.4.1 shows the pin state of the P84/SCOUT pin when it is selected for clock output in the different operation modes.

Table 3.4.1 SCOUT pin states in different operation modes

| NORMAL,   | HALT Mode                |       |          |  |  |
|-----------|--------------------------|-------|----------|--|--|
| SLOW      | IDLE2                    | IDLE1 | STOP     |  |  |
| Outputs f | FPH clock. Fixed to 0 or |       | o 0 or 1 |  |  |

#### 3.4.4 Prescaler clock controller

For the internal I/O (TMRA01 to TMRA45, TMRB0 and SIO0) there is a prescaler which can divide the clock.

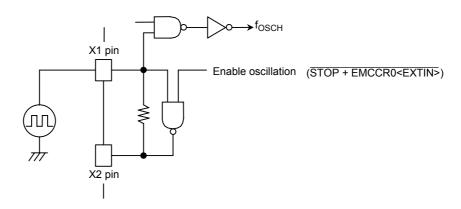
The  $\phi T$  clock input to the prescaler is either the clock fFPH divided by 2 or the clock fc/16 divided by 2. The setting of the SYSCR0 <PRCK0 to PRCK1> register determines which clock signal is input.

The  $\phi TO$  clock input to the prescaler is either the clock f<sub>FPH</sub> divided by 4 or the clock fc/16 divided by 4. The setting of the SYSCR0 <PRCK0 to PRCK1> register determines which clock signal is input.

#### 3.4.5 Noise reduction circuits

Noise reduction circuits are built in, allowing implementation of the following features.

- (1) Single drive for high-frequency oscillator
- (2) Protection of register contents


The above functions are performed by making the appropriate settings in the EMCCR0 and EMCCR1 registers.

#### (1) Single drive for high-frequency oscillator

## (Purpose)

Not need twin-drive and protect mistake-operation by inputted noise to X2 pin when the external-oscillator is used.

### (Block diagram)



#### (Setting method)

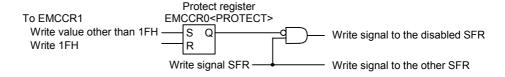
When a 1 is written to the EMCCR0<EXTIN>, the oscillator is disabled and is operated as a buffer. The X2 pin always outputs a 1.

<EXTIN> is initialized to 0 by a Reset.

## (2) Protection of register contents

(Purpose)

An item for mistake-operation by inputted noise.


To execute the program certainty which is occurred mistake-operation, the protect-register can be disabled write-operation for the specific SFR.

#### Write-disabled SFRs

 CS/WAIT controller
 B0CS, B1CS, B2CS, B3CS, BEXCS, MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3

2. Clock gear (only EMCCR1 can be written to.) SYSCR0, SYSCR1, SYSCR2, EMCCR0

#### (Block diagram)



## (Setting method)

Writing any value other than 1FH to the EMCCR1 register turns on protection, thereby preventing the CPU from writing to the specific SFR.

Writing 1FH to EMCCR1 turns off protection.

The protection status is set in EMCCR0<PROTECT>.

Resetting initializes the protection status to OFF.

# 3.4.6 Standby controller

#### (1) HALT Modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP Mode, depending on the contents of the SYSCR2<HALTM1,HALTM0> register.

The subsequent actions performed in each mode are as follows:

① IDLE2: The CPU only is halted.

In IDLE2 Mode internal I/O operations can be performed by setting the following registers.

Table 3.4.2 shows the registers of setting operation during IDLE2 Mode.

Table 3.4.2 The registers of setting operation during IDLE2 Mode

| Internal I/O | SFR                       |
|--------------|---------------------------|
| TMRA01       | TA01RUN <i2ta01></i2ta01> |
| TMRA23       | TA23RUN <i2ta23></i2ta23> |
| TMRA45       | TA45RUN <i2ta45></i2ta45> |
| TMRB0        | TB0RUN <i2tb0></i2tb0>    |
| SIO0         | SC0MOD1 <i2s0></i2s0>     |
| AD converter | ADMOD1 <i2ad></i2ad>      |
| WDT          | WDMOD <i2wdt></i2wdt>     |

- ② IDLE1: Only the oscillator to operate.
- ③ STOP: All internal circuits stop operating.

The operation of each of the different HALT Modes is described in Table 3.4.3.

Table 3.4.3 I/O operation during HALT Modes

| HALT Mode                    |                      | IDLE2                                     | IDLE1           | STOP |  |  |
|------------------------------|----------------------|-------------------------------------------|-----------------|------|--|--|
| SYSCR2 <haltm1:0></haltm1:0> |                      | 11                                        | 10              | 01   |  |  |
|                              | CPU                  | Stop                                      |                 |      |  |  |
|                              | I/O ports            | Maintain same state as when HALT instruct | See Table 3.4.6 |      |  |  |
|                              | TMRA, TMRB           |                                           |                 |      |  |  |
| Block                        | SIO                  |                                           |                 |      |  |  |
|                              | AD converter         | Can be selected                           | Stopped         |      |  |  |
|                              | WDT                  |                                           |                 |      |  |  |
|                              | Interrupt controller | Operational                               |                 |      |  |  |

#### (2) How to clear a HALT mode

The Halt state can be cleared by a Reset or by an interrupt request. The combination of the value in <IFF0 to IFF2> of the Interrupt Mask Register and the current HALT mode determine in which ways the HALT mode may be cleared. The details associated with each type of Halt state clearance are shown in Table 3.4.4.

#### Clearance by interrupt request

Whether or not the HALT mode is cleared and subsequent operation depends on the status of the generated interrupt. If the interrupt request level set before execution of the HALT instruction is greater than or equal to the value in the Interrupt Mask Register, the following sequence takes place: the HALT mode is cleared, the interrupt is then processed, and the CPU then resumes execution starting from the instruction following the HALT instruction. If the interrupt request level set before execution of the HALT instruction is less than the value in the Interrupt Mask Register, the HALT mode is not cleared. (If a non-maskable interrupt is generated, the Halt mode is cleared and the interrupt processed, regardless of the value in the Interrupt Mask Register.)

However, for INT0 to INT4 only, even if the interrupt request level set before execution of the HALT instruction is less than the value in the Interrupt Mask Register, the HALT mode is cleared. In this case, the interrupt is not processed and the CPU resumes execution starting from the instruction following the HALT instruction. The interrupt request flag remains set to 1.

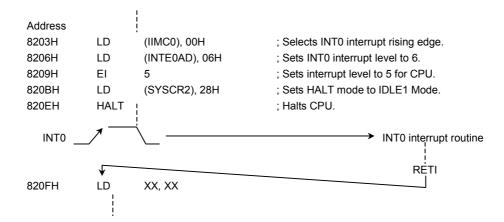
# • Clearance by Reset

Any Halt state can be cleared by a Reset.

When STOP Mode is cleared by a RESET signal, sufficient time (at least 3 ms) must be allowed after the Reset for the operation of the oscillator to stabilize.

When a HALT mode is cleared by resetting, the contents of the internal RAM remain the same as they were before execution of the HALT instruction. However, all other settings are re-initialized. (Clearance by an interrupt affects neither the RAM contents nor any other settings – the state which existed before the HALT instruction was executed is retained.)

|           | Stat      | us of Received Interrupt | Interrupt Enabled<br>(interrupt level) ≥ (interrupt mask) |       |              | Interrupt Disabled<br>(interrupt level) < (interrupt mask) |       |               |
|-----------|-----------|--------------------------|-----------------------------------------------------------|-------|--------------|------------------------------------------------------------|-------|---------------|
|           |           | HALT mode                | IDLE2                                                     | IDLE1 | STOP         | IDLE2                                                      | IDLE1 | STOP          |
| ce        |           | NMI                      | •                                                         | +     | *1<br>•      | _                                                          | _     | _             |
| clearance |           | INTWDT                   | •                                                         | ×     | ×<br>*1      | _                                                          |       | <u></u><br>*1 |
| ear       |           | INT0 to 4                | •                                                         | •     | <b>♦</b> **1 | 0                                                          | 0     | 0*1           |
|           | Interrupt | INT5                     | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
| state     |           | INTTA0 to 5              | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
| st        | ter       | INTTB-00, 01, OF0        | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
| Halt      | п         | INTRX0, TX0              | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
| of H      |           | INTRX1, TX1              | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
|           |           | INTAD                    | <b>*</b>                                                  | ×     | ×            | ×                                                          | ×     | ×             |
| Source    |           |                          |                                                           |       |              |                                                            |       |               |
| SS        |           | RESET                    | •                                                         | •     | •            | •                                                          | •     | •             |


Table 3.4.4 Source of Halt state clearance and Halt clearance operation

- ♦: After clearing the HALT mode, CPU starts interrupt processing. (RESET initializes the microcont.)
- o: After clearing the HALT mode, CPU resumes executing starting from instruction following the HALT instruction.
- ×: Cannot be used to clear the HALT mode.
- —: The priority level (interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- \*1: The HALT mode is cleared when the warm-up time has elapsed.

Note: When the HALT mode is cleared by INT0 to 4 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

(Example - clearing IDLE1 Mode)

An INTO interrupt clears the Halt state when the device is in IDLE1 Mode.



## (3) Operation

#### ① IDLE2 Mode

In IDLE2 Mode only specific internal I/O operations, as designated by the IDLE2 Setting Register, can take place. Instruction execution by the CPU stops.

Figure 3.4.5 illustrates an example of the timing for clearance of the IDLE2 Mode Halt state by an interrupt.

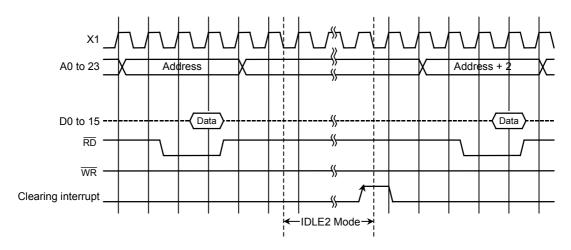



Figure 3.4.5 Timing chart for IDLE2 Mode Halt state cleared by interrupt

#### ② IDLE1 Mode

In IDLE1 Mode, only the internal oscillator and the RTC continue to operate. The system clock in the MCU stops.

In the Halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the Halt state (i.e. restart of operation) is synchronous with it.

Figure 3.4.6 illustrates the timing for clearance of the IDLE1 Mode Halt state by an interrupt.

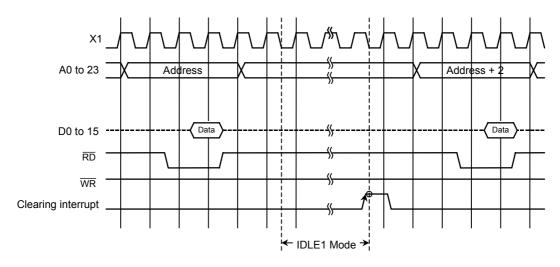



Figure 3.4.6 Timing chart for IDLE1 Mode Halt state cleared by interrupt

#### 3 STOP Mode

When STOP Mode is selected, all internal circuits stop, including the internal oscillator Pin status in STOP Mode depends on the settings in the SYSCR2<DRVE> register. Table 3.4.6 summarizes the state of these pins in STOP Mode.

After STOP Mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize. See the sample warm-up times in Table 3.4.5.

Figure 3.4.7 illustrates the timing for clearance of the STOP Mode Halt state by an interrupt.

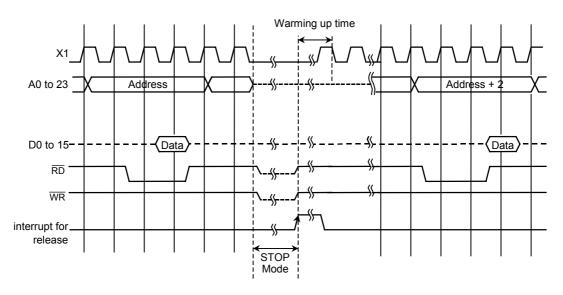



Figure 3.4.7 Timing chart for STOP Mode Halt state cleared by interrupt

Table 3.4.5 Sample warm-up times after clearance of STOP Mode

|                      |                       | @f <sub>OSCH</sub> = 36 MHz |
|----------------------|-----------------------|-----------------------------|
| SYS                  | M0>                   |                             |
| 01 (2 <sup>8</sup> ) | 10 (2 <sup>14</sup> ) | 11 (2 <sup>16</sup> )       |
| 7.1 µs               | 0.455 ms              | 1.820 ms                    |

Table 3.4.6 Pin states in STOP Mode

| Pin Names             | I/O                | <drve> = 0</drve> | <drve> = 1</drve> |  |
|-----------------------|--------------------|-------------------|-------------------|--|
| D0 to 7               | Input/ Output Mode | _                 | _                 |  |
| P10 to 17(D8 to 15)   | Input Mode         | _                 | _                 |  |
|                       | Output Mode        | _                 | Output            |  |
|                       | Input/output Mode  | _                 | _                 |  |
| P20 to 27(A16 to 23), | Input/output Mode  |                   | Input/Output      |  |
| A0 to 15              | Output             |                   | Output            |  |
| RD, WR                | Output pin         |                   | Output            |  |
| PZ2, PZ3              | Input Mode         | PU*               | Input             |  |
|                       | Output Mode        | PU*               | Output            |  |
| P53 to P56            | Input Mode         | PU*               | Input             |  |
|                       | Output Mode        | PU*               | Output            |  |
| P60 to P63            | Output Mode        | _                 | Output            |  |
| P70 to P75            | Input Mode         | _                 | Input             |  |
|                       | Output Mode        | _                 | Output            |  |
| P80 to P87            | Input Mode         | PU*               | Input             |  |
|                       | Output Mode        | PU*               | Output            |  |
| P90,P93 to 97         | Input Mode         | _                 | Input             |  |
|                       | Output Mode        | _                 | Output            |  |
| PA0 to PA7            | Input Mode         | _                 | _                 |  |
| NMI                   | Input pin          | Input             | Input             |  |
| RESET                 | Input              | Input             | Input             |  |
| AM0, AM1              | Input              | Input             | Input             |  |
| X1                    | Input              |                   |                   |  |
| X2                    | Output             | H Level Output    | H Level Output    |  |

<sup>—:</sup> Input pin invalid (Input Mode); output pin High-Impedance (Output Mode).

Input: Input gate in operation. Input voltage should be fixed to L or H so that input pin stays constant.

Output: Output state

PU\*: Programmable pull-up pin. Input Gate Disabled state. No through-current even if the pin is set to High-Impedance.

## 3.5 Interrupts

Interrupts are controlled by the CPU Interrupt Mask Register SR<IFF2:0> and by the built-in interrupt controller.

The TMP91C829 has a total of 33 interrupts divided into the following five types:

- Interrupts generated by CPU: 9 sources (Software interrupts,Illegal Instruction interrupt)
- Interrupts on external pins (NMI and INTO to INT5): 7 sources
- Internal I/O interrupts: 19 sources

A (fixed) individual interrupt vector number is assigned to each interrupt.

One of seven (variable) priority level can be assigned to each maskable interrupt.

The priority level of non-maskable interrupts are fixed at 7 as the highest level.

When an interrupt is generated, the interrupt controller sends the piority of that interrupt to the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends the interrupt with the highest priority to the CPU. (The highest priority is level 7 using for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt mask register <IFF[2:0]>. If the priority level of the interrupt is higher than the value of the interrupt mask register, the CPU accepts the interrupt.

The interrupt mask register <IFF[2:0]> value can be updated using the value of the EI instruction (EI num sets <IFF[2:0]> data to num).

For example, specifying "EI 3" enables the maskable interrupts which priority level set in the interrupt controller is 3 or higher, and also non-maskable interrupts.

Operationally, the DI instruction (<IFF[2:0]> = 7) is identical to the EI 7 instruction. DI instruction is used to disable maskable interrupts because of the priority level of maskable interrupts is 0 to 6. The EI instruction is vaild immediately after execution.

In addition to the above general-purpose interrupt processing mode, TLCS-900/L1 has a micro DMA interrupt processing mode as well. The CPU can transfer the data (1/2/4 bytes) automatically in micro DMA mode, therefore this mode is used for speed-up interrupt processing, such as transferring data to the internal or external peripheral I/O. Moreover, TMP91C829 has software start function for micro DMA processing request by the software not by the hardware interrupt.

Figure 3.5.1 shows the overall interrupt processing flow.

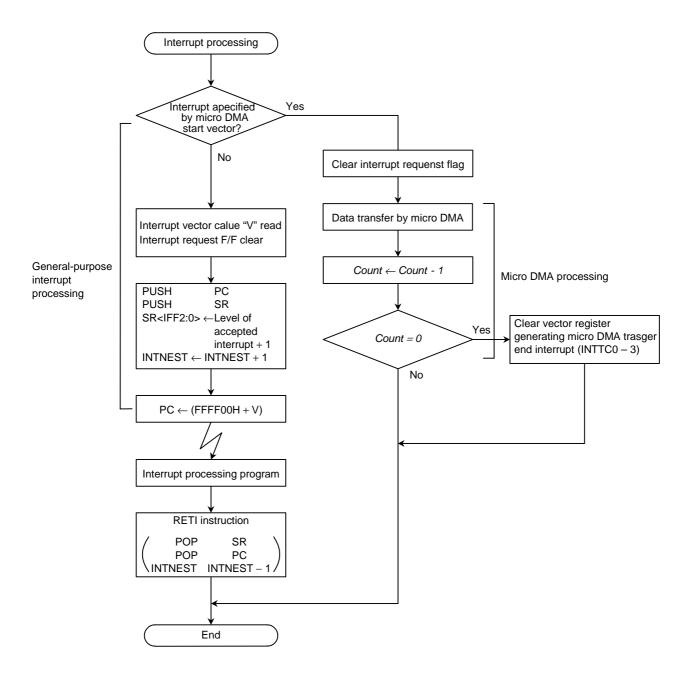



Figure 3.5.1 Interrupt and micro DMA processing sequence

#### 3.5.1 General-purpose interrupt processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. That is also the same as TLCS-900/L and TLCS-900/H.

- (1) The CPU reads the interrupt vector from the interrupt controller.
  - If the same level interrupts occur simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt request.
  - (The default priority is already fixed for each interrupt: the smaller vector value has the higher priority level.)
- (2) The CPU pushes the value of Program Counter(PC) and Status Register(SR) onto the stack area (indicated by XSP).
- (3) The CPU sets the value which is the priority level of the accepted interrupt plus 1(+1) to the Interrupt Mask Register <IFF[2:0]>. However, if the priority level of the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increases the interrupt nesting counter INTNEST by 1(+1).
- (5) The CPU jumps to the address indicated by the data at address "FFFF00H + interrupt vector" and starts the interrupt processing routine.

The above processing time is 18-states(1.0 usec. at 36MHz) as the best case(16bits data-bus width and 0-wait).

When the CPU compled the interrupt processing, use the RETI instruction to return to the main routine. RETI restores the contents of Program Counter(PC) and Status Register(SR) from the stack and decreases the Interrupt Nesting counter INTNEST by 1(-1).

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request which has a priority level equal to or greater than the value of the CPU Interrupt Mask Register <IFF[2:0]> comes out, the CPU accepts its interrupt. Then, the CPU Interrupt Mask Register <IFF[2:0]> is set to the value of the priority level for the accepted interrupt plus 1(+1).

Therefore, if an interrupt is generated with a higher level than the current interrupt during its processing, the CPU accepts the later interrupt and goes to the nesting status of interrupt processing.

Moreover, if the CPU receives another interrupt request while performing the said (1) to (5) processing steps of the current interrupt, the latest interrupt request is sampled immediately after execution of the first instruction of the current interrupt processing routine. Specifying DI as the start instruction disables maskable interrupt nesting.

A Reset initializes the Interrupt Mask Register <IFF[2:0]> to 111, disabling all maskable interrupts.

Table 3.5.1 shows the TMP91C829 interrupt vectors and micro DMA start vectors. The address FFFF00H to FFFFFH (256 bytes) is assigned for the interrupt vector area.

Table 3.5.1 TMP91C829F interrupt vectors and micro DMA start vectors

| Default<br>Priority | Туре     | Interrupt Source or Source of Micro DMA Request  Vector Value  Vector Value  Address |                |         | Micro DMA<br>Start Vector |
|---------------------|----------|--------------------------------------------------------------------------------------|----------------|---------|---------------------------|
| 1                   |          | Reset or [SWI0] instruction                                                          | 0000H          | FFFF00H |                           |
| 2                   |          | [SWI1] instruction                                                                   | 0000H          | FFFF04H | _                         |
| 3                   |          | Illegal instruction or [SWI2] instruction                                            | 0004H          | FFFF08H | _                         |
| 4                   |          | [SWI3] instruction                                                                   | 000CH          | FFFF0CH | _                         |
| 5                   | Non-mask | [SWI4] instruction                                                                   | 000CH          | FFFF10H | _                         |
| 6                   | able     | [SWI5] instruction                                                                   | 0014H          | FFFF14H |                           |
| 7                   | 4.0.0    | [SWI6] instruction                                                                   | 0014H          | FFFF18H |                           |
| 8                   |          | [SWI7] instruction                                                                   | 001CH          | FFFF1CH | _                         |
| 9                   |          | NMI : NMI pin input                                                                  | 0020H          | FFFF20H |                           |
| 10                  |          | INTWD: Watchdog Timer                                                                | 0024H          | FFFF24H | _                         |
|                     |          | Micro DMA                                                                            |                |         | _                         |
| 11                  |          | INTO: INTO pin input                                                                 | 0028H          | FFFF28H | 0AH                       |
| 12                  |          | INT1: INT1 pin input                                                                 | 002CH          | FFFF2CH | 0BH                       |
| 13                  |          | INT2: INT2 pin input                                                                 | 0030H          | FFFF30H | 0CH                       |
| 14                  |          |                                                                                      | 0034H          | FFFF34H | 0DH                       |
| 15                  |          | INT3: INT3 pin input                                                                 | 0034H<br>0038H |         | 0EH                       |
|                     |          | INT4: INT4 pin input                                                                 |                | FFFF38H |                           |
| 16                  |          | INT5: INT5 pin input                                                                 | 003CH          | FFFF3CH | 0FH                       |
| 17                  |          | (reserved)                                                                           | 0040H          | FFFF40H | 10H                       |
| 18                  |          | (reserved)                                                                           | 0044H          | FFFF44H | 11H                       |
| 19                  |          | (reserved)                                                                           | 0048H          | FFFF48F | 12H                       |
| 20                  |          | INTTA0: 8-bit timer 0                                                                | 004CH          | FFFF4CH | 13H                       |
| 21                  |          | INTTA1: 8-bit timer 1                                                                | 0050H          | FFFF50H | 14H                       |
| 22                  |          | INTTA2: 8-bit timer 2                                                                | 0054H          | FFFF54H | 15H                       |
| 23                  |          | INTTA3: 8-bit timer 3                                                                | 0058H          | FFFF58H | 16H                       |
| 24                  |          | INTTA4: 8-bit timer 4                                                                | 005CH          | FFFF5CH | 17H                       |
| 25                  |          | INTTA5: 8-bit timer 5                                                                | 0060H          | FFFF60H | 18H                       |
| 26                  |          | (reserved)                                                                           | 0064H          | FFFF64H | 19H                       |
| 27                  |          | (reserved)                                                                           | 0068H          | FFFF68H | 1AH                       |
| 28                  |          | INTTB00: 16-bit timer 0 (TB0RG0)                                                     | 006CH          | FFFF6CH | 1BH                       |
| 29                  | Maskable | INTTB01: 16-bit timer 0 (TB0RG1)                                                     | 0070H          | FFFF70H | 1CH                       |
| 30                  |          | (reserved)                                                                           | 0074H          | FFFF74H | 1DH                       |
| 31                  |          | (reserved)                                                                           | 0078H          | FFFF78H | 1EH                       |
| 32                  |          | INTTBOF0: 16-bit timer 0 (overflow)                                                  | 007CH          | FFFF7CH | 1FH                       |
| 33                  |          | (reserved)                                                                           | 0080H          | FFFF80H | 20H                       |
| 34                  |          | INTRX0: Serial receive (Channel 0)                                                   | 0084H          | FFFF84H | 21H                       |
| 35                  |          | INTTX0: Serial receive (Channel 0)                                                   | 0084H          | FFFF88H | 2111<br>22H               |
| 36                  |          | INTRX1: Serial receive (Channel 1)                                                   | 008CH          | FFFF8CH | 23H                       |
| 37                  |          | , ,                                                                                  | 000CH<br>0090H |         | 23F<br>24H                |
|                     |          | INTTX1: Serial transmission (Channel 1)                                              |                | FFFF09H |                           |
| 38                  |          | (reserved)                                                                           | 0094H          | FFFF94H | 25H                       |
| 39                  |          | (reserved)                                                                           | 0098H          | FFFF98H | 26H                       |
| 40                  |          | INTAD: AD conversion end                                                             | 009CH          | FFFF9CH | 27H                       |
| 41                  |          | INTTC0: Micro DMA end (Channel 0)                                                    | 00A0H          | FFFFA0H | 28H                       |
| 42                  |          | INTTC1: Micro DMA end (Channel 1)                                                    | 00A4H          | FFFFA4H | 29H                       |
| 43                  |          | INTTC2: Micro DMA end (Channel 2)                                                    | 00A8H          | FFFFA8H | 2AH                       |
| 44                  |          | INTTC3: Micro DMA end (Channel 3)                                                    | 00ACH          | FFFFACH | 2BH                       |
| -                   |          |                                                                                      | 00B0H          | FFFFB0H | -                         |
| to                  |          | (reserved)                                                                           | to             | to      | to                        |
| _                   |          |                                                                                      | 00FCH          | FFFFFCH | _                         |

#### 3.5.2 Micro DMA processing

In addition to general-purpose interrupt processing, the TMP91C829 supprots a micro DMA function. Interrupt requests set by micro DMA perform micro DMA processing at the highest priority level (level 6) among maskable interrupts, regardless of the priority level of the particular interrupt source. Micro. The micro DMA has 4 channels and is possible continuous transmission by specifing the say later burst mode.

Because the micro DMA function has been implemented with the cooperative operation of CPU, when CPU goes to a stand-by mode by HALT instruction, the requirement of micro DMA will be ignored (pending).

#### (1) Micro DMA operation

When an interrupt request specified by the micro DMA start vector register is generated, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request in spite of any interrupt source's level. The micro DMA is ignored on <IFF[2:0]>=??

The 4 micro DMA channels allow micro DMA processing to be set for up to 4 types of interrupts at any one time. When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared.

The data are automatically transferred once(1/2/4 bytes) from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decreased by 1(-1).

If the decreased result is 0, the micro DMA transfer end interrupt (INTTC0 to INTTC3) passes from the CPU to the interrupt controller. In addition, the micro DMA start vector register DMAnV is cleared to 0, the next micro DMA is disabled and micro DMA processing completes. If the decreased result is other than "0", the micro DMA processing completes if it isn't specified the say later burst mode. In this case, the micro DMA transfer end interrupt (INTTC0 to INTTC3) aren't generated.

If an interrupt request is triggered for the interrupt source in use during the interval between the clearing of the micro DMA start vector and the next setting, general-purpose interrupt processing executes at the interrupt level set. Therefore, if only using the interrupt for starting the micro DMA (not using the interrupts as a general-purpose interrupt: level 1 to 6), first set the interrupts level to 0 (interrupt requests disabled).

If using micro DMA and general-purpose interrupts together, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. In this case, the cause of general interrupt is limited to the edge interrupt.

The priority of the micro DMA transfer end interrupt (INTTC0 to INTTC3) is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

If a micro DMA request is set for more than one channel at the same time, the priority is not based on the interrupt priority level but on the channel number. The smaller channel number has the higher priority (Channel 0 (high) > channel 3 (low)).

While the register for setting the transfer source/transfer destination addresses is a 32-bit control register, this register can only effectively output 24-bit addresses. Accordingly, micro DMA can access 16 Mbytes (the upper eight bits of the 32 bits are not valid).

Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte (one-word) transfer, and 4-byte transfer. After a transfer in any mode, the transfer source / destination addresses are increased, decreased, or remain unchanged.

This simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the transfer modes, see (4) "Transfer Mode Register". As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to 65536 times per interrupt source. (The micro DMA processing count is maximized when the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 23 interrupts shown in the micro DMA start vectors of Figure 3.5.1 and by the micro DMA soft start, making a total of 24 interrupts.

Figure 3.5.2 shows the word transfer micro DMA cycle in transfer destination address INC mode (except for Counter mode, the same as for other modes).

(The conditions for this cycle are based on an external 16-bit bus, 0 waits, trandfer source/transfer destination addresses both even-numberd values).

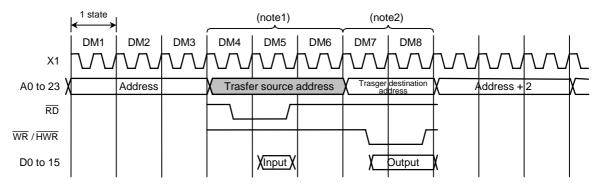



Figure 3.5.2 Timing for micro DMA cycle

States 1 to 3: Instruction fetch cycle (gets next address code).

If 3 bytes and more instruction codes are inserted in the instruction queue buffer, this cycle becomes a dummy cycle.

States 4 to 5: Micro DMA read cycle

State 6: Dummy cycle (the address bus remains unchanged from state 5)

States 7 to 8: Micro DMA write cycle

Note1: If the source address area is an 8-bit bus, it is increased by two states.

If the source address area is a 16-bit bus and the address starts from an odd number, it is increased by two states.

Note2: If the destination address area is an 8-bit bus, it is increased by two states.

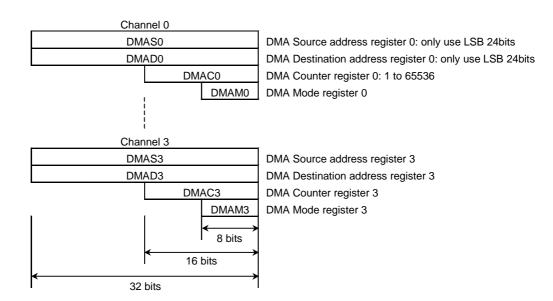
If the destination address area is a 16-bit bus and the address starts from an odd number, it is increased by two states.

## (2) Soft start function

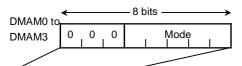
In addition to starting the micro DMA function by interrupts, TMP91C815 includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing 1 to each bit of DMAR register causes micro DMA once. At the end of transfer, the corresponding bit of the DMAR register is automatically cleared to 0.

Only one-channel can be set once for micro DMA. (Do not write 1 to plural bits.)


When writing again 1 to the DMAR register, check whether the bit is 0 before writing 1.

When a burst is specified by DMAB register, data is continuously transferred until the value in the micro DMA transfer counter is 0 after start up of the micro DMA.


| Symbol | Name                       | Address    | 7 | 6 | 5 | 4 | 3     | 2           | 1     | 0     |
|--------|----------------------------|------------|---|---|---|---|-------|-------------|-------|-------|
| DMAR   | DMA<br>Request<br>Register |            |   |   |   |   |       | DMA Request |       |       |
|        |                            | equest 89n |   |   |   |   | DMAR3 | DMAR2       | DMAR1 | DMAR0 |
|        |                            |            |   |   |   |   |       | R/          | W     |       |
|        |                            |            |   |   |   |   | 0     | 0           | 0     | 0     |

#### (3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. Data setting for these registers is done by an "LDC cr,r" instruction.



## (4) Detailed description of the Transfer Mode Register



Note: When setting a value in this register, write 0 to the upper 3 bits.

| $\leftarrow$   |     |          |                                                                                 |                                                                                                                                    | i                             |                                            |
|----------------|-----|----------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|
|                |     |          | Number of<br>Transfer Bytes                                                     | Mode Description                                                                                                                   | Number of<br>Execution States | Minimum<br>Execution Time<br>@ fc = 36 MHz |
| 000<br>(fixed) | 000 | 00       | Byte transfer                                                                   | Transfer Destination Address INC ModeI/O to memory  (DMADn+) ← (DMASn)  DMACn ← DMACn − 1  If DMACn = 0, then INTTCn is generated. | 8 states                      | 444 ns                                     |
|                |     | 01<br>10 | Word transfer 4-byte transfer                                                   |                                                                                                                                    | 12 states                     | 667 ns                                     |
|                | 001 | 00       | Byte transfer                                                                   | Transfer Destination Address DEC Mode                                                                                              | 8 states                      | 444 ns                                     |
|                |     | 01<br>10 | Word transfer 4-byte transfer                                                   | (DMADn-) ← (DMASn)  DMACn ← DMACn – 1  If DMACn = 0, then INTTCn is generated.                                                     | 12 states                     | 667 ns                                     |
|                | 010 | 00       | Byte transfer                                                                   | ransfer Transfer Source Address INC Mode                                                                                           | 8 states                      | 444ns                                      |
|                |     | 01<br>10 | Word transfer 4-byte transfer                                                   |                                                                                                                                    | 12 states                     | 667 ns                                     |
|                | 011 | 00       | Byte transfer                                                                   | Transfer Source Address DEC Mode                                                                                                   | 8 states                      | 444ns                                      |
|                |     | 01<br>10 | Word transfer 4-byte transfer                                                   |                                                                                                                                    | 12 states                     | 667 ns                                     |
|                | 100 | 00       | Byte transfer                                                                   | ord transfer $(DMADn) \leftarrow (DMASn-)$<br>$DMACn \leftarrow DMACn - 1$                                                         | 8 states                      | 444 ns                                     |
|                |     | 01<br>10 | Word transfer 4-byte transfer                                                   |                                                                                                                                    | 12 states                     | 667 ns                                     |
|                | 101 | 00       | $\begin{array}{c} DMASn \leftarrow DMASn \\ DMACn \leftarrow DMACn \end{array}$ | ······For counting number of times interrupt is generated Sn ← DMASn + 1                                                           |                               | 278 ns                                     |

Note1: "n" is the corresponding micro DMA channels 0 to 3

DMADn +/DMASn+: Post-increment (increment register value after transfer)
DMADn -/DMASn-: Post-decrement (decrement register value after transfer)

The I/Os in the table mean fixed address and the memory means increment(INC) or decrement(DEC) addresses.

Note2: Execution time is under the condition of:

16bit bus width(both translation and destination address area) / 0 wait / fc = 36MHz / selected high frequency mode ( $fc \times 1$ )

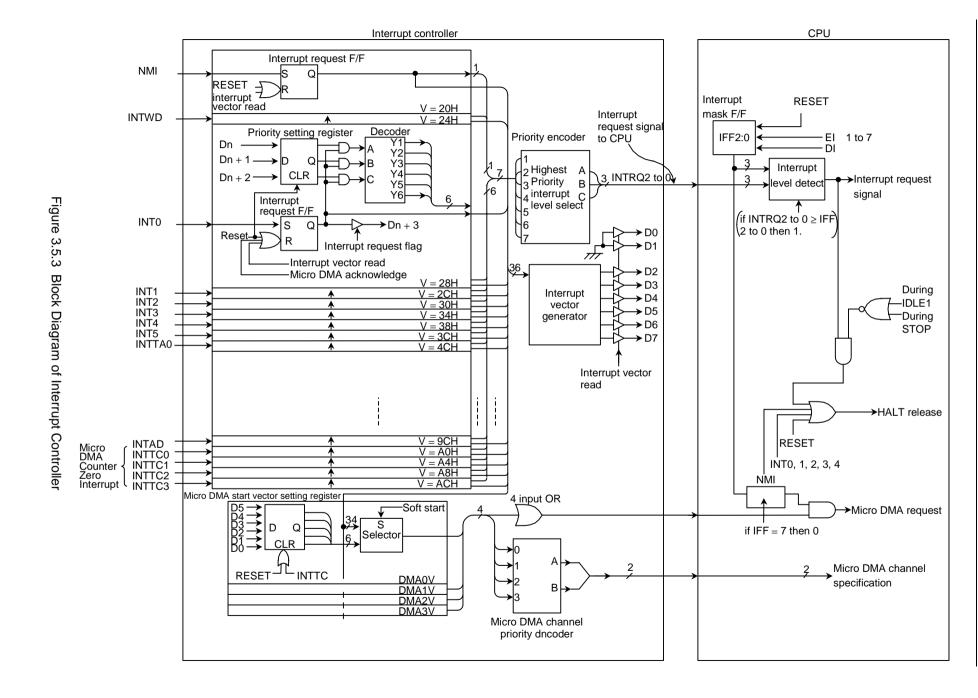
Note3: Do not use an undefined code for the transfer mode register except for the defined codes listed in the above table.

#### 3.5.3 Interrupt controller operation

The block diagram in Figure 3.5.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 24 interrupt channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to zero in the following cases:

- when reset occurs
- when the CPU reads the channel vector after accepted its interrupt
- when executing an instruction that clears the interrupt (write DMA start vector to INTCLR register)
- when the CPU receives a micro DMA request (when micro DMA is set)
- when the micro DMA burst transfer is terminated


An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g. INTE0AD or INTE12). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupts (NMI pin interrupts and Watch dog Timer interrupts) is fixed at 7. If interrupt request with the same level are generated at the same time, the default priority (the interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

The interrupt controller sends the interrupt request with the highest priority among the simulateous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF[2:0]> in the Status Register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1(+1) in the CPU SR <IFF[2:0]>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF[2:0]>.

The interrupt controller also has registers (4 channels) used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.5.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g. DMAS and DMAD) prior to the micro DMA processing.



2001-02-15

(1) Interrupt priority setting registers

| Name   | Symbol   | Address                |       | 6               | 5        | 4        | 3        | 2               | 1               | 0       | 1                  |
|--------|----------|------------------------|-------|-----------------|----------|----------|----------|-----------------|-----------------|---------|--------------------|
| INTE0  | ,        |                        |       | IN <sup>-</sup> | TAD      | <u> </u> |          | IN              | T0              |         | ← Interrupt source |
| &      |          |                        | IADC  | IADM2           | IADM1    | IADM0    | I0C      | I0M2            | IOM1            | IOMO    | ⊢ Bit symbol       |
| INTAD  | INTE0AD  | 90h                    | R     |                 | R/W      |          | R        |                 | R/W             |         | ← Read/Write       |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       | ← After Reset      |
| INT1   |          |                        |       | IN              | IT2      |          |          | . IN            | T1              |         | ]                  |
| &      | INTE12   | 91h                    | I2C   | I2M2            | I2M1     | I2M0     | I1C      | I1M2            | I1M1            | I1M0    | _                  |
| INT2   | INTEIZ   | 9111                   | R     |                 | R/W      |          | R        |                 | R/W             |         |                    |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       |                    |
| INT3   |          |                        |       | INT4            |          |          | IN       | T3              | 1               | 1       |                    |
| &      | INTE34   | 92h                    | I4C   | I4M2            | I4M1     | 14M0     | I3C      | I3M2            | I3M1            | I3M0    | 1                  |
| INT4   | INTEST   | J211                   | R     |                 | R/W      |          | R        |                 | R/W             | T       | 1                  |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       | 1                  |
|        |          |                        |       | 1               |          |          |          | IN              | T5              | ,       | 1                  |
| INT5   | INTE5    | 93h                    |       |                 |          |          | I5C      | 15M2            | I5M1            | 15M0    | 1                  |
| Enable | INTES    | 9311                   |       |                 |          | _        | R        |                 | R/W             |         |                    |
|        |          |                        |       |                 |          |          | 0        | 0               | 0               | 0       | _                  |
| INTTA0 |          |                        |       | INTTA1          | (TMRA1)  | _        |          | INTTA0          | (TMRA0)         |         | _                  |
| &      | INTETA01 | 95h                    | ITA1C | ITA1M2          | ITA1M1   | ITA1M0   | ITA0C    | ITA0M2          | ITA0M1          | ITA0M0  | 1                  |
| INTTA1 | INTLIAUT | 9311                   | R     |                 | R/W      | _        | R        |                 | R/W             |         | _                  |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       | 1                  |
| INTTA2 |          | NTETA23 96h            |       | INTTA3          | (TMRA3)  |          |          | INTTA2          | (TMRA2)         | T       | _                  |
| &      | INTETA23 |                        | ITA3C | ITA3M2          | ITA3M1   | ITA3M0   | ITA2C    | ITA2M2          | ITA2M1          | ITA2M0  | _                  |
| UNTAS  |          |                        | R     |                 | R/W      | _        | R        |                 | R/W             | 1       |                    |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       |                    |
| INTTA4 |          |                        |       | INTTA5          | (TMRA5)  |          |          | INTTA4          | (TMRA4)         | 1       | 1                  |
| &      | INTETA45 | 97h                    | ITA5C | ITA5M2          | ITA5M1   | ITA5M0   | ITA4C    | ITA4M2          | ITA4M1          | ITA4M0  |                    |
| INTTA5 |          | 0111                   | R     |                 | R/W      |          | R        |                 | R/W             | 1       |                    |
| Enable |          |                        | 0     | 0               | 0        | 0        | 0        | 0               | 0               | 0       | ļ                  |
|        |          |                        |       |                 |          |          | <u> </u> |                 |                 |         |                    |
|        |          |                        |       |                 | Î        |          |          |                 | 1               |         |                    |
|        |          |                        | •     |                 |          |          |          |                 |                 |         |                    |
|        |          |                        |       |                 | •        |          |          |                 |                 |         |                    |
|        |          |                        |       |                 | <b>V</b> |          |          |                 |                 | / !: >  |                    |
|        |          |                        |       |                 | lxxM2    | lxxM1    | lxxM0    |                 | Function        | (write) |                    |
|        |          |                        |       |                 | 0        | 0        | 0        | Disables in     | terrupt requ    | ests    |                    |
|        |          |                        |       |                 |          | 0        | 1        |                 | upt priority le |         |                    |
|        |          | Interrupt request flag |       |                 | 0        | 1        | 0        |                 | upt priority le |         |                    |
|        |          |                        |       |                 | 0        | 1        | 11       |                 | upt priority le |         |                    |
|        |          |                        |       |                 | 1        | 0        | 0        |                 | upt priority le |         |                    |
|        |          |                        |       | ipt request hay | 1        | 0        | 1        |                 | upt priority le |         |                    |
|        |          |                        |       | 1               | 1        | 0        |          | upt priority le |                 |         |                    |
|        | 1 1      |                        |       |                 |          | 1        | 1        | Disables in     | terrupt requ    | ests    |                    |

| Name                | Symbol     | Address  | 7                    | 6      | 5        | 4         |             | 3                    | 2                           |              | 1            | 0       |                                      |
|---------------------|------------|----------|----------------------|--------|----------|-----------|-------------|----------------------|-----------------------------|--------------|--------------|---------|--------------------------------------|
|                     |            |          |                      | INTTB  | 01 (TMRB | 0)        |             |                      | INTT                        | B00 (        | TMRB0)       |         | <ul> <li>Interrupt source</li> </ul> |
| Interrupt           | INTETRO    | 0011     | ITB01C               | ITB01M | 2 ITB011 | M1 ITB01I | M0          | ITB000               | C ITB00                     | )M2          | ITB00M1      | ITB00M0 | <ul> <li>Bit symbol</li> </ul>       |
| Enable<br>TMRB0     | INTETB0    | 99H      | R                    |        | R/W      | 1         |             | R                    |                             | •            | R/W          |         | <ul><li>Read/Write</li></ul>         |
| TIVINDO             |            |          | 0                    | 0      | 0        | 0         |             | 0                    | 0                           |              | 0            | 0       | After Reset                          |
| Interrupt           |            |          |                      | (Re    | eserved) |           |             | INTTBOF0 (over flow) |                             |              |              |         | 1                                    |
| Enable              | IN ITETOON | 0011     |                      |        |          |           |             | ITF0C                | iTF0                        | M2           | ITF0M1       | ITF0M0  | 1                                    |
| TMRB0V              | INTETB0V   | 9BH      |                      |        |          |           |             | R                    |                             |              | R/W          |         | 1                                    |
| (over flow)         |            |          |                      |        |          |           |             | 0                    | 0                           |              | 0            | 0       |                                      |
|                     |            |          |                      |        | NTTX0    |           |             |                      |                             | INTR         | X0           |         | ]                                    |
| Interrupt           | INTES0     | 9CH      | ITX0C                | ITX0M2 | 2 ITX0N  | 11 ITXON  | <i>/</i> 10 | IRX0C                | IRX0                        | M2           | IRX0M1       | IRX0M0  | ]                                    |
| Enable<br>Serial 0  | INTESU     | 900      | R                    |        | R/W      | '         |             | R                    |                             |              | R/W          |         | ]                                    |
| Serial 0            | )          |          | 0                    | 0      | 0        | 0         |             | 0                    | 0                           |              | 0            | 0       | _                                    |
| lata mont           |            |          |                      | II     | NTTX1    |           |             |                      |                             | INTR         | X1           |         |                                      |
| Interrupt<br>Enable | INITEC4    | ODLI     | ITX1C                | ITX1M2 | 2 ITX1N  | 11 ITX1N  | <i>/</i> 10 | IRX10                | IRX1                        | M2           | IRX1M1       | IRX1M0  | ]                                    |
| Serial 1            |            | 9DH      | R                    |        | R/W      | '         |             | R                    |                             |              | R/W          |         | ]                                    |
| Ochari              |            |          | 0                    | 0      | 0        | 0         |             | 0                    | 0                           |              | 0            | 0       | ]                                    |
| INTTC0              | INTTC0     |          |                      |        | NTTC1    |           |             |                      |                             | INTTO        | C0           |         | <u> </u>                             |
| &                   | LINTETC011 | TC01 A0H | ITC1C                | ITC1M  | 2 ITC1N  | //1 ITC1N | <b>/</b> 10 | ITC0C                | ITC0                        | M2           | ITC0M1       | ITC0M0  | ]                                    |
| INTTC1              |            |          | R                    |        | R/W      |           |             | R                    |                             |              | R/W          |         | _                                    |
| Enable              |            |          | 0                    | 0      | 0        | 0         |             | 0                    | 0                           |              | 0            | 0       | ]                                    |
| INTTC2              |            |          |                      | II     | NTTC3    |           |             |                      |                             | INTT         | C2           |         | _                                    |
| &                   | INTETC23   | A1H      | ITC3C                | ITC3M2 | 2 ITC3N  | 11 ITC3N  | <i>I</i> 0  | ITC2C                | ITC2                        | M2           | ITC2M1       | ITC2M0  | _                                    |
| INTTC3              | INTLICZS   | AIII     | R                    | R/W    |          |           |             | R                    |                             |              | R/W          |         | _                                    |
| Enable              |            |          | 0                    | 0      | 0        | 0         |             | 0                    | 0                           |              | 0            | 0       |                                      |
|                     |            |          |                      |        |          |           |             |                      |                             |              |              |         |                                      |
|                     |            |          |                      |        | <b>1</b> |           |             |                      |                             |              | <b>1</b>     |         |                                      |
|                     |            |          | •                    |        |          |           |             |                      |                             |              |              |         |                                      |
|                     |            |          |                      |        | +        |           |             |                      |                             |              |              |         |                                      |
|                     |            |          |                      | Г      | <u> </u> | ı         | 1           |                      |                             |              |              |         |                                      |
|                     |            |          |                      |        | lxxM2    | lxxM1     | lx          | xM0                  |                             | Fur          | nction (w    | /rite)  |                                      |
|                     |            |          |                      |        | 0        | 0         |             | 0                    | Disables                    | interru      | pt request   | S       |                                      |
|                     |            |          |                      |        | 0        | 0         |             | 1                    | Sets inter                  | rupt pr      | riority leve | l to 1  |                                      |
|                     |            |          |                      |        | 0        | 1         |             | 0                    | Sets inter                  | rupt pr      | riority leve | l to 2  |                                      |
|                     |            |          | $\downarrow$         |        | 0        | 1         |             | 1                    | Sets inter                  | rupt pr      | riority leve | l to 3  |                                      |
|                     |            | Interru  | int reques           | t flan | 11       | 0         | <u> </u>    | 0                    | Sets inter                  | rupt pr      | riority leve | l to 4  |                                      |
|                     |            | michia   | terrupt request flag |        |          | 0         | <u> </u>    | 1                    | Sets inter                  | rupt pr      | riority leve | l to 5  |                                      |
|                     |            |          |                      | 1      | 1        |           | 0           | Sets inter           | rupt pr                     | riority leve | l to 6       |         |                                      |
|                     |            |          |                      |        |          | 1         |             | 1                    | Disables interrupt requests |              |              |         |                                      |

# (2) External interrupt control

| Name       | Symbol                                        | Address    | 7                | 6          | 5        | 4          | 3        | 2          | 1        | 0              |  |
|------------|-----------------------------------------------|------------|------------------|------------|----------|------------|----------|------------|----------|----------------|--|
|            |                                               |            | _                | I2EDGE     | I2LE     | I1DGE      | I1LE     | I0EDGE     | IOLE     | NMIREE         |  |
|            |                                               |            |                  |            |          |            | W        |            |          |                |  |
| Interrupt  |                                               | 8CH        | 0                | 0          | 0        | 0          | 0        | 0          | 0        | 0              |  |
| Input Mode | IIMC0                                         | (no RMW)   | Write 0          | INT2EDGE   | INT2EDGE | INT1EDGE   | INT1EDGE | INT0EDGE   | INT0     | 1: Operates    |  |
| control 0  |                                               | ,          |                  | 0: Rising  | 0: Edge  | 0: Rising  | 0: Edge  | 0: Rising  | 0: Edge  | even on rising |  |
|            |                                               |            |                  | 1: Falling | 1: Level | 1: Falling | 1: Level | 1: Falling | 1: Level | + falling edge |  |
|            |                                               |            |                  |            |          |            |          |            |          | of NMI         |  |
|            | INT2 level Enable                             |            |                  |            |          |            |          |            |          |                |  |
| 0          |                                               | etect INT  |                  |            | <b>─</b> |            |          |            |          |                |  |
| 1          | Level IN                                      | <u>VT</u>  |                  |            |          |            |          |            |          |                |  |
| INT1 le    | evel Enabl                                    | е          |                  |            | _        |            |          |            |          |                |  |
| 0          | Edge d                                        | etect INT  |                  |            | _        |            |          |            |          |                |  |
| 1          | Level IN                                      | NT         |                  |            | ,        |            |          |            |          |                |  |
| INTO I     | evel Enabl                                    | е          |                  |            |          |            |          |            |          |                |  |
| 0          | Edge d                                        | etect INT  |                  |            |          |            |          |            |          |                |  |
| 1          | Level IN                                      | NT         |                  |            | `        |            |          |            |          |                |  |
| NMI ris    | I rising edge Enable                          |            |                  |            |          |            |          |            |          |                |  |
| 0          | INT req                                       | uest gener | ation at falling | g edge     |          |            |          |            |          |                |  |
| 1          | INT request generation at rising/falling edge |            |                  |            |          |            |          |            |          |                |  |

| Name      | Symbol       | Address  | 7 | 6          | 5        | 4          | 3        | 2          | 1        | 0 |
|-----------|--------------|----------|---|------------|----------|------------|----------|------------|----------|---|
|           |              |          |   | I5EDGE     | I5LE     | I4EDGE     | I4LE     | I3EDGE     | I3LE     |   |
| Interrupt |              |          |   | -          |          | V          | V        |            |          |   |
| Input     | IIMC1        | 8DH      |   | 0          | 0        | 0          | 0        | 0          | 0        |   |
| Mode      | IIIVIOT      | (no RMW) |   | INT5EDGE   | INT5     | INT4EDGE   | INT4     | INT3EDGE   | INT3     |   |
| control1  |              |          |   | 0: Rising  | 0: Edge  | 0: Rising  | 0: Edge  | 0: Rising  | 0: Edge  |   |
|           |              |          |   | 1: Falling | 1: Level | 1: Falling | 1: Level | 1: Falling | 1: Level |   |
| INT5      | level Enable |          |   |            | 7        |            |          |            |          |   |
| 1         | Level IN     |          |   |            | +        |            |          |            |          |   |
| INT4      | level Enable |          |   |            |          |            |          |            |          |   |
| 0         | Edge de      | tect INT |   |            | 4        |            |          |            |          |   |
| 1         | Level IN     | Т        |   |            |          |            |          |            |          |   |
| INT3      | level Enable | )        |   |            |          |            |          |            |          |   |
| 0         | Edge de      | tect INT |   |            | _        |            |          |            |          |   |
| 1         | Level IN     | Т        |   |            |          |            |          |            |          |   |

When switching IIMC0 and 1 registers, first every FC registers in port which built-in INT function set to 0.

Setting functions on External Interrupt pins

| Interrupt pin |                   | Mode              |              | Setting method                      |
|---------------|-------------------|-------------------|--------------|-------------------------------------|
| NINAL         | 1                 |                   | Falling edge | <nmiree>=0</nmiree>                 |
| NMI           |                   | Both falling and  | Rising edges | <nmiree>=1</nmiree>                 |
|               |                   |                   | Rising edge  | <i0le>=0,<i0edge>=0</i0edge></i0le> |
| INT0          |                   | 1                 | Falling edge | <i0le>=0,<i0edge>=1</i0edge></i0le> |
| INTO          |                   | <b></b>           | High level   | <i0le>=1,<i0edge>=0</i0edge></i0le> |
|               |                   | $\supset_{ullet}$ | Low level    | <i0le>=1,<i0edge>=1</i0edge></i0le> |
|               | <u> </u>          |                   | Rising edge  | <i1le>=0,<i1edge>=0</i1edge></i1le> |
| INT1          | 7                 |                   | Falling edge | <i1le>=0,<i1edge>=1</i1edge></i1le> |
| IINTT         | $\rightarrow$     |                   | High level   | <i1le>=1,<i1edge>=0</i1edge></i1le> |
|               |                   |                   | Low level    | <l1le>=1,<l1edge>=1</l1edge></l1le> |
|               | <u> </u>          |                   | Rising edge  | <l2le>=0,<l2edge>=0</l2edge></l2le> |
| INT2          | 7                 |                   | Falling edge | <i2le>=0,<i2edge>=1</i2edge></i2le> |
| IIN I Z       | <u> </u>          |                   | High level   | <i2le>=1,<i2edge>=0</i2edge></i2le> |
|               | $\rightarrow$     |                   | Low level    | <i2le>=1,<i2edge>=1</i2edge></i2le> |
|               | <u> </u>          |                   | Rising edge  | <i3le>=0,<i3edge>=0</i3edge></i3le> |
| INT3          | 7                 |                   | Falling edge | <i3le>=0,<i3edge>=1</i3edge></i3le> |
| INTO          | <u> </u>          |                   | High level   | <i3le>=1,<i3edge>=0</i3edge></i3le> |
|               | $\supset_{ullet}$ |                   | Low level    | <l3le>=1,<l3edge>=1</l3edge></l3le> |
|               |                   |                   | Rising edge  | <i4le>=0,<i4edge>=0</i4edge></i4le> |
| INIT 4        | 7                 |                   | Falling edge | <i4le>=0,<i4edge>=1</i4edge></i4le> |
| INT4          |                   |                   | High level   | <i4le>=1,<i4edge>=0</i4edge></i4le> |
|               | $\Box_{ullet}$    |                   | Low level    | <i4le>=1,<i4edge>=1</i4edge></i4le> |
|               |                   |                   | Rising edge  | <l5le>=0,<l5edge>=0</l5edge></l5le> |
| INITE         | 1                 |                   | Falling edge | <i5le>=0,<i5edge>=1</i5edge></i5le> |
| INT5          | <b>→</b> •        |                   | High level   | <i5le>=1,<i5edge>=0</i5edge></i5le> |
|               |                   |                   | Low level    | <i5le>=1,<i5edge>=1</i5edge></i5le> |

# (3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.5.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR ← 0AH Clears interrupt request flag INT0.

| Name             | Symbol | Address  | 7                | 6 | 5     | 4     | 3     | 2     | 1     | 0     |  |
|------------------|--------|----------|------------------|---|-------|-------|-------|-------|-------|-------|--|
| Interrupt        |        | 88H      |                  |   | CLRV5 | CLRV4 | CLRV3 | CLRV2 | CLRV1 | CLRV0 |  |
| Interrupt        |        |          | W                |   |       |       |       |       |       |       |  |
| Clear<br>Control | INTCLR | (no RMW) | 0                | 0 | 0     | 0     | 0     | 0     | 0     | 0     |  |
| Control          |        |          | Interrupt Vector |   |       |       |       |       |       |       |  |

### (4) Micro DMA start vector registers

These registers assign micro DMA processing to an sets which source corresponds to DMA. The interrupt source whose micro DMA start vector value matches the vector set in one of these registers is designated as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, in order for micro DMA processing to continue, the micro DMA start vector register must be set again during processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA start vector registers for two different channels, the interrupt generated on the lower-numbered channel is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel has not been set in the channel's micro DMA start vector register again, micro DMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA chaining.)

| Name            | Symbol        | Address  | 7 | 6 | 5      | 4                 | 3       | 2          | 1      | 0      |
|-----------------|---------------|----------|---|---|--------|-------------------|---------|------------|--------|--------|
|                 |               |          |   |   |        |                   | DMA0 St | art Vector |        |        |
| DMA0            | DMAOV/        | 80H      |   |   | DMA0V5 | DMA0V4            | DMA0V3  | DMA0V2     | DMA0V1 | DMA0V0 |
| Start<br>Vector | DMA0V         | (no RMW) |   |   |        |                   | R/      | W          |        |        |
| Vector          | CCIO          |          |   |   | 0      | 0                 | 0       | 0          | 0      | 0      |
| 5144            |               |          |   |   |        |                   | DMA1 St | art Vector |        |        |
| DMA1            | DMAAV         | 81H      |   |   | DMA1V5 | DMA1V4            | DMA1V3  | DMA0V2     | DMA1V1 | DMA1V0 |
| Start<br>Vector | DMA1V (no RMV | (no RMW) |   |   | R/W    |                   |         |            |        |        |
| Vector          |               |          |   |   | 0      | 0                 | 0       | 0          | 0      | 0      |
| DIALO           |               |          |   |   |        | DMA2 Start Vector |         |            |        |        |
| DMA2            | DMA2V         | 82H      |   |   | DMA2V5 | DMA2V4            | DMA2V3  | DMA2V2     | DMA2V1 | DMA2V0 |
| Start<br>Vector | DIVIAZV       | (no RMW) |   |   |        |                   | R/W     |            |        |        |
| VCCtoi          |               |          |   |   | 0      | 0                 | 0       | 0          | 0      | 0      |
|                 |               |          |   |   |        |                   | DMA3 St | art Vector |        |        |
| DMA3            | D1446)/       | 83H      |   |   | DMA3V5 | DMA3V4            | DMA3V3  | DMA3V2     | DMA3V1 | DMA3V0 |
| Start<br>Vector | DMA3V         | (no RMW) |   |   |        |                   | R/      | W          |        |        |
| VECIOI          |               |          |   |   | 0      | 0                 | 0       | 0          | 0      | 0      |

## (5) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the Transfer Counter Register reaches zero. Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

| Name     | Symbol | Address  | 7 | 6 | 5 | 4 | 3     | 2           | 1            | 0     |
|----------|--------|----------|---|---|---|---|-------|-------------|--------------|-------|
| DMA      |        |          |   |   |   |   | DMAR3 | DMAR2       | DMAR1        | DMAR0 |
| Software | DMAR   | 89H      |   |   |   |   | R/W   | R/W         | R/W          | R/W   |
| Request  | DIVIAR | (no RMW) |   |   |   |   | 0     | 0           | 0            | 0     |
| Register |        |          |   |   |   |   |       | 1: DMA Soft | ware request |       |
| DMA      |        | 0.411    |   |   |   |   | DMAB3 | DMAB2       | DMAB1        | DMAB0 |
| Burst    | DMAB   | 8AH      |   |   |   |   |       | R/          | W            |       |
| Register |        | (no RMW) |   |   |   |   | 0     | 0           | 0            | 0     |

### (6) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore if, immediately before an interrupt is generated, the CPU fetches an instruction which clears the corresponding interrupt request flag (Note), the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0008H and jump to interrupt vector address FFFF08H.

To avoid this, an instruction which clears an interrupt request flag should always be preceded by a DI instruction.

Thus, before a POP SR instruction is executed, changing the value of the Interrupt Mask Register <IFF2 to IFF0>, a DI instruction should be used to disable interrupts. In addition, please note that the following two circuits are exceptional and demand special attention.

| INT0 to 5 Level Mode | In Level Mode INT0 is not an edge-triggered interrupt. Hence, in Level Mode the interrupt request flip-flop for INT0 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from Edge Mode to Level Mode, the interrupt request flag is cleared automatically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | (For example: in case of INT0)  If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to Level Mode so as to release a HALT state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the HALT state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the HALT state has been released.)  When the mode changes from Level Mode to Edge Mode, interrupt request flags which were set in Level Mode will not be cleared. Interrupt request flags must be cleared using the following sequence.  DI  LD (IIMC0), 00H; Switches interrupt input mode from Level Mode to Edge Mode.  LD (INTCLR), 0AH; Clears interrupt request flag. |
| INTRX                | The interrupt request flip-flop can only be cleared by a Reset or by reading the Serial Channel Receive Buffer. It cannot be cleared by an instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Note: The following instructions or pin input state changes are equivalent to instructions which clear the interrupt request flag.

INT0 to 5: Instructions which switch to Level Mode after an interrupt request has been generated in Edge Mode.

The pin input changes from High to Low after an interrupt request has been generated in Level Mode. (H  $\rightarrow$  L)

INTRX: Instructions which read the Receive Buffer

## 3.6 Port Functions

The TMP91C829 features 53 bit settings which relate to the various I/O ports.

As well as general-purpose I/O port functionality, the port pins also have I/O functions which relate to the built-in CPU and internal I/Os. Table 3.6.1 lists the functions of each port pin. Table 3.6.2 lists I/O registers and their specifications.

Table 3.6.1 Port functions (R:  $\uparrow$  = with programmable pull-up resistor)

|           |            | Tubic 0.0      | . i Port funct | <u> </u> |                           |                                   |  |
|-----------|------------|----------------|----------------|----------|---------------------------|-----------------------------------|--|
| Port Name | Pin Name   | Number of Pins | Direction      | R        | Direction<br>Setting Unit | Pin Name for Internal<br>Function |  |
| Port 1    | P10 to P17 | 8              | I/O            | 1        | Bit                       | D8 to D15                         |  |
| Port 2    | P20 to P27 | 8              | Output         | _        | Bit                       | A16 to A23                        |  |
| Port 5    | P53        | 1              | I/O            | <b>^</b> | Bit                       | BUSRQ                             |  |
|           | P54        | 1              | I/O            | <b>^</b> | Bit                       | BUSAK                             |  |
|           | P55        | 1              | I/O            | <b>^</b> | Bit                       | WAIT                              |  |
|           | P56        | 1              | I/O            |          | Bit                       | INT0                              |  |
| Port 6    | P60        | 1              | Output         | 1 -      | Bit                       | CS0                               |  |
|           | P61        | 1              | Output         | _        | Bit                       | CS1                               |  |
|           | P62        | 1              | Output         | -        | Bit                       | CS2                               |  |
|           | P63        | 1              | Output         | -        | Bit                       | CS3                               |  |
| Port 7    | P70        | 1              | I/O            | _        | Bit                       | TAOIN /INT1                       |  |
|           | P71        | 1              | I/O            | -        | Bit                       | TA1OUT                            |  |
|           | P72        | 1              | I/O            | -        | Bit                       | TA3OUT/INT2                       |  |
|           | P73        | 1              | I/O            | _        | Bit                       | TA4IN/INT3                        |  |
|           | P74        | 1              | I/O            | _        | Bit                       | TA5OUT                            |  |
|           | P75        | 1              | I/O            | _        | Bit                       | INT4                              |  |
| Port 8    | P80        | 1              | I/O            | . →      | Bit                       | TXD0                              |  |
|           | P81        | 1              | I/O            | <b>↑</b> | Bit                       | RXD0                              |  |
|           | P82        | 1              | I/O            | <b>↑</b> | Bit                       | SCLK0/CTS0                        |  |
|           | P83        | 1              | I/O            | <b>^</b> | Bit                       | STS0                              |  |
|           | P84        | 1              | I/O            | <b>↑</b> | Bit                       | TXD1                              |  |
|           | P85        | 1              | I/O            | <b>↑</b> | Bit                       | RXD1                              |  |
|           | P86        | 1              | I/O            | <b>↑</b> | Bit                       | SCLK1/CTS1                        |  |
|           | P87        | 1              | I/O            | <b>↑</b> | Bit                       | STS1                              |  |
| Port 9    | P90        | 1              | I/O            | _        | Bit                       | INT5                              |  |
|           | P93        | 1              | I/O            | -        | Bit                       | TB0IN0                            |  |
|           | P94        | 1              | I/O            | _        | Bit                       | TB0IN1                            |  |
|           | P95        | 1              | I/O            | -        | Bit                       | TB0OUT0                           |  |
|           | P96        | 1              | I/O            | _        | Bit                       | TB0OUT1                           |  |
| Port A    | PA3        | 1              | Input          | -        | (Fixed)                   | ADTRG                             |  |
|           | PA0 to 7   | 7              | Input          | -        | (Fixed)                   | AN0 to AN7                        |  |
| Port Z    | PZ2        | 1              | I/O            | <b>^</b> | Bit                       | HWR                               |  |
|           | PZ3        | 1              | I/O            | <b>↑</b> | Bit                       |                                   |  |

Table 3.6.2 (a) I/O Registers and Their Specifications

X: Don't care

|        | Table 6.   | 6.2 (a) I/O Registers and Their Specifications |    |           | on t care |
|--------|------------|------------------------------------------------|----|-----------|-----------|
| Port   | Name       | Specification                                  | I/ | O Registe | rs        |
| 1 011  | ivailie    | Ореспісаціон                                   | Pn | PnCR      | PnFC      |
| Port 1 | P10 to P17 | Input port                                     | ×  | 0         | 0         |
|        |            | Output port                                    | ×  | 1         | 0         |
|        |            | D8 to D15 bus                                  | ×  | 1         | 1         |
| Port 2 | P20 to P27 | Output port                                    | ×  | 1         | 0         |
|        |            | A16 to A23 output                              | ×  | 1         | 1         |
| Port Z | PZ2        | Input port (without PU )                       | 0  | 0         | 0         |
|        |            | Input port (with PU)                           | 1  | 0         | 0         |
|        |            | Output port                                    | ×  | 1         | 0         |
|        |            | HWR output                                     | ×  | 1         | 1         |
|        | PZ3        | Input port (without PU )                       | 0  | 0         |           |
|        |            | Input port (with PU)                           | 1  | 0         | None      |
|        |            | Output port                                    | ×  | 1         |           |
| Port 5 | P53        | Input port (without PU )                       | 0  | 0         | 0         |
|        |            | Input port (with PU)                           | 1  | 0         | 0         |
|        |            | Output port                                    | ×  | 1         | 0         |
|        |            | BUSRQ Input (without PU )                      | 0  | 0         | 1         |
|        |            | BUSRQ Input (with PU)                          | 1  | 0         | 1         |
|        | P54        | Input port (without PU )                       | 0  | 0         | 0         |
|        |            | Input port (with PU)                           | 1  | 0         | 0         |
|        |            | Output port                                    | ×  | 1         | 0         |
|        |            | BUSAK output                                   | ×  | 1         | 1         |
|        | P55        | Input port / WAIT input (without PU )          | 0  | 0         |           |
|        |            | Input port / WAIT input (with PU)              | 1  | 0         | None      |
|        |            | Output port                                    | ×  | 1         |           |
|        | P56        | Input port / INT0 input (without PU )          | 0  | 0         | 1         |
|        |            | Input port / INT0 input (with PU)              | 1  | 0         | 1         |
|        |            | Output port                                    | ×  | 1         | 0         |
| Port 6 | P60 to P63 | Output port                                    | ×  |           | 0         |
|        | P60        | CS0 output                                     | ×  |           | 1         |
|        | P61        | CS1 output                                     | ×  | None      | 1         |
|        | P62        | CS2 output                                     | ×  |           | 1         |
|        | P63        | CS3 output                                     | ×  |           | 1         |
| Port 7 | P70 to P75 | Input port                                     | ×  | 0         | 0         |
|        |            | Output port                                    | ×  | 1         | 0         |
|        | P70        | TA0IN input                                    | ×  | 0         | None      |
|        |            | INT1 input                                     | ×  | 0         | 1         |
|        | P71        | TA1OUT output                                  | ×  | 1         | 1         |
|        | P72        | TA3OUT output                                  | ×  | 1         | 1         |
|        |            | INT2 input                                     | ×  | 0         | 1         |
|        | P73        | TA4IN input                                    | ×  | 0         | None      |
|        |            | INT3 input                                     | ×  | 0         | 1         |
|        | P74        | TA5OUT output                                  | ×  | 1         | 1         |
|        | P75        | INT4 input                                     | ×  | 0         | 1         |

Table 3.6.2 (b) I/O Registers and Their Specifications

| v. | Don't | 0050 |
|----|-------|------|
| Λ. | Don't | care |

| Port   | Name       | Specification                             | I, | O Registe | rs    |  |
|--------|------------|-------------------------------------------|----|-----------|-------|--|
| FUIL   | Ivaille    | Specification                             | Pn | PnCR      | PnFC  |  |
| Port 8 | P80        | Input port (without PU)                   | 0  | 0         | 0     |  |
|        |            | Input port (with PU)                      | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | TXD0 output                               | ×  | 1         | 1     |  |
|        | P81        | Input port /RXD0 input (without PU)       | 0  | 0         |       |  |
|        |            | Input port /RXD0 input (with PU)          | 1  | 0         | None  |  |
|        |            | Output port                               | ×  | 1         |       |  |
|        | P82        | Input port /SCLK0/CTS0 input (without PU) | 0  | 0         | 0     |  |
|        |            | Input port /SCLK0/CTS0 input (with PU)    | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | SCLK0 output                              | ×  | 1         | 1     |  |
|        | P83        | Input port (without PU)                   | 0  | 0         | 0     |  |
|        |            | Input port (with PU)                      | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | STS0 output                               | ×  | 1         | 1     |  |
|        | P84        | Input port (without PU)                   | 0  | 0         | 0     |  |
|        |            | Input port (with PU)                      | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | TXD1 output                               | ×  | 1         | 1     |  |
|        | P85        | Input port /RXD1 input (without PU)       | 0  | 0         |       |  |
|        |            | Input port /RXD1 input (with PU)          | 1  | 0         | None  |  |
|        |            | Output port                               | ×  | 1         |       |  |
|        | P86        | Input port /SCLK1/CTS1 input (without PU) | 0  | 0         | 0     |  |
|        | 1.00       | Input port /SCLK1/CTS1 input (with PU)    | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | SCLK1 output                              | ×  | 1         | 1     |  |
|        | P87        | Input port (without PU)                   | 0  | 0         | 0     |  |
|        |            | Input port (with PU)                      | 1  | 0         | 0     |  |
|        |            | Output port                               | ×  | 1         | 0     |  |
|        |            | STS1 output                               | ×  | 1         | 1     |  |
| Port 9 | P90        | Input port                                | ×  | 0         | 0     |  |
|        | . 55       | Output port                               | ×  | 1         | 0     |  |
|        |            | INT5 input                                | ×  | 0         | 1     |  |
|        | P93 to P96 | Input port                                | ×  | 0         |       |  |
|        |            | Output port                               | ×  | 1         |       |  |
|        | P93        | TB0IN0 input                              | ×  | 0         | None  |  |
|        | P94        | TB0IN1 input                              | ×  | 0         |       |  |
|        | P95        | TB0OUT0 output                            | ×  | 1         | 1     |  |
|        | P96        | TB0OUT1 output                            | ×  | 1         | 1     |  |
| Port A | PA3        | Input port                                | ×  | † '       | · · · |  |
| . 5    | . 7.0      | ADTRG input                               | ×  | 1         |       |  |
|        | PA0 to PA7 | Input port                                | ×  | None      |       |  |
|        | 17.0.017.1 | AN0 to AN7                                | ×  | ╡         |       |  |

Note 1: When PA1 to PA4 are used as AD converter input channels, a 3-bit field in the AD Mode Control Register ADMOD1<ADCH2 to ADCH0> is used to select the channel.

Note 2: When PA0 is used as the ADTRG input, ADMOD1<ADTRGE> is used to enable external trigger input.

After a Reset the port pins listed below function as general-purpose I/O port pins.

A Reset sets I/O pins which can be programmed for either input or output to be input port pins.

Setting the port pins for internal function use must be done in software.

## Note about bus release and programmable pull-up I/O port pins

When the bus is released (i.e. when  $\overline{BUSAK}=0$ ), the output buffers for D0 to D15, A0 to A23, and the control signals (  $\overline{RD}$ ,  $\overline{WR}$ ,  $\overline{HWR}$  and  $\overline{CSO}$  to  $\overline{CS3}$ ) are off and are set to High-Impedance.

However, the output of built-in programmable pull-up resistors are kept before the bus is released. These programmable pull-up resistors can be selected ON/OFF by programmable when they are used as the input ports.

When they are used as output ports, they cannot be turned ON/OFF in software. Table 3.6.3 shows the pin states after the bus has been released.

Table 3.6.3 Pin states (after bus release)

| Pin Names    | Pin State                               | e (after bus release)                             |
|--------------|-----------------------------------------|---------------------------------------------------|
| Pili Names   | Used as port                            | Used for function                                 |
| P10 to P17   | Unchanged                               | High-Impedance (Hi-Z)                             |
| ( D8 to D15) | (i.e. not set to High-Impedance (Hi-Z)) |                                                   |
| P20 to P27   | Unchanged                               | First all bits are set High, then they are set to |
| (A16 to 23)  | (i.e. not set to High-Impedance (Hi-Z)) | High-Impedance (Hi-Z).                            |
| RD           | <u></u>                                 | <b>^</b>                                          |
| WR           | '                                       | I                                                 |
| PZ2 ( HWR )  |                                         | The output buffer is set to OFF.                  |
|              | <b>↑</b>                                | The programmable pull-up resistor is set to ON    |
|              |                                         | irrespective of the output latch.                 |
| P60 ( CS0 )  |                                         |                                                   |
| P61 ( CS1 )  | <u></u>                                 | <b>^</b>                                          |
| P62 ( CS2 )  | '                                       |                                                   |
| P63 ( CS3 )  |                                         |                                                   |

Figure 3.6.1 shows an example external interface circuit when the bus release function is used.

When the bus is released, neither the internal memory nor the internal I/O can be accessed. However, the internal I/O continues to operate. As a result, the watchdog timer also continues to run. Therefore, the bus release time must be taken into account and care must be taken when setting the detection time for the WDT.

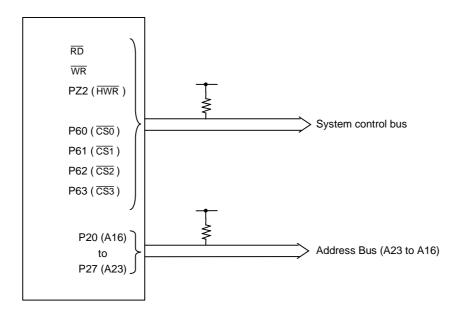



Figure 3.6.1 Interface circuit example (using bus release function)

The above circuit is necessary to set the signal level when the bus is released.

A reset sets ( $\overline{RD}$ ) and ( $\overline{WR}$ ), P60 ( $\overline{CSO}$ ), P61 ( $\overline{CS1}$ ), P62 ( $\overline{CS2}$ ), P63 ( $\overline{CS3}$ ) to output, and PZ2 ( $\overline{HWR}$ ) and P54 ( $\overline{BUSAK}$ ) to input with pull-up resistor.

## 3.6.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P1CR. Resetting , the control register P1CR to 0 and sets Port 1 to input mode.

In addition to functioning as a general-purpose I/O port, Port 1 can also function as an address data bus (D8 to 15).

In case of AM1 = 0, and AM = 1 (outside 16-bit data bus), port 1 always functions as the data bus (D8 to D15) irrespective of the setting in P1CR control register.

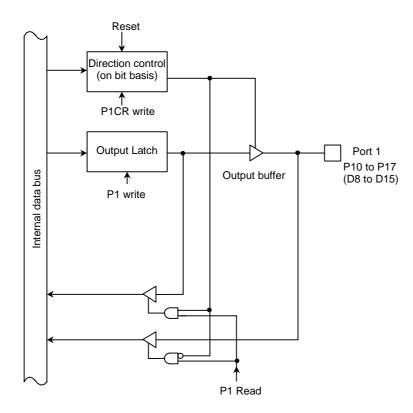



Figure 3.6.2 Port 1

## Port 1 Register

|         |             | 7   | 6                                                       | 5   | 4   | 3   | 2   | 1   | 0   |  |  |  |
|---------|-------------|-----|---------------------------------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| P1      | Bit symbol  | P17 | P16                                                     | P15 | P14 | P13 | P12 | P11 | P10 |  |  |  |
| (0001H) | Read/Write  |     | R/W Input mode (Output latch register is cleared to 0.) |     |     |     |     |     |     |  |  |  |
|         | After Reset |     |                                                         |     |     |     |     |     |     |  |  |  |

## Port 1 Control Register

|          |             | 7    | 6            | 5    | 4    | 3    | 2    | 1    | 0    |  |  |
|----------|-------------|------|--------------|------|------|------|------|------|------|--|--|
| P1CR     | Bit symbol  | P17C | P16C         | P15C | P14C | P13C | P12C | P11C | P10C |  |  |
| (0004H)  | Read/Write  | W    |              |      |      |      |      |      |      |  |  |
| (000-11) | After Reset | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0    |  |  |
|          | Function    |      | 0: IN 1: OUT |      |      |      |      |      |      |  |  |
| -        |             |      |              |      |      |      |      |      |      |  |  |

Note: Read-modify-write is prohibited for P1CR.

Port 1 I/O setting

0 Input
1 Output

Figure 3.6.3 Register for Port 1

# 3.6.2 Port 2 (P20 to P27)

Port 2 is an 8-bit output port. In addition to functioning as a output port, Port 2 can also function as an address bus (A16 to A23).

Each bit can be set individually for address bus using the function register P2FC. Resetting sets all bits of the function register P2FC to 1 and sets Port 2 to address bus.

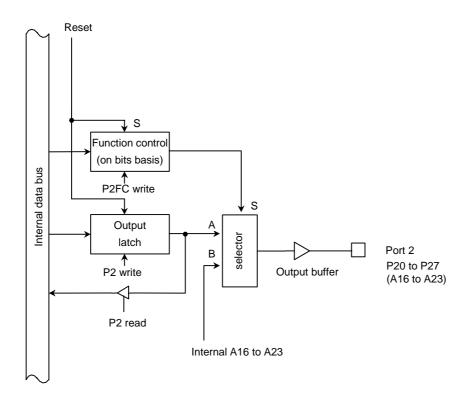



Figure 3.6.4 Port 2

#### Port 2 Register 7 6 5 4 3 2 0 1 P2 P27 P26 P25 P24 P21 Bit symbol P23 P22 P20 (0006H)Read/Write R/W After Reset Output latch register is set to 1

#### Port 2 Function Register 7 2 6 5 4 3 0 Bit symbol P27F P26F P25F P24F P23F P22F P21F P20F P2FC Read/Write (0009H)After Reset 1 1 1 1 Function 0: Port 1: Address bus (A23 to A16)

Note: Read-modify-write is prohibited for P2FC.

Figure 3.6.5 Register for Port 2

# 3.6.3 Port 5 (P53 to P56)

Port 5 is an 4-bit general-purpose I/O port. I/O is set using control register P5CR and P5FC. Resetting resets all bits of the output latch P5 to 1, the control register P5CR and the function register P5FC to 0 and sets P52 to P56 to input mode with pull-up register.

In addition to functioning as a general-purpose I/O port, Port 5 also functions as I/O for the CPU's control / status signal.

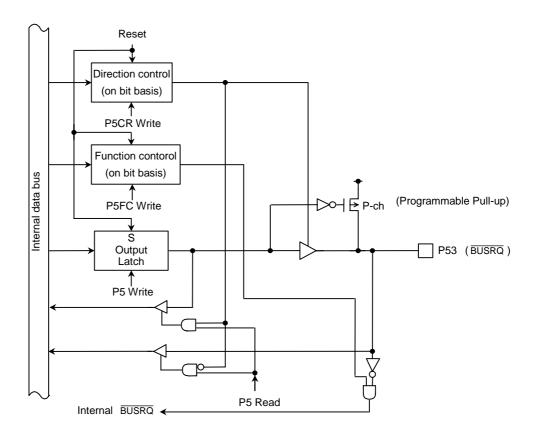



Figure 3.6.6 Port 53

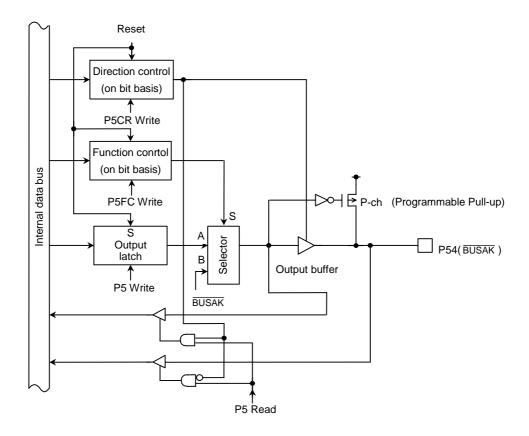



Figure 3.6.7 Port 54

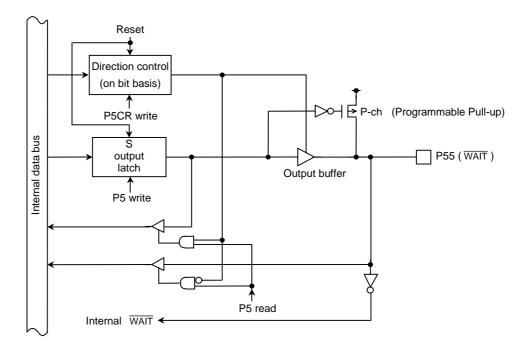



Figure 3.6.8 Port 55

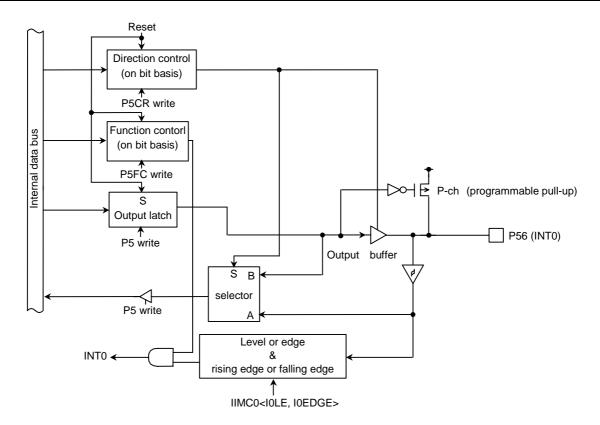
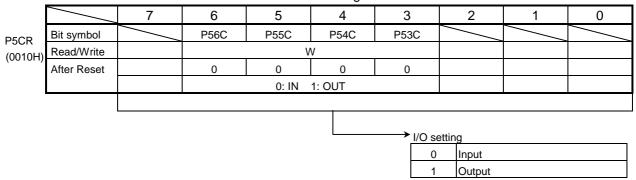




Figure 3.6.9 Port 56

## Port 5 Register

|          |             | 7 | 6       | 5            | 4       | 3   | 2 | 1 | 0 |
|----------|-------------|---|---------|--------------|---------|-----|---|---|---|
| P5       | Bit symbol  |   | P56     | P55          | P54     | P53 |   |   |   |
| (000DH)  | Read/Write  |   |         | R/W          |         |     |   |   |   |
| (000011) | After Reset |   | Input i | mode (With P | ull-up) |     |   |   |   |
|          |             |   | 1       | 1            | 1       | 1   |   |   |   |

## Port 5 Control Register



Port 5 Function Register

|         |             | 7       | 6       | 5 | 4        | 3        | 2 | 1 | 0 |
|---------|-------------|---------|---------|---|----------|----------|---|---|---|
|         | Bit symbol  |         | P56F    |   | P54F     | P53F     |   |   |   |
| P5FC    | Read/Write  |         |         |   | V        | V        |   |   |   |
| (0011H) | After Reset |         | 0       |   | 0        | 0        |   |   |   |
|         | Function    | Always  | 0: PORT |   | 0: PORT  | 0: PORT  |   |   |   |
|         |             | Write 0 | 1: INT0 |   | 1: BUSAK | 1: BUSRQ |   |   |   |
|         |             |         | Input   |   |          |          |   |   |   |

Note1: Read-modify-write is prohibited for register P5CR, P5FC.

Note2: When port5 is used in the input mode, P5 register controls the built-in pull-up resistor. Read-modify-write is prohibited in the input mode or the I/O mode. Setting the built-in pull-up resistor may be depended on the States of the input pin.

Note3: When P55 pin is used as a WAIT pin ,set P5CR<P55C> to 0 and Chip Select/WAIT control register <BnW2:0> to 010.

Figure 3.6.10 Register for Port 5

# 3.6.4 Port 6 (P60 to P63)

Port 6 is a 4-bit output port. When reset, the P62 latch is cleared to 0 while the P60-P63 output latches are set to 1.

In addition to functioning as an output port, this port can output standard chip select signals ( $\overline{\text{CSO}}$  to  $\overline{\text{CS3}}$ ). These settings are made by using the P6FC register. When reset, the P6FC register has all of its bits cleared to 0, so that the port is set for output mode.

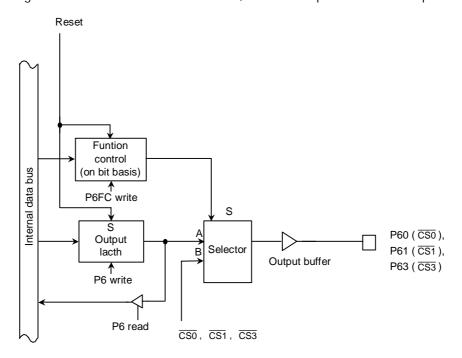



Figure 3.6.11 Port 60, 61, 63

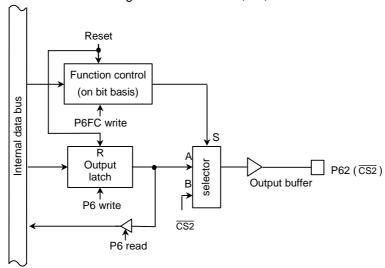



Figure 3.6.12 Port 62

#### Port 6 Register 5 3 6 2 1 0 P63 P62 P61 P60 Bit symbol P6 Read/Write R/W (0012H) After Reset 1 0 1

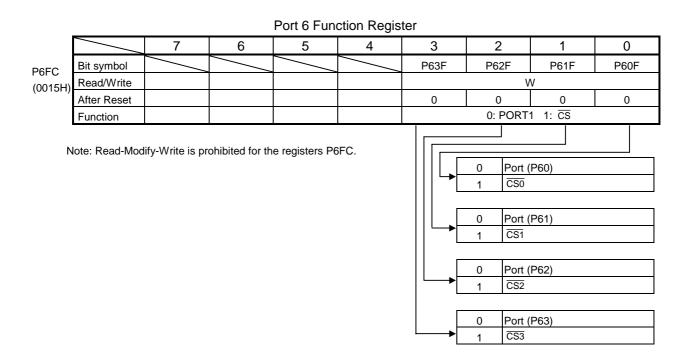



Figure 3.6.13 Register for Port 6

## 3.6.5 Port 7 (P70 to P75)

Port 7 is a 6-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets Port 7 to be an input port. In addition to functioning as a general-purpose I/O port, the individual port pins can also have the following functions: port pins 70 and 73 can function as the inputs TA0IN and TA4IN to the 8-bit timer, and port pins 71, 72 and 74 can function as the 8-bit timer outputs TA1OUT, TA3OUT and TA5OUT. For each of the output pins, timer output can be enabled by writing a 1 to the corresponding bit in the Port 7 Function Register (P7FC).

Resetting resets all bits of the registers P7CR and P7FC to 0, and sets all bits to be input port pins.

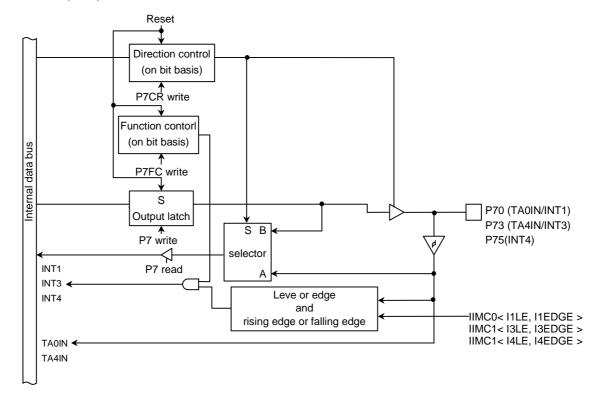



Figure 3.6.14 Port 70,73,75

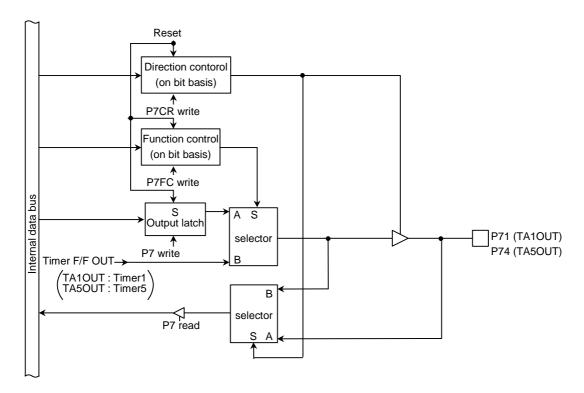



Figure 3.6.15 Port 71, 74

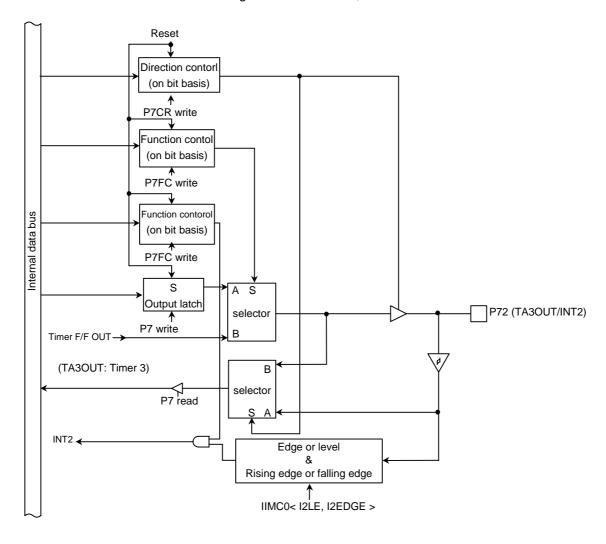
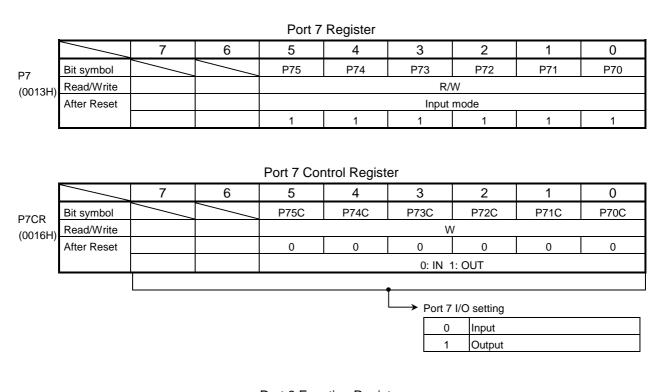




Figure 3.6.16 Port 72



Port 6 Function Register 5 3 2 6 1 0 P72F2 P75F P74F P73F P72F1 P71F P70F Bit symbol W W W Read/Write W P7FC 0 After Reset 0 0 0 0 0 0 (0017H) **Function** 0: PORT 1: INT2 1: INT4 1: TA5OUT 1: INT3 1: TA3OUT 1: TA1OUT 1: INT1 input input input input Note: Read-Modify-Write is prohibited for the registers P7CR and P7FC. Setting P71 as timer output1 P7FC<P71F> 1 P7CR<P71C>

Figure 3.6.17 Port 7 registers

Setting P72 as timer output3

➤ Setting P74 as timer output5

1

1

P7FC<P72F1>

P7CR<P72C>

P7FC<P74F>

P7CR<P74C>

# 3.6.6 Port 8 (P80 to P87)

#### Port pins 80 to 87

Port pins 80 to 87 constitute a 8-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets P80 to P87 to be an input port. It also sets all bits of the output latch register to 1.

In addition to functioning as general-purpose I/O port pins, P80 to P87 can also function as the I/O for serial channels 0. These function can be enabled for I/O by writing a 1 to the corresponding bit of the Port 8 Function Register (P8FC).

Resetting resets all bits of the registers P8CR and P8FC to 0 and sets all bits to be input port pins.(with pull-up resistors).

## (1) Port pin 80 (TXD0), 84 (TXD1)

As well as functioning as I/O port pins, port pin 80, 84 can also function as serial channel TXD output pins.

These port pins feature a programmable open-drain function.

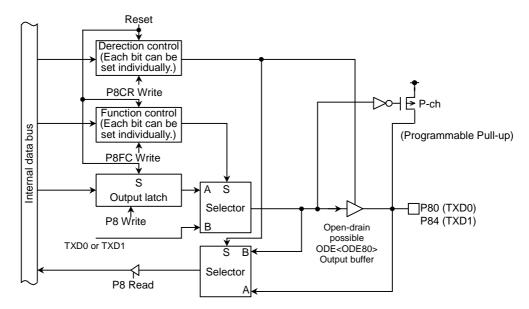



Figure 3.6.18 Port pins 80, 84

### (2) Port pin 81 (RXD0), 85 (RXD1)

Port pin 81, 85 are I/O port pins and can also be used as RXD input pin for the serial channels.

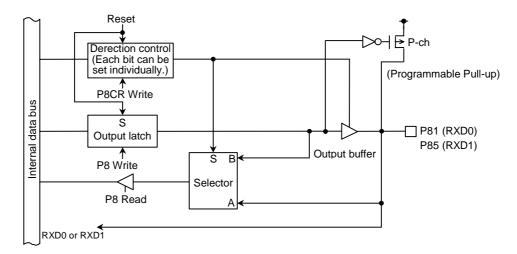



Figure 3.6.19 Port pins 81, 85

# (3) Port pins 82 (CTS0 /SCLK0), 86 (CTS1/SCLK1)

Port pins 82, 86 are I/O port pins and can also be used as the  $\overline{\text{CTS}}$  input pins or SCLK I/O pins for the serial channels.

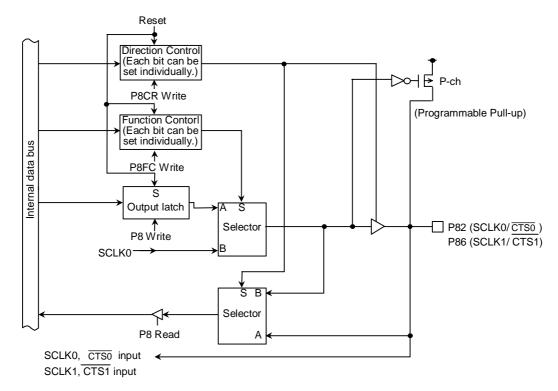



Figure 3.6.20 Ports 82, 86

# (4) Port pin 83 (/STS0), 87 (/STS1)

Port pin 83, 87 are I/O port pins and can also be used as STS output pin for the received data request signal.

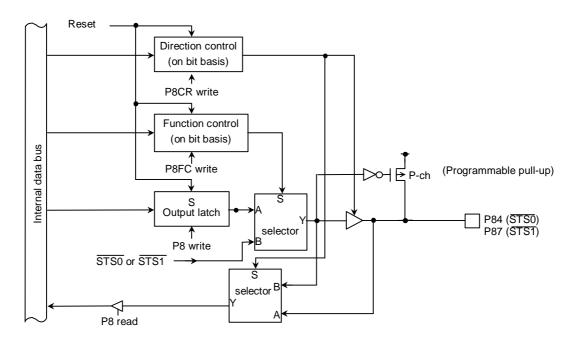
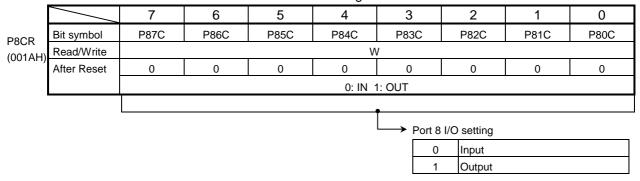




Figure 3.6.21 Port pin 84, 87

#### Port 8 Register

| ŀ        |             | 7   | 6                                  | 5   | 4   | 3   | 2   | 1   | 0   |  |  |  |
|----------|-------------|-----|------------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| P8       | Bit symbol  | P87 | P86                                | P85 | P84 | P83 | P82 | P81 | P80 |  |  |  |
| (0018H)  | Read/Write  |     | R/W                                |     |     |     |     |     |     |  |  |  |
| (001011) | After Reset |     | Input Mode (with pull-up resistor) |     |     |     |     |     |     |  |  |  |
|          |             | 1   | 1                                  | 1   | 1   | 1   | 1   | 1   | 1   |  |  |  |

#### Port 8 Control Register



#### Port 8 Function Register

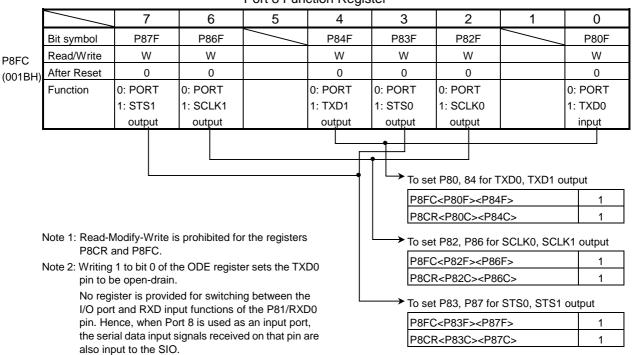



Figure 3.6.22 Port 8 register

# 3.6.7 Port 9 (P90, P93 to P96)

Port 9 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output, Resetting sets port9 to be an input port, It also sets all bits in the output latch register P9 to 1.In addition to functioning as a general-purpose I/O port, the various pins of Port 9 can also function as the clock input for the 16-bit timer flipflop putput, on as input INT5. These functions cn be enabled by writing a 1 to the corresponding bits in the Port 9 function registers (P9FC).

# (1) P90

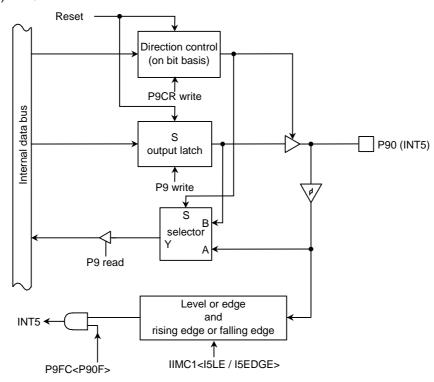



Figure 3.6.23 Port 90

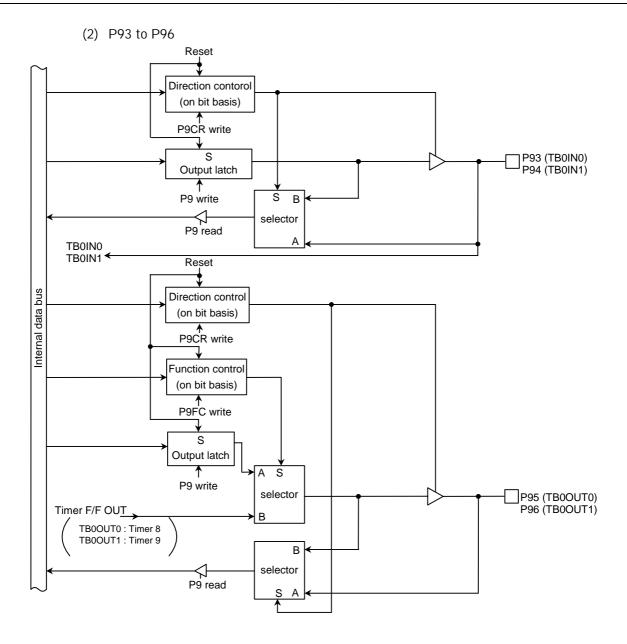



Figure 3.6.24 Port pins P93 to P96

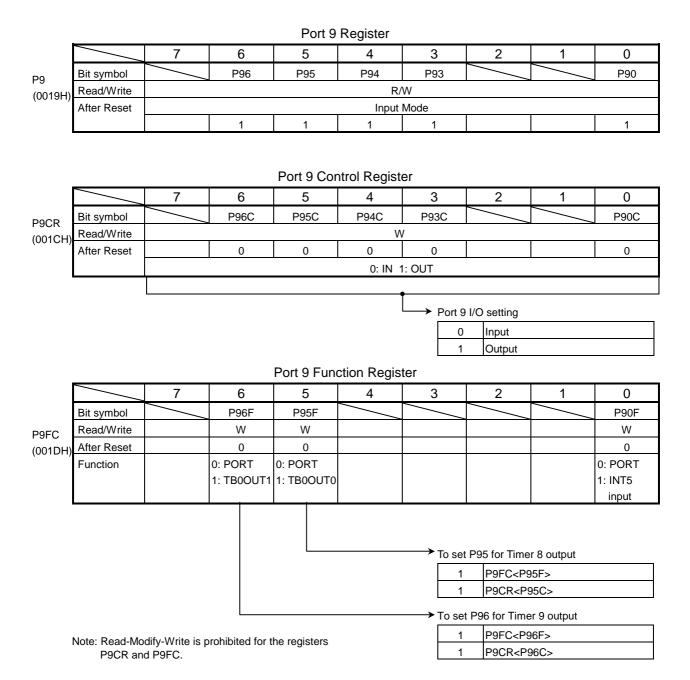



Figure 3.6.25 Port 9 registers

# 3.6.8 Port A (PA0 to PA7)

Port A is an 8-bit input port and can also be used as the analog input pins for the internal AD converter.

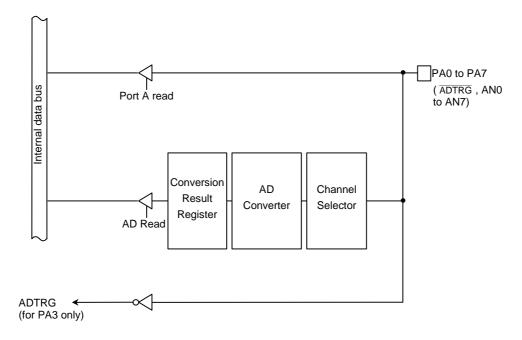



Figure 3.6.26 Port A

# PortA Register

|         |             | 7          | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |  |
|---------|-------------|------------|-----|-----|-----|-----|-----|-----|-----|--|--|
| PA      | Bit symbol  | PA7        | PA6 | PA5 | PA4 | PA3 | PA2 | PA1 | PA0 |  |  |
| (0019H) | Read/Write  |            | R   |     |     |     |     |     |     |  |  |
|         | After Reset | Input Mode |     |     |     |     |     |     |     |  |  |

Note: The input channel selection of AD Converter and the permission of ADTRG input are set by AD Converter mode register ADMOD1.

Figure 3.6.27 Port A Register

## 3.6.9 Port Z (PZ2, PZ3)

Port Z is a 4-bit general-purpose I/O port. I/O is set using control register PZCR and PZFC. Resetting resets all bits of the output latch PZ to 1, the control register PZCR and the function register PZFC to 0 and sets PZ2 and PZ3 to input mode with pull-up register.

In addition to functioning as a general-purpose I/O port. Port Z also functions as I/O for the CPU's control /status signal.

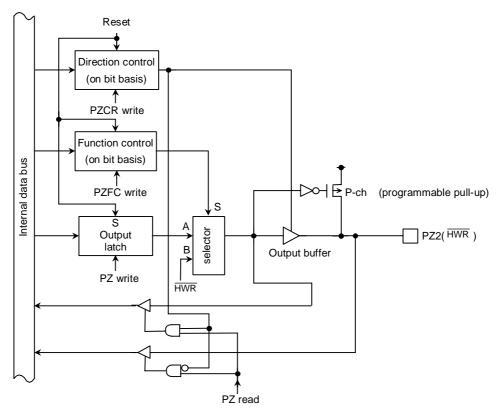



Figure 3.6.28 Port Z2

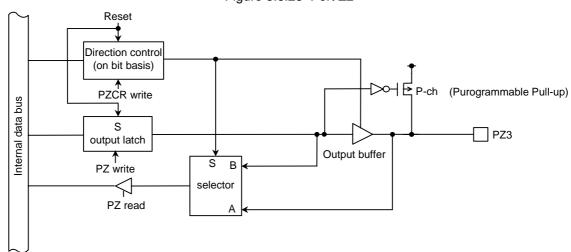



Figure 3.6.29 Port Z3

|         |             |   |   | Port Z    | Register      |            |                                    |   |   |
|---------|-------------|---|---|-----------|---------------|------------|------------------------------------|---|---|
|         |             | 7 | 6 | 5         | 4             | 3          | 2                                  | 1 | 0 |
| PZ      | Bit symbol  |   |   |           |               | PZ3        | PZ2                                |   |   |
| (007DH) | Read/Write  |   | V | V         |               | R/W        |                                    |   |   |
| (00.2)  | After Reset |   |   |           |               | Input      | mode                               |   |   |
|         |             |   |   |           |               | 1          | 1                                  |   |   |
|         |             |   |   | Port Z co | ntrol registe | er         |                                    |   |   |
|         |             | 7 | 6 | 5         | 4             | 3          | 2                                  | 1 | 0 |
| PZCR    | Bit symbol  |   |   |           |               | PZ3        | PZ2                                |   |   |
| (007EH) | Read/Write  |   |   |           |               | V          | V                                  |   |   |
| (00)    | After Reset |   |   |           |               | 0          | 0                                  |   |   |
|         |             |   |   |           |               | 0: IN      | 1: OUT                             |   |   |
|         |             |   |   |           |               | Settin 0 1 | g port Z as I/0<br>Input<br>Output | ) |   |
| ı       |             |   |   | Port Z co | ntrol registe | er         |                                    |   |   |
|         |             | 7 | 6 | 5         | 4             | 3          | 2                                  | 1 | 0 |
|         | Bit symbol  |   |   |           |               |            | PZ2F                               |   |   |
| PZFC    | Read/Write  |   |   | 1         |               |            | W                                  |   |   |
| (007FH) | After Reset |   |   |           |               |            | 0                                  |   |   |
|         | Function    |   |   |           |               |            | 0: PORT                            |   |   |
|         |             |   |   |           |               |            | 1: HWR                             |   |   |

Figure 3.6.30 Port Z registers

# 3.7 Chip Select/Wait Controller

On the TMP91C829, four user-specifiable address areas (CS0 to CS3) can be set. The data bus width and the number of waits can be set independently for each address area (CS0 to CS3 plus any other).

The pins  $\overline{\text{CSO}}$  to  $\overline{\text{CS3}}$  (which can also function as port pins P60 to P63) are the respective output pins for the areas CS0 to CS3. When the CPU specifies an address in one of these areas, the corresponding  $\overline{\text{CSO}}$  to  $\overline{\text{CS3}}$  pin outputs the Chip Select signal for the specified address area (in ROM or SRAM). However, in order for the Chip Select signal to be output, the Port 6 Function Register P6FC must be set. External connection of ROM and SRAM is supported.

The areas CS0 to CS3 are defined by the values in the Memory Start Address Registers MSAR0 to MSAR3 and the Memory Address Mask Registers MAMR0 to MAMR3.

The Chip Select/Wait Control Registers B0CS to B3CS and BEXCS should be used to specify the Master Enable/Disable status the data bus width and the number of waits for each address area.

The input pin which controls these states is the Bus Wait Request pin (WAIT).

## 3.7.1 Specifying an Address Area

The address areas CS0 to CS3 are specified using the Memory Start Address Registers (MSAR0 to MSAR3) and the Memory Address Mask Registers (MAMR0 to MAMR3).

During each bus cycle, a compare operation is performed to determine whether or not the address specified on the bus corresponds to a location in one of the areas CS0 to CS3. If the result of the comparison is a match, it indicates that the corresponding CS area is to be accessed. If so, the corresponding  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  pin outputs the Chip Select signal and the bus cycle proceeds according to the settings in the corresponding B0CS to B3CS chip select/wait control register. (See 3.7.2, Chip Select/Wait Control Registers.)

### (1) Memory Start Address Registers

Figure 3.7.1 shows the Memory Start Address Registers. The Memory Start Address Registers MSAR0 to MSAR3 determine the start addresses for the memory areas CS0 to CS3 respectively. The eight most significant bits (A23 to A16) of the start address should be set in <S23 to S16>. The 16 least significant bits of the start address (A15 to A0) are fixed to 0. Thus the start address can only be set to lie on a 64-Kbyte boundary, starting from 000000H. Figure 3.7.2 shows the relationship between the value set in the start address register and the start address.

#### 6 5 4 3 1 0 2 S23 S21 S22 S20 S19 S18 S17 S16 MSAR0 (00C8H) / Bit symbol MSAR1 (00CAH) Read/Write R/W MSAR2 (00CCH)/ After Reset 1 1 1 MSAR3 (00CEH) Function Determines A23 to A16 of start address Sets start addresses for areas CO0 to CS3.

Memory Start Address Registers (for areas CS0 to CS3)

Figure 3.7.1 Memory Start Address Register

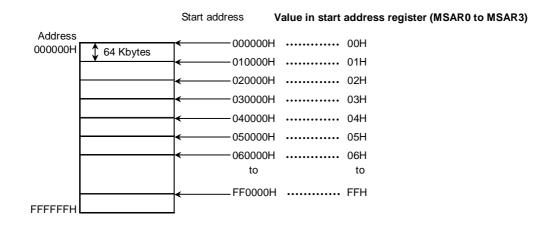



Figure 3.7.2 Relationship Between Start Address and start Address Register Value

### (2) Memory Address Mask Registers

Figure 3.7.3 shows the Memory Address Mask Registers. The size of each of the areas CS0 to CS3 can be set by specifying a mask in the corresponding memory address mask register (MAMR0 to MAMR3). Each bit in a memory address mask register (MAMR0 to MAMR3) which is set to 1 masks the corresponding bit of the start address which has been set in the corresponding memory start address register (MSAR0 to MSAR3). The compare operation used to determine whether or not a bus address is in one of the areas CS0 to CS3 only compares address bits for which a 0 has been set in the corresponding bit position in the corresponding memory address mask register.

Also, the address bits which each memory address mask register can mask vary from register to register; hence, the possible size settings for the areas CS0 to CS3 differ accordingly.

#### Memory address mask register (for CS0 area)

|         |             | 7                                                 | 6               | 5   | 4   | 3   | 2   | 1        | 0  |  |  |  |
|---------|-------------|---------------------------------------------------|-----------------|-----|-----|-----|-----|----------|----|--|--|--|
|         | Bit symbol  | V20                                               | V19             | V18 | V17 | V16 | V15 | V14 to 9 | V8 |  |  |  |
| (00C9H) | Read/Write  |                                                   | R/W             |     |     |     |     |          |    |  |  |  |
|         | After Reset | 1                                                 | 1 1 1 1 1 1 1 1 |     |     |     |     |          |    |  |  |  |
|         | Function    | Sets size of CS0 area 0: used for address compare |                 |     |     |     |     |          |    |  |  |  |

Range of possible settings for CS0 area size: 256 bytes to 2 Mbytes.

#### Memory address mask register (CS1)

|         |             | 7                                                 | 6   | 5   | 4   | 3   | 2   | 1        | 0  |  |  |  |
|---------|-------------|---------------------------------------------------|-----|-----|-----|-----|-----|----------|----|--|--|--|
|         | Bit symbol  | V21                                               | V20 | V19 | V18 | V17 | V16 | V15 to 9 | V8 |  |  |  |
| (00CBH) | Read/Write  |                                                   | R/W |     |     |     |     |          |    |  |  |  |
|         | After Reset | 1                                                 | 1   | 1   | 1   | 1   | 1   | 1        | 1  |  |  |  |
|         | Function    | Sets size of CS0 area 0: used for address compare |     |     |     |     |     |          |    |  |  |  |

Range of possible settings for CS1 area size: 256 bytes to 4M bytes.

#### Memory address mask register (CS2, CS3)

MAMR2 (00CDH) / MAMR3 (00CFH)

|              | 7                                                        | 6               | 5   | 4   | 3   | 2   | 1   | 0   |  |  |  |  |
|--------------|----------------------------------------------------------|-----------------|-----|-----|-----|-----|-----|-----|--|--|--|--|
| / Bit symbol | V22                                                      | V21             | V20 | V19 | V18 | V17 | V16 | V15 |  |  |  |  |
| Read/Write   |                                                          | R/W             |     |     |     |     |     |     |  |  |  |  |
| After Reset  | 1                                                        | 1 1 1 1 1 1 1 1 |     |     |     |     |     |     |  |  |  |  |
| Function     | Sets size of CS2 or CS3 area 0: used for address compare |                 |     |     |     |     |     |     |  |  |  |  |

Range of possible settings for CS2 and CS3 area sizes: 32 Kbytes to 8 Mbytes.

Figure 3.7.3 Memory Address mask Registers

### (3) Setting Memory Start Addresses and Address Areas

Figure 3.7.4 shows an exa to ple in which CS0 is specified to be a 64-Kbyte address area starting at 010000H.

First, MSAR0<S23 to S16>, the eight most significant bits of the start address register and which correspond to the memory start address, are set to 01H. Next, based on the desired CS0 area size, the difference between the start address and the end address (01FFFFH) is calculated. Bits 20 to 8 of this result constitute the mask value for the desired CS0 area size. Setting this value in MAMR0<V20 to V8> (bits 20 to 8 of the memory address mask register) sets the desired area size for CS0. In this example 07H is set in MAMR0, specifying an area size of 64 Kbytes.

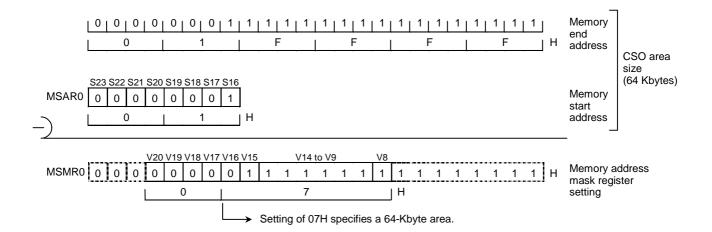



Figure 3.7.4 Example showing how to set the CS0 area

A Reset sets MSAR0 to MSAR3 and MAMR0 to MAMR3 to FFH. In addition, B0CS<B0E>, B1CS<B1E> and B3CS<B3E> are reset to 0, disabling the CS0, CS1 and CS3 areas. However, since a Reset resets B2CS<B2M> to 0 and sets B2CS<B2E> to 1, CS2 is enabled with the address range 001800H to 001F7FFH, 020000H to FFFFFFH. When addresses outside the areas specified as CS0 to CS3 are accessed, the bus width and number of waits specified in BEXCS are used. (See 3.6.2, Chip Select/Wait Control Registers.)

## (4) Address Area Size Specification

Table 3.7.1 shows the valid area sizes for each CS area and indicates which method can be used to make the size setting. A  $\Delta$  indicates that it is not possible to set the area size in question using the memory start address register and memory address mask register. If an area size for a CS area marked  $\Delta$  in the table is to be set, the start address must either be set to 000000H or to a value that is greater than 000000H by an integer multiple of the desired area size.

If the CS2 area is set to 16 Mbytes or if two or more areas overlap, the lowest-numbered CS area has highest priority (e.g. CS0 has a higher priority than any other area).

Example: To set the area size for CS0 to 128 Kbytes:

① Valid start addresses



#### ② Invalid start addresses

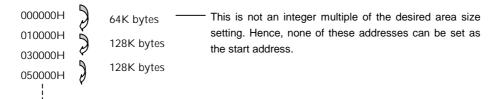



Table 3.7.1 Valid area sizes for each CS area

| Size (bytes)<br>CS area | 256 | 512 | 32 K | 64 K | 128 K | 256 K | 512 K | 1 M | 2 M | 4 M | 8 M |
|-------------------------|-----|-----|------|------|-------|-------|-------|-----|-----|-----|-----|
| CS0                     | 0   | 0   | 0    | 0    | Δ     | Δ     | Δ     | Δ   | Δ   |     |     |
| CS1                     | 0   | 0   |      | 0    | Δ     | Δ     | Δ     | Δ   | Δ   | Δ   |     |
| CS2                     |     |     | 0    | 0    | Δ     | Δ     | Δ     | Δ   | Δ   | Δ   | Δ   |
| CS3                     |     |     | 0    | 0    | Δ     | Δ     | Δ     | Δ   | Δ   | Δ   | Δ   |

91C829-71

## 3.7.2 Chip Select/Wait Control Registers

Figure 3.7.5 lists the Chip Select/Wait Control Registers.

The Master Enable/Disable, Chip Select output waveform, data bus width and number of wait states for each address area (CS0 to CS3 plus any other) are set in the respective Chip Select/Wait Control Registers, B0CS to B3CS or BEXCS.

#### Chip Select/Wait Control Register

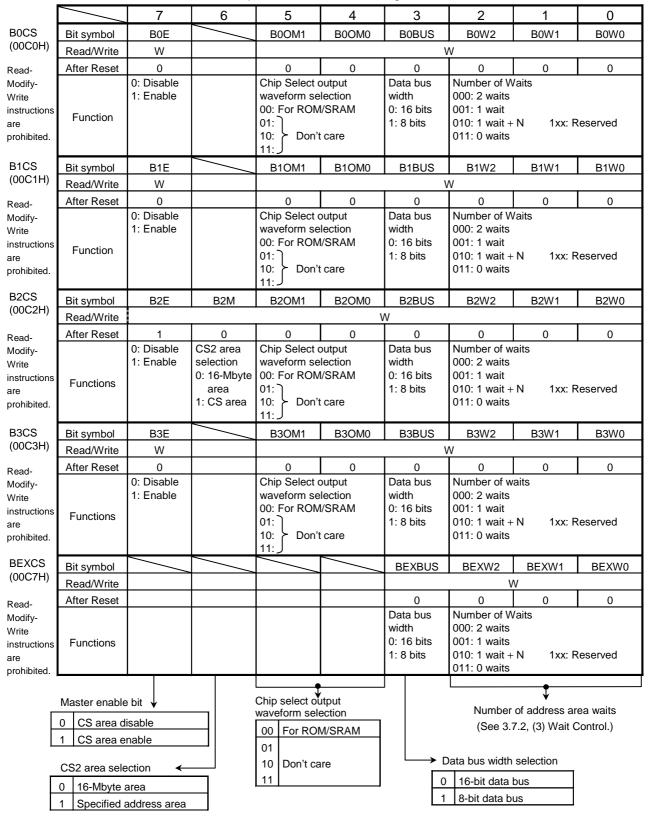



Figure 3.7.5 Chip Select/Wait Control Registers

## (1) Master Enable bits

Bit 7 (<B0E>, <B1E>, <B2E> or <B3E>) of a chip select/wait control register is the master bit which is used to enable or disable settings for the corresponding address area. Writing 1 to this bit enables the settings. A Reset disables <B0E>, <B1E> and <B3E> (i.e sets them to 0) and enables <B2E> (i.e. sets it to 1). Hence after a Reset only the CS2 area is enabled.

#### (2) Data bus width selection

Bit 3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> or <BEXBUS>) of a chip select/wait control register specifies the width of the data bus. This bit should be set to 0 when memory is to be accessed using a 16-bit data bus, and to 1 when an 8-bit data bus is to be used.

This process of changing the data bus width according to the address being accessed is known as dynamic bus sizing. For details of this bus operation see Figure 3.7.2.

| Table 3.7.2 Dynamic bus sizing |               |             |              |            |            |  |  |  |  |
|--------------------------------|---------------|-------------|--------------|------------|------------|--|--|--|--|
| Operand Data                   | Operand Start | Memory Data | CPU Address  | CPU        | Data       |  |  |  |  |
| Bus Width                      | Address       | Bus Width   | CF O Address | D15 to D8  | D7 to D0   |  |  |  |  |
| 8 bits                         | 2n + 0        | 8 bits      | 2n + 0       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Even number) | 16 bits     | 2n + 0       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | 2n + 1        | 8 bits      | 2n + 1       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Odd number)  | 16 bits     | 2n + 1       | b7 to b0   | xxxxx      |  |  |  |  |
| 16 bits                        | 2n + 0        | 8 bits      | 2n + 0       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Even number) |             | 2n + 1       | xxxxx      | b15 to b8  |  |  |  |  |
|                                |               | 16 bits     | 2n + 0       | b15 to b8  | b7 to b0   |  |  |  |  |
|                                | 2n + 1        | 8 bits      | 2n + 1       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Odd number)  |             | 2n + 2       | xxxxx      | b15 to b8  |  |  |  |  |
|                                |               | 16 bits     | 2n + 1       | b7 to b0   | xxxxx      |  |  |  |  |
|                                |               |             | 2n + 2       | xxxxx      | b15 to b8  |  |  |  |  |
| 32 bits                        | 2n + 0        | 8 bits      | 2n + 0       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Even number) |             | 2n + 1       | xxxxx      | b15 to b8  |  |  |  |  |
|                                |               |             | 2n + 2       | xxxxx      | b23 to b16 |  |  |  |  |
|                                |               |             | 2n + 3       | xxxxx      | b31 to b24 |  |  |  |  |
|                                |               | 16 bits     | 2n + 0       | b15 to b8  | b7 to b0   |  |  |  |  |
|                                |               |             | 2n + 2       | b31 to b24 | b23 to b16 |  |  |  |  |
|                                | 2n + 1        | 8 bits      | 2n + 1       | xxxxx      | b7 to b0   |  |  |  |  |
|                                | (Odd number)  |             | 2n + 2       | xxxxx      | b15 to b8  |  |  |  |  |
|                                |               |             | 2n + 3       | xxxxx      | b23 to b16 |  |  |  |  |
|                                |               |             | 2n + 4       | xxxxx      | b31 to b24 |  |  |  |  |
|                                |               | 16 bits     | 2n + 1       | b7 to b0   | xxxxx      |  |  |  |  |
|                                |               |             | 2n + 2       | b23 to b16 | b15 to b8  |  |  |  |  |
|                                |               |             | 2n + 4       | xxxxx      | b31 to b24 |  |  |  |  |

91C829-73

Table 3.7.2 Dynamic bus sizing

Input data in bit positions marked xxxxx is ignored during a read. During a write, the bus lines corresponding to these bit positions go High-Impedance and the Write Strobe signal for the bus remains Inactive.

### (3) Wait control

Bits 0 to 2 (<B0W0 to B0W2>, <B1W0 to B1W2>, <B2W0 to B2W2>, <B3W0 to B3W2> or <BEXW0 to BEXW2>) of a chip select/wait control register specify the number of waits that are to be inserted when the corresponding memory area is accessed.

The following types of wait operation can be specified using these bits. Bit settings other than those listed in the table should not be made.

|                             | Table 3.7.3 Walt operation Settings |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-----------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <bxw2 bxw0="" to=""></bxw2> | No. of Waits                        | Wait Operation                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 000                         | 2WAIT                               | Inserts a wait of two states, irrespective of the WAIT pin state.                                                                                                                                                            |  |  |  |  |  |  |  |
| 001                         | 1WAIT                               | Inserts a wait of one state, irrespective of the WAIT pin state.                                                                                                                                                             |  |  |  |  |  |  |  |
| 010                         | 1WAIT + N                           | Inserts one wait state, then continuously samples the state of the $\overline{\text{WAIT}}$ pin. While the $\overline{\text{WAIT}}$ pin remains Low, the wait continues; the bus cycle is prolonged until the pin goes High. |  |  |  |  |  |  |  |
| 011                         | 0WAIT                               | Ends the bus cycle without a wait, regardless of the WAIT pin state.                                                                                                                                                         |  |  |  |  |  |  |  |
| 1vv                         | Pocoryod                            | Do not sot                                                                                                                                                                                                                   |  |  |  |  |  |  |  |

Table 3.7.3 Wait operation settings

A Reset sets these bits to 000 (2 waits).

#### (4) Bus width and wait control for an area other than CS0 to CS3

The chip select/wait control register BEXCS controls the bus width and number of waits when memory locations which are not in one of the four user-specified address areas (CS0 to CS3) are accessed. The BEXCS register settings are always enabled for areas other than CS0 to CS3.

## (5) Selecting 16-Mbyte area/specified address area

Setting B2CS<B2M> (bit 6 of the chip select/wait control register for CS2) to 0 designates the 16-Mbyte area 001800H to 001F7FFH, 020000H to FFFFFFH as the CS2 area. Setting B2CS<B2M> to 1 designates the address area specified by the start address register MSAR2 and the address mask register MAMR2 as CS2 (i.e. if B2CS<B2M> = 1, CS2 is specified in the same manner as CS0, CS1 and CS3 are).

A Reset clears this bit to 0, specifying CS2 as a 16-Mbyte address area.

(6) Procedure for setting chip select/wait control

When using the chip select/wait control function, set the registers in the following order:

① Set the Memory Start Address Registers MSAR0 to MSAR3.

Set the start addresses for CS0 to CS3.

② Set the Memory Address Mask Registers MAMR0 to MAMR3.

Set the sizes of CS0 to CS3.

3 Set the chip select/wait control registers B0CS to B3CS.

Set the Chip Select output waveform, data bus width, number of waits and Master Enable/Disable status for  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$ .

The CS0 to CS3 pins can also function as pins P60 to P63. To output a Chip Select signal using one of these pins, set the corresponding bit in the Port 6 Function Register P6FC to 1.

If a CS0 to CS3 address is specified which is actually an internal I/O, RAM or ROM area address, the CPU accesses the internal address area and no Chip Select signal is output on any of the  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  pins.

### Setting example:

In this example CS0 is set to be the 64-Kbyte area 010000H to 01FFFFH. The bus width is set to 16 bits and the number of waits is set to 0.

MSAR0 = 01H ....... Start address: 010000H

MAMR0 = 07H ...... Address area: 64 Kbytes

B0CS = 83H ..... ROM/SRAM, 16-bit data bus, zero waits, CS0 area settings enabled

## 3.7.3 Connecting external memory

Figure 3.7.6 shows an example of how to connect external memory to the TMP91C829. In this example the ROM is connected using a 16-bit bus. The RAM and I/O are connected using an 8-bit bus.

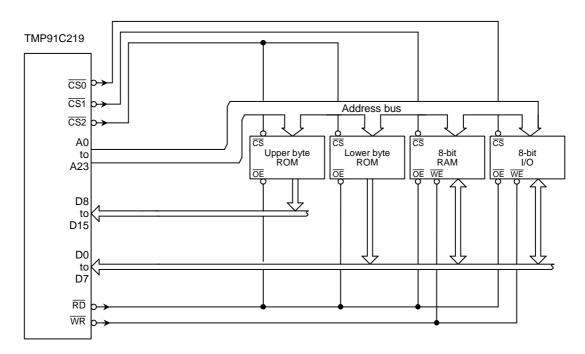



Figure 3.7.6 Example of external memory connection (ROM uses 16-bit bus; RAM and I/O use 8-bit bus.)

A Reset clears all bits of the Port 4 Control Register P6CR and the Port 6 Function Register P6FC to 0 and disables output of the CS signal. To output the CS signal, the appropriate bit must be set to 1.

## 3.8 8-bit Timers (TMRA)

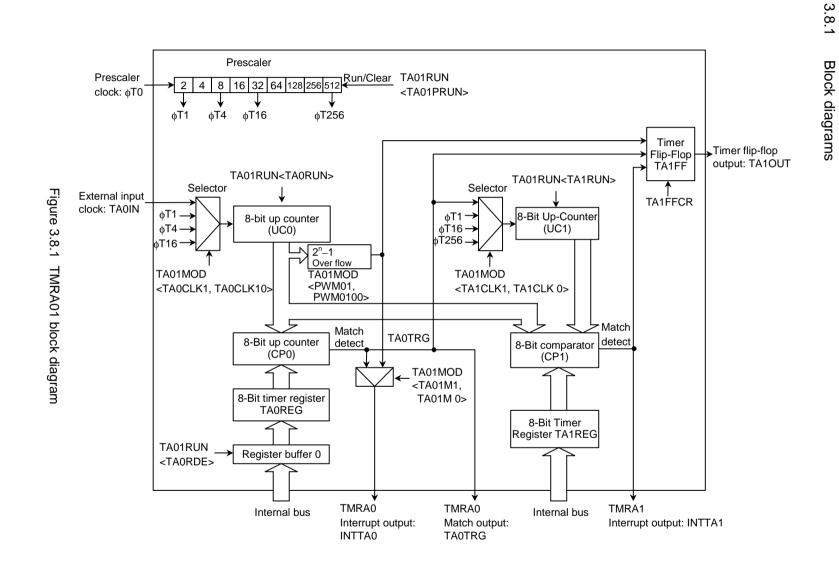
The TMP91C829 features six built-in 8-bit timers.

These timers are paired into three modules: TMRA01, TMRA23 and TMRA45. Each module consists of two channels and can operate in any of the following four operating modes.

- 8-Bit Interval Timer Mode
- 16-Bit Interval Timer Mode
- 8-Bit Programmable Square Wave Pulse Generation Output Mode (PPG variable duty cycle with variable period)
- 8-Bit Pulse Width Modulation Output Mode (PWM variable duty cycle with constant period)

Figure 3.8.1 to 3.8.3 show block diagrams for TMRA01, TMRA23 and TMRA45.

Each channel consists of an 8-bit up-counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.


The operation mode and timer flip-flops are controlled by five control SFRs (special-function registers).

Each of the four modules (TMRA01, TMRA23 and TMRA45) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

Table 3.8.1 Registers and pins for each module

|           | Module                           | TMRA01                           | TMRA23                           | TMRA45                           |  |
|-----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
| External  | Input pin for external clock     | TA0IN<br>(shared with P70)       | No                               | TA4IN<br>(shared with P73)       |  |
| pin       | Output pin for timer flip-flop   | TA1OUT (shared with P71)         | TA3OUT (shared with P72)         | TA5OUT (shared with P74)         |  |
|           | Timer run register               | TA01RUN (0100H)                  | TA23RUN (0108H)                  | TA45RUN (0110H)                  |  |
| SFR       | Timer register                   | TA0REG (0102H)<br>TA1REG (0103H) | TA2REG (010AH)<br>TA3REG (010BH) | TA4REG (0112H)<br>TA5REG (0113H) |  |
| (address) | Timer mode register              | TA01MOD (0104H)                  | TA23MOD (010CH)                  | TA45MOD (0114H)                  |  |
| ,         | Timer flip-flop control register | TA1FFCR (0105H)                  | TA3FFCR (010DH)                  | TA5FFCR (0115H)                  |  |

2001-02-15



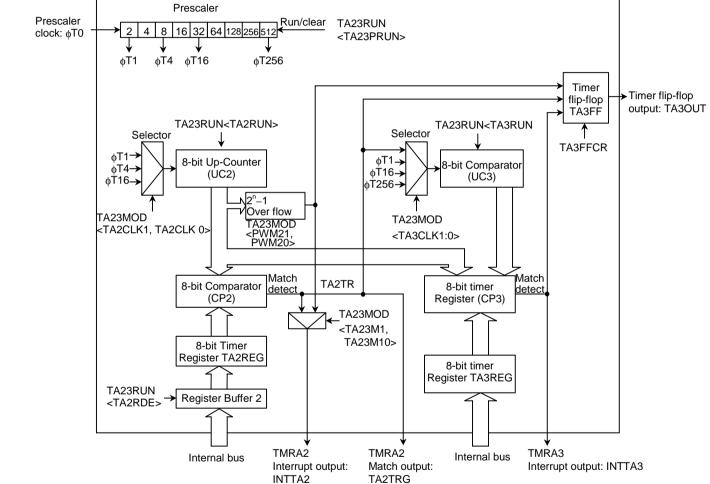
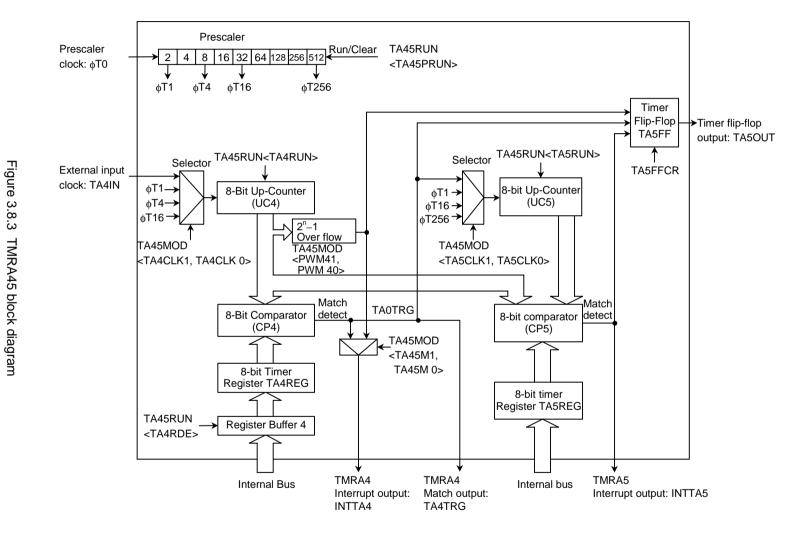




Figure 3.8.2 TMRA23 block diagram

91C829-79



2001-02-15

## 3.8.2 Operation of each circuit

#### (1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The clock  $\phi T0$  is divided by 4 and input to this prescaler.  $\phi T0$  can be either f<sub>FPH</sub> or fc/16 and is selected using the Prescaler Clock Selection Register SYSCR0<PRCK1,PRCK0>.

The prescaler's operation can be controlled using TA01RUN<TA0PRUN> in the timer control register. Setting <TA0PRUN> to 1 starts the count; setting <TA0PRUN> to 0 clears the prescaler to zero and stops operation. Table 3.8.2 shows the various prescaler output clock resolutions.

Table 3.8.2 Prescaler output clock resolution

@fc = 36 MHz

| Prescaler                                              | Gear Value                        | Prescaler Output Clock Resolution |                            |                            |                             |  |  |  |  |
|--------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------------|-----------------------------|--|--|--|--|
| Clock Selection<br><prck1,prc<br>K0&gt;</prck1,prc<br> | <gear2 to<br="">GEAR0&gt;</gear2> | φΤ1                               | фТ4                        | фТ16                       | φT256                       |  |  |  |  |
|                                                        | 000 (fc)                          | fc/2 <sup>3</sup> (0.22 μs)       | fc/2 <sup>5</sup> (0.9 μs) | fc/2 <sup>7</sup> (3.6 μs) | fc/2 <sup>11</sup> (57 μs)  |  |  |  |  |
|                                                        | 001 (fc/2)                        | fc/2 <sup>4</sup> (0.4 μs)        | fc/2 <sup>6</sup> (1.8 μs) | fc/2 <sup>8</sup> (7.1 μs) | fc/2 <sup>12</sup> (114 μs) |  |  |  |  |
| (f <sub>FPH</sub> )                                    | 010 (fc/4)                        | fc/2 <sup>5</sup> (0.9 μs)        | fc/2 <sup>7</sup> (3.6 μs) | fc/2 <sup>9</sup> (14 μs)  | fc/2 <sup>13</sup> (228 μs) |  |  |  |  |
|                                                        | 011 (fc/8)                        | fc/2 <sup>6</sup> (1.8 μs)        | fc/2 <sup>8</sup> (7.1 μs) | fc/2 <sup>10</sup> (28 μs) | fc/2 <sup>14</sup> (455 μs) |  |  |  |  |
|                                                        | 100 (fc/16)                       | fc/2 <sup>7</sup> (3.6 μs)        | fc/2 <sup>9</sup> (14 μs)  | fc/2 <sup>11</sup> (57 μs) | fc/2 <sup>15</sup> (910 μs) |  |  |  |  |
| 10<br>(fc/16 clock)                                    | XXX                               | fc/2 <sup>7</sup> (3.6 μs)        | fc/2 <sup>9</sup> (14 μs)  | fc/2 <sup>11</sup> (57 μs) | fc/2 <sup>15</sup> (910 μs) |  |  |  |  |

xxx: Don't care

## (2) Up-counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks  $\phi T1$ ,  $\phi T4$  or  $\phi T16$ . The clock setting is specified by the value set in TA01MOD<TA01CLK1,TA01CLK0>.

The input clock for UC1 depends on the operation mode. In 16-Bit Timer Mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-Bit Timer Mode, the input clock is selectable and can either be one of the internal clocks  $\phi$ T1,  $\phi$ T16 or  $\phi$ T256, or the comparator output (the match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up-counters and to control their count. A Reset clears both up-counters, stopping the timers.

## (3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers which can be used to set a time interval. When the value set in the timer register TAOREG or TA1REG matches the value in the corresponding up-counter, the Comparator Match Detect signal goes Active. If the value set in the timer register is 00H, the signal goes Active when the up-counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = 0 and enabled if <TA0RDE> = 1.

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a  $2^n$  – 1overflow occurs in PWM Mode, or at the start of the PPG cycle in PPG Mode. Hence the double buffer cannot be used in Timer Mode.

A Reset initializes <TA0RDE> to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to 1, and write the following data to the register buffer. Figure 3.8.4 shows the configuration of TA0REG.

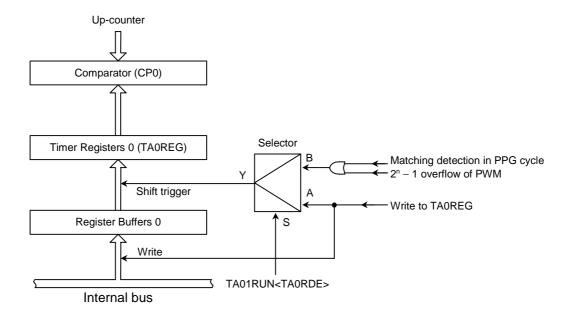



Figure 3.8.4 Configuration of TA0REG

Note: The same memory address is allocated to the timer register and the register buffer. When <TAORDE> = 0, the same value is written to the register buffer and the timer register; when <TAORDE> = 1, only the register buffer is written to.

The address of each timer register is as follows.

TA0REG: 000102H TA1REG: 000103H TA2REG: 00010AH TA3REG: 00010BH TA4REG: 000112H TA5REG: 000113H

All these registers are write-only and cannot be read.

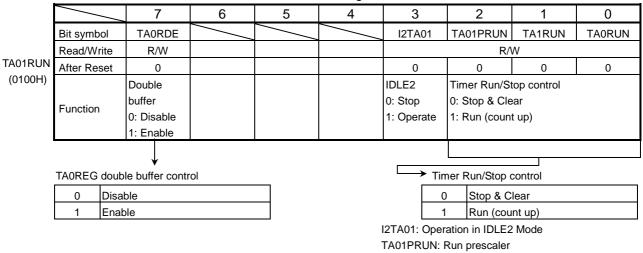
## (4) Comparator (CP0)

The comparator compares the value in an up-counter with the value set in a timer register. If they match, the up-counter is cleared to zero and an interrupt signal (INTTAO or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

### (5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detect signal (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TAFF1IE> in the Timer Flip-Flop Control Register.


A Reset clears the value of TA1FF to 0. Writing 01 or 10 to TA1FFCR<TAFF1C1, TAFF1C0> sets TA1FF to 0 or 1. Writing 00 to these bits inverts the value of TA1FF (this is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (which can also be used as P71). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the Port 7 Function Register P7FC.

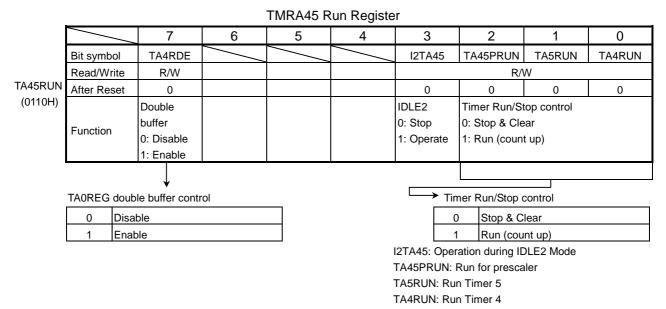
91C829-83 2001-02-15

# 3.8.3 SFRs

## TMRA01 Run Register



Note: The values of bits 4 to 6 of TA01RUN are undefined when read.


#### TMRA23 Run Register

TA1RUN: Run Timer 1
TA0RUN: Run Timer 0



Note: The values of bits 4 to 6 of TA23RUN are undefined when read.

Figure 3.8.5 Register for TMRA



Note: The values of bits 4 to 6 of TA45RUN are undefined when read.

Figure 3.8.6 TMRA registers

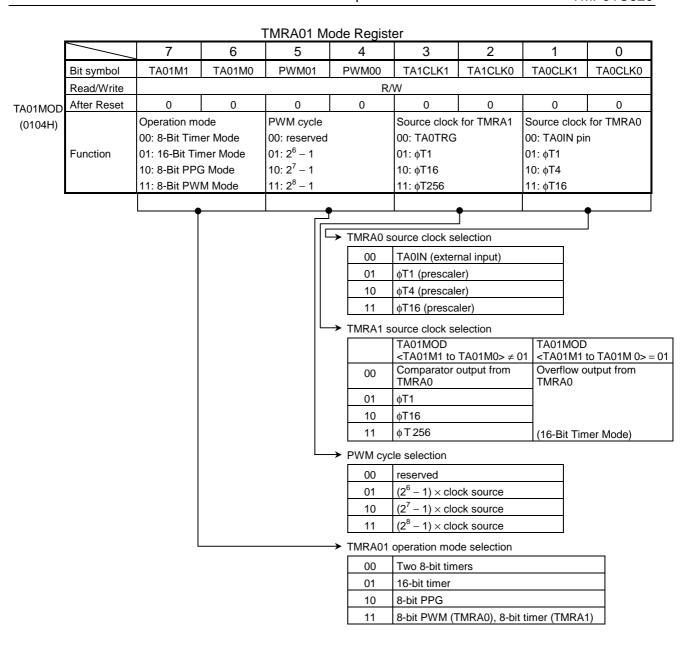



Figure 3.8.7 TMRA registers

91C829-86

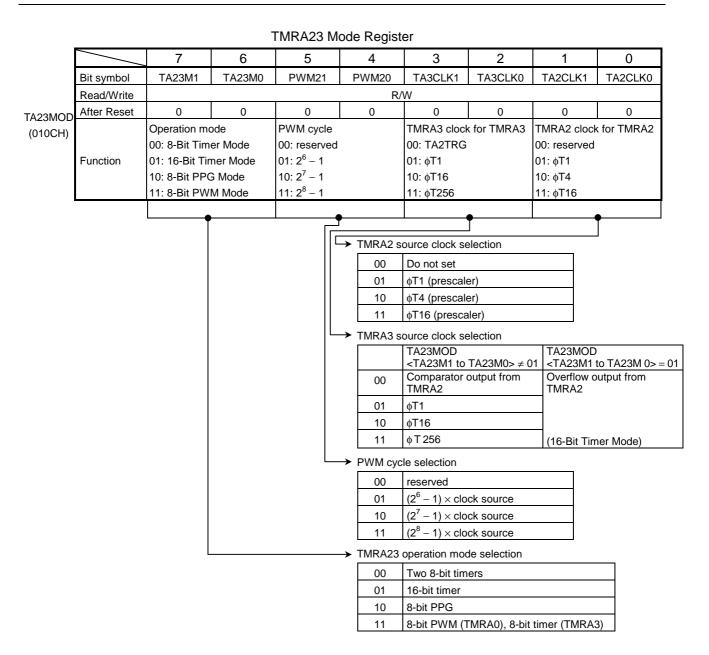



Figure 3.8.8 TMRA registers

Under development

Figure 3.8.9 Register for TMRA

10 11

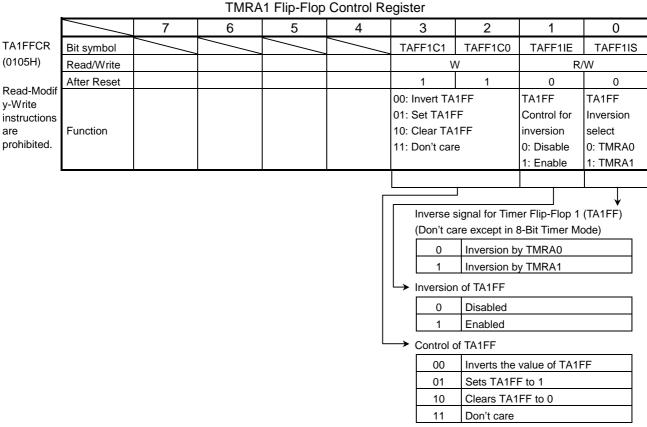
01

10

11

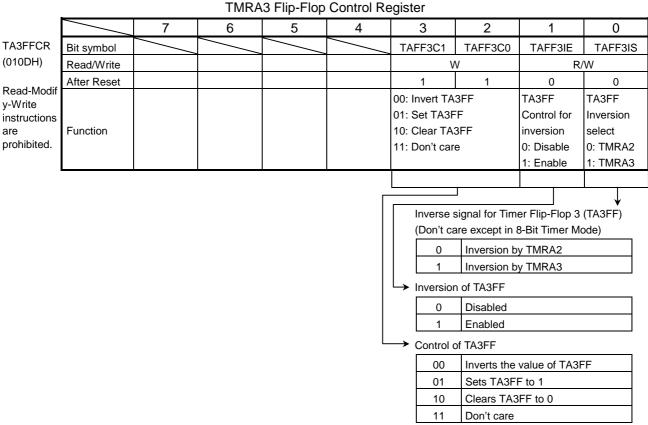
 $(2^7 - 1) \times \underline{\text{clock source}}$ 

 $(2^8 - 1) \times \text{clock source}$ 


8-bit PWM (TMRA4), 8-bit timer (TMRA5)

Two 8-bit timers

16-bit timer


8-bit PPG

→ Operation mode for TMRA45



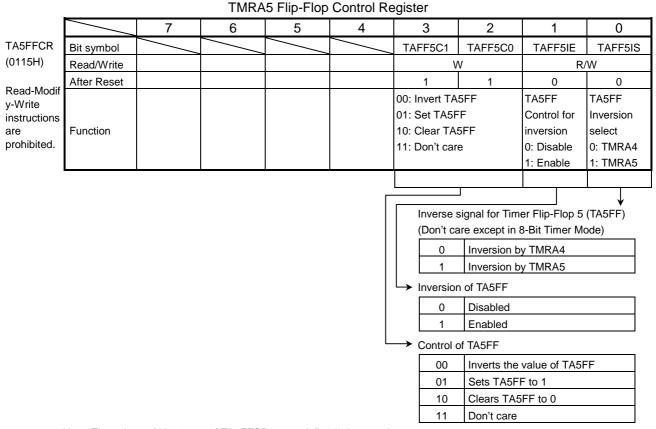

Note: The values of bits 4 to 6 of TA1FFCR are undefined when read.

Figure 3.8.10 TMRA registers



Note: The values of bits 4 to 6 of TA3FFCR are undefined when read.

Figure 3.8.11 TMRA register



Note: The values of bits 4 to 6 of TA5FFCR are undefined when read.

Figure 3.8.12 Register for TMRA

## 3.8.4 Operation in each mode

(1) 8-Bit Timer Mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

① Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 8.8  $\mu$ seconds at fc = 36 MHz, set each register as follows:

```
* Clock stateSystem clock: High frequency (fc)Prescaler clock: fFPH
```

```
LSB
                  6 5 4 3 2
                                     1 0
TA01RUN
                      X X
                                     0 -
                                                  Stop TMRA1 and clear it to 0.
TA01MOD
                      x x 1 0
                                                  Select 8-Bit Timer Mode and select \phiT1 (0.22 \mus at fc = 36
                                                  MHz) as the input clock.
               0 0 1 0 1 0 0 0
TA1REG
                                                  Set TA1REG to 8.8 \mus ÷ \phiT1 = 40 = 28H
               x 1
                      0
                          1
                                                  Enable INTTA1 and set it to Level 5.
TNTETA01
TA01RUN
                                                  Start TMRA1 counting.
```

Note: X = Don't care; "-" = No change

Select the input clock using Table 3.8.4

Note: The input clocks for TMRA0 and TMRA1 differ as follows:

TMRA0: Uses TA0IN input and can be selected from  $\phi$ T1,  $\phi$ T4 or  $\phi$ T16

TMRA1: Match output of TMRA0 and can be selected from \$\phi\$T1, \$\phi\$T16, \$\phi\$T256

91C829-92

② Generating a 50% duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 1.32  $\mu$ s square wave pulse from the TA1OUT pin at fc = 36 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

```
* Clock state

System clock: High frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: fph
```

```
5
TA01RUN
                                                          Stop TMRA1 and clear it to 0.
TA01MOD
                                                          Select 8-Bit Timer Mode and select \phiT1 (0.22 \mus at fc = 36
                                                          MHz) as the input clock.
TA1REG
                      0
                          0
                              0
                                  0
                                                          Set the timer register to 1.32 \mus ÷ \phiT1 ÷ 2 = 3
                                                          Clear TA1FF to 0 and set it to invert on the match detect
TA1FFCR
                          Х
                              Χ
                                                          signal from TMRA1.
P7CR
                                                          Set P71 to function as the TA1OUT pin.
P7FC
TA01RUN
                      Х
                          Х
                                                          Start TMRA1 counting.
```

Note: X = Don't care; "-" = No change

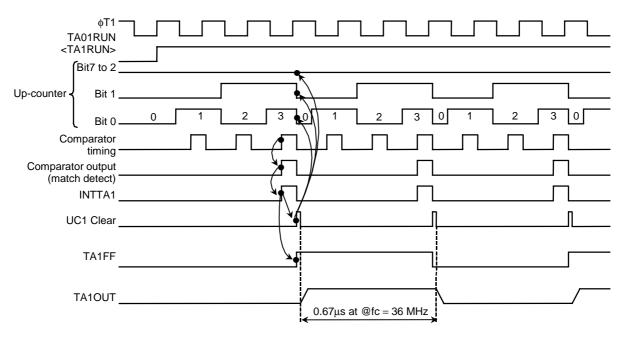



Figure 3.8.13 Square wave output timing chart (50% Duty)

Making TMRA1 count up on the match signal from the TMRA0 comparator

Select 8-Bit Timer Mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

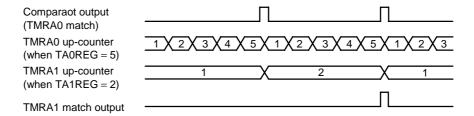



Figure 3.8.14 TMRA1 count up on signal from TMRA0

#### (2) 16-Bit Timer Mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD <TA01M1,TA01M0> to 01.

In 16-Bit Timer Mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1,TA01CLK0>. Table 3.8.4 shows the relationship between the timer (interrupt) cycle and the input clock selection.

Setting example: To generate an INTTA1 interrupt every 0.225 seconds at fc = 36 MHz, set the timer registers TA0REG and TA1REG as follows:

\* Clock state

System clock: High frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: f<sub>FPH</sub>

If  $\phi$ T16 (3.6  $\mu$ s at 36 MHz) is used as the input clock for counting, set the following value in the registers: 0.225 s ÷ 3.6  $\mu$ s = 62500 = F424H; i.e. set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up-counter UC0 matches TA0REG, where the up-counter UC0 is not be cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up-counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparators TMRA0 and TMRA1, the up-counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

Example: When TA1REG = 04H and TA0REG = 80H

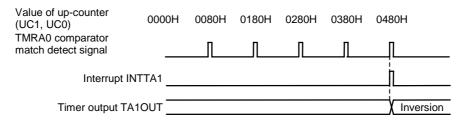



Figure 3.8.15 Timer output by 16-Bit Timer Mode

### (3) 8-Bit PPG (Programmable Pulse Generation) Output Mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active-Low or active-High. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (which can also be used as P71).

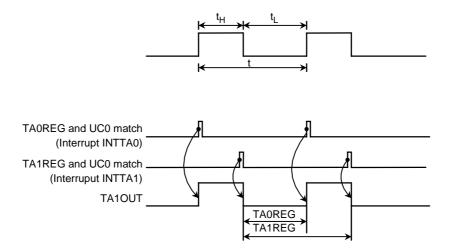



Figure 3.8.16 8 bit PPG output waveforms

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up-counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TAOREG must be smaller than the value set in TA1REG.

Although the up-counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to 1 so that UC1 is set for counting.

Figure 3.8.17 shows a block diagram representing this mode.

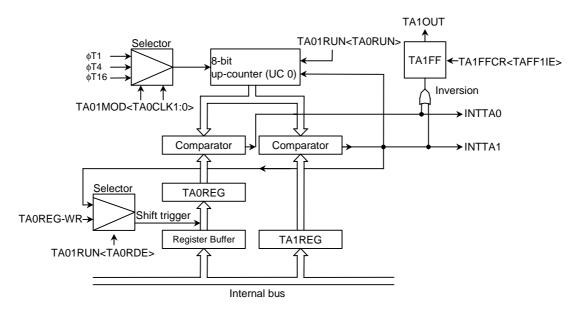



Figure 3.8.17 Block diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TA1REG matches UCO.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).

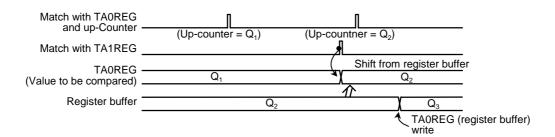
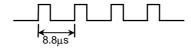




Figure 3.8.18 Operation of register buffer

Example: To generate 1/4-duty 113.636kHz pulses (at fc = 36 MHz):



\* Clock state

System clock: High frequency (fc)

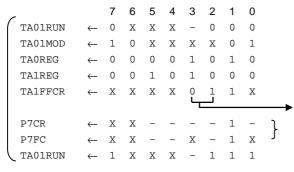
Clock gear: 1 (fc) Prescaler clock: fph

Calculate the value which should be set in the timer register.

To obtain a frequency of 113.636 kHz, the pulse cycle t should be:

 $t = 1/113.636 \text{ kHz} = 8.8 \mu \text{s}$ 

 $\phi T1 = 0.22 \,\mu s$  (at 36 MHz);


 $8.8 \,\mu s \div 0.22 \,\mu s = 40$ 

Therefore set TA1REG to 40 (28H)

The duty is to be set to 1/4:  $t \times 1/4 = 8.8 \mu s \times 1/4 = 2.2 \mu s$ 

 $2.2 \mu s \div 0.22 \mu s = 10$ 

Therefore, set TAOREG = 10 = 0AH.



Stop TMRA0 and TMRA01 and clear it to "0".

Set the 8-bit PPG mode, and select  $\phi$ T1 as input clock.

Write 0AH

Write 28H

Set TA1FF, enabling both inversion and the double buffer.

10 generates a negative logic pulse.

Set P71 as the TA1OUT pin.

Start TMRA0 and TMRA01 counting.

Note: X = Don't care; "-" = No change

## (4) 8-Bit PWM Output Mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as P71). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up-counter (UC0) matches the value set in the timer register TA0REG or when  $2^{n-1}$  counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01 to PWM00>). The up-counter UC0 is cleared when  $2^{n-1}$  counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.

Value set in TA0REG < value set for  $2^{n-1}$  counter overflow Value set in TA0REG  $\neq 0$ 

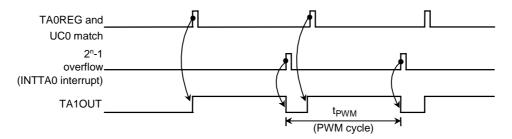



Figure 3.8.19 8-bit PWM waveforms

Figure 3.8.20 shows a block diagram representing this mode.

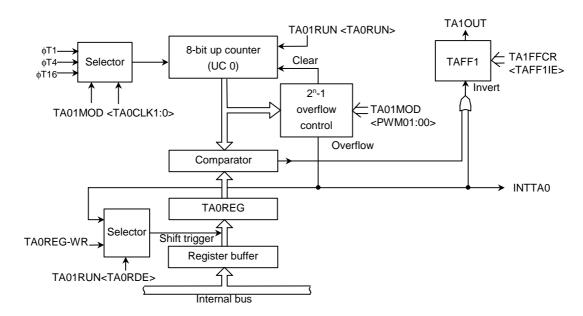



Figure 3.8.20 Block diagram of 8-Bit PWM Mode

In this mode the value of the register buffer will be shifted into TA0REG if  $2^n - 1$  overflow is detected when the TA0REG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

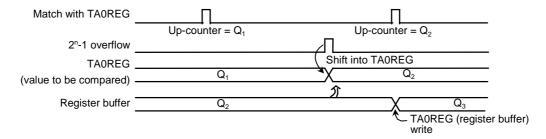
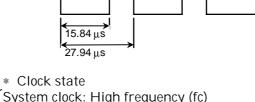




Figure 3.8.21 Register buffer operation

Example: To output the following PWM waves on the TA1OUT pin at fc = 36 MHz:



System clock: High frequency (fc)
Clock gear: 1 (fc)
Prescaler clock: ffph

To achieve a 27.94  $\mu$ s PWM cycle by setting  $\phi$ T1 to 0.22  $\mu$ s (at fc = 36 MHz):

$$27.94 \mu s \div 0.22 \mu s = 127$$

$$2^n - 1 = 127$$

Therefore n should be set to 7.

Since the low-level period is 15.84  $\mu$ s when  $\phi$ T1 = 0.22  $\mu$ s,

set the following value for TAOREG:

$$15.84 \ \mu s \div 0.22 \ \mu s = 72 = 48 H$$

|         | MSB            |   |   |   |   |   |   | L | SB |                                                                           |
|---------|----------------|---|---|---|---|---|---|---|----|---------------------------------------------------------------------------|
| _       | 7              | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  |                                                                           |
| TA01RUN | ← -            | - | Х | Х | Х | - | - | - | 0  | Stop TMRA0 and clear it to 0.                                             |
| TA01MOD | $\leftarrow$ 3 | L | 1 | 1 | 0 | - | - | 0 | 1  | Select 8-Bit PWM Mode (cycle: 2 <sup>7</sup> - 1) and select $\phi$ T1 as |
|         |                |   |   |   |   |   |   |   |    | the input clock.                                                          |
| TA0REG  | ← (            | ) | 1 | 0 | 0 | 1 | 0 | 0 | 0  | Write 48H.                                                                |
| TA1FFCR | ← 2            | K | Х | Х | Х | 1 | 0 | 1 | Х  | Clear TA1FF to 0, enable the inversion and double buffer.                 |
|         |                |   |   |   |   |   |   |   |    |                                                                           |
| P7CR    | ← 2<br>← 2     | K | Х | - | - | - | - | 1 | -  | Set P71 and the TA1OUT pin.                                               |
| P7FC    | ← 2            | K | Х | - | - | Х | - | 1 | Х  | Set F71 and the TATOOT pin.                                               |
| TA01RUN | ← 3            | 1 | X | Х | Х | - | 1 | 1 | 1  | Start TMRA0 counting.                                                     |

91C829-99

Note: X = Don't care; "-" = No change

# Table 3.8.3 PWM cycle

@fc = 36 MHz

| Select Prescaler               | 0 1/1                                                | PWM cycle          |         |         |         |                    |         |                    |         |          |  |
|--------------------------------|------------------------------------------------------|--------------------|---------|---------|---------|--------------------|---------|--------------------|---------|----------|--|
| Clock                          | Gear Value <pre><gear2 gear0="" to=""></gear2></pre> | 2 <sup>6</sup> – 1 |         |         |         | 2 <sup>7</sup> – 1 |         | 2 <sup>8</sup> – 1 |         |          |  |
| <prck1 prck0="" to=""></prck1> |                                                      | φΤ1                | φT4     | φT16    | φT1     | φT4                | φT16    | φT1                | φТ4     | φT16     |  |
|                                | 000 (fc)                                             | 12.6 μs            | 56.7 μs | 66.6 µs | 25.4 μs | 114 μs             | 457 μs  | 51 μs              | 230 μs  | 918 μs   |  |
| 00                             | 001 (fc/2)                                           | 25.2 μs            | 113 μs  | 447 μs  | 50.8 μs | 229 µs             | 901 μs  | 102 μs             | 459 μs  | 1811 μs  |  |
|                                | 10 (fc/4)                                            | 56.7 μs            | 227 μs  | 895 μs  | 114 μs  | 457 μs             | 1803 μs | 230 μs             | 918 μs  | 3621 μs  |  |
| (f <sub>FPH</sub> )            | 011 (fc/8)                                           | 113 μs             | 447 μs  | 1789 μs | 229 μs  | 902 μs             | 3607 μs | 459 μs             | 1811 μs | 7242 μs  |  |
|                                | 00 (fc/16)                                           | 227 μs             | 895 µs  | 3585 μs | 457 μs  | 1803 μs            | 7226 µs | 918 μs             | 3621 μs | 14510 μs |  |
| 10<br>(fc/16 clcok)            | XXX                                                  | 227 μs             | 895 μs  | 3585 μs | 457 μs  | 1803 μs            | 7226 ms | 918 μs             | 3621 μs | 14510 μs |  |

XXX: Don't care

# (5) Settings for each mode

Table 3.8.4 shows the SFR settings for each mode.

Table 3.8.4 Timer mode setting registers

| Table 6.6.1 Times med detailing regional |                                    |                                                                            |                                                           |                                                                          |                                             |  |  |  |  |  |
|------------------------------------------|------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Register name                            |                                    | TA01MOD                                                                    |                                                           |                                                                          |                                             |  |  |  |  |  |
| <bit symbol=""></bit>                    | <ta01m1:ta01m 0=""></ta01m1:ta01m> | <pwm01:00></pwm01:00>                                                      | <ta1clk1:0></ta1clk1:0>                                   | <ta0clk1:0></ta0clk1:0>                                                  | TAFF1IS                                     |  |  |  |  |  |
| Function                                 | Timer mode                         | PWM cycle                                                                  | Upper timer input clock                                   | Lower timer input clock                                                  | Timer F/F invert signal select              |  |  |  |  |  |
| 8-bit timer × 2 channels                 | 00                                 | _                                                                          | Lower timer match<br>φT1, φT16, φT256<br>(00, 01, 10, 11) | External clock<br>φT1, φT4, φT16<br>(00, 01, 10, 11)                     | 0: Lower timer output 1: Upper timer output |  |  |  |  |  |
| 16-bit timer mode                        | 01                                 | _                                                                          | _                                                         | External clock                                                           | _                                           |  |  |  |  |  |
| 8-bit PPG × 1 channel                    | 10                                 | _                                                                          | _                                                         | External clock                                                           | _                                           |  |  |  |  |  |
| 8-bit PWM × 1 channel                    | 11                                 | 2 <sup>6</sup> - 1, 2 <sup>7</sup> - 1, 2 <sup>8</sup> - 1<br>(01, 10, 11) | _                                                         | External clock<br>\$\phi T1, \$\phi T4, \$\phi T16\$<br>(00, 01, 10, 11) | _                                           |  |  |  |  |  |
| 8-bit timer × 1 channel                  | 11                                 | _                                                                          | φT1, φT16 , φT256<br>(01, 10, 11)                         | _                                                                        | Output disabled                             |  |  |  |  |  |

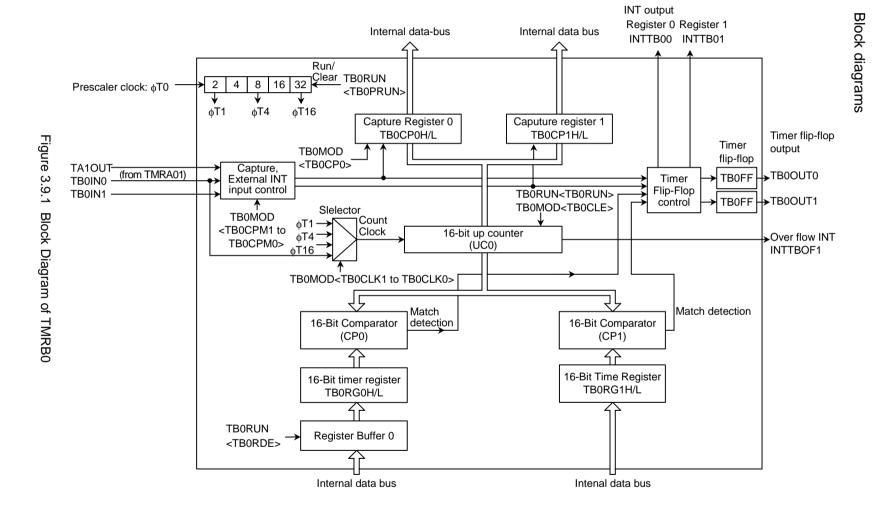
Note: "-" = Don't care

# 3.9 16-Bit Timer/Event Counters (TMRB)

The TMP91C829 incorporates multifunctional 16-bit timer/event counter (TMRB0) which has the following operation modes:

- 16-Bit Interval Timer Mode
- 16-Bit Event Counter Mode
- 16-Bit Programmable Pulse Generation (PPG) Mode

The timer/event counter channel consists of a 16-bit up-counter, two 16-bit timer registers (one of them with a double-buffer structure), two 16-bit capture registers, two comparators, a capture input controller, a timer flip-flop and a control circuit.


The timer/event counter is controlled by an 11-byte control SFR.

This chapter consists of the following items:

Table 3.9.1 Differences between TMRB0

| Spec             | Channel                                                                 | TMRB0                                                                                                     |
|------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| External<br>Pins | External clock / Capture trigger input pins Timer flip-flop output pins | TB0IN0 (also used as P93) TB0IN1 (also used as P94) TB0OUT0 (also used as P95) TB0OUT1 (also used as P96) |
|                  | Timer Run Register Timer Mode Register                                  | TBORUN (0180H) TBOMOD (0182H)                                                                             |
|                  | Timer Flip-Flop Control<br>Register                                     | TB0FFCR (0183H)                                                                                           |
| SFR<br>(address) | Timer Register                                                          | TB0RG0L (0188H) TB0RG0H (0189H) TB0RG1L (018AH) TB0RG1H (018BH)                                           |
|                  | Capture Register                                                        | TB0CP0L (018CH) TB0CP0H (018DH) TB0CP1L (018EH) TB0CP1H (018FH)                                           |

3.9.1



2001-02-15

## 3.9.2 Operation of each block

#### (1) Prescaler

The 5-bit prescaler generates the source clock for TMRB0. The prescaler clock ( $\phi$ T0) is divided clock (divided by 4) from selected clock by the register SYSCR0<PRCK1 to PRCK0> of clock-gear.

This prescaler can be started or stopped using TB0RUN<TB0RUN>. Counting starts when <TB0RUN> is set to 1; the prescaler is cleared to zero and stops operation when <TB0RUN> is set to 0.

Table 3.9.2 Prescaler clock resolution

@fc = 36 MHz

| Prescaler Clock Selection      | Clock Gear Value               | Prescaler Clock Resolution |                            |                            |  |  |  |
|--------------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
| <prck1 prck0="" to=""></prck1> | <gear2 gear0="" to=""></gear2> | φT1                        | φΤ4                        | φT16                       |  |  |  |
|                                | 000 (fc)                       | fc/2 <sup>3</sup> (0.2 μs) | fc/2 <sup>5</sup> (0.9 μs) | fc/2 <sup>7</sup> (3.6 μs) |  |  |  |
| 00                             | 001 (fc/2)                     | fc/2 <sup>4</sup> (0.4 μs) | fc/2 <sup>6</sup> (1.8 μs) | fc/2 <sup>8</sup> (7.1 μs) |  |  |  |
| 00<br>(f <sub>FPH</sub> )      | 010 (fc/4)                     | fc/2 <sup>5</sup> (0.9 μs) | fc/2 <sup>7</sup> (3.6 μs) | fc/2 <sup>9</sup> (14 μs)  |  |  |  |
| (IFPH)                         | 011 (fc/8)                     | fc/2 <sup>6</sup> (1.8 μs) | fc/2 <sup>8</sup> (7.1 μs) | fc/2 <sup>10</sup> (28 μs) |  |  |  |
|                                | 100 (fc/16)                    | fc/2 <sup>7</sup> (3.6 μs) | fc/2 <sup>9</sup> (14 μs)  | fc/2 <sup>11</sup> (57 μs) |  |  |  |
| 10<br>(fc/16 clock)            | xxx                            | fc/2 <sup>7</sup> (3.6 μs) | fc/2 <sup>9</sup> (14 μs)  | fc/2 <sup>11</sup> (57 μs) |  |  |  |

xxx: Don't care

## (2) Up-counter (UC0)

UC0 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1,TB0CLK0>.

Any one of the prescaler internal clocks  $\phi T1$ ,  $\phi TB0$  and  $\phi T16$  or an external clock input via the TB0IN0 pin can be selected as the input clock. Counting or stopping & clearing of the counter is controlled by TB0RUN<TB0RUN>.

When clearing is enabled, the up-counter UC0 will be cleared to zero each time its value matches the value in the timer register TB0RG1H/L. Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

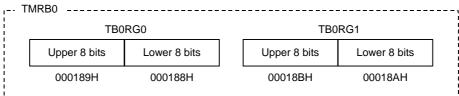
If clearing is disabled, the counter operates as a free-running counter.

A Timer Overflow interrupt (INTTBOF0) is generated when UC0 overflow occurs.

### (3) Timer registers (TB0RG0H/L and TB0RG1H/L)

These two 16-bit registers are used to set the interval time. When the value in the up-counter UC0 matches the value set in this timer register, the Comparator Match Detect signal will go Active.

Setting data for timer register is executed using 2 byte data transfer instruction or using 1 byte date transfer instruction twice for lower 8 bits and upper 8 bits in order. The TB0RG0 timer register has a double-buffer structure, which is paired with register buffer. The value set in TB0RUN<TB0RDE> determines whether the double-buffer structure is enabled or disabled: it is disabled when <TB0RDE> = 0, and enabled when <TB0RDE> = 1.


When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up-counter (UC0) and the timer register TB0RG1 match.

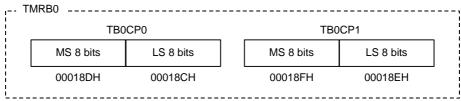
After a Reset, TB0RG0 and TB0RG1 are undefined. If the 16-bit timer is to be used after a Reset, data should be written to it beforehand.

On a Reset TB0RUN<TB0RDE> is initialized to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TB0RDE> to 1, then write data to the register buffer as shown below.

TB0RG0 and the register buffer both have the same memory addresses (000188H and 000189H) allocated to them. If  $\langle TB0RDE \rangle = 0$ , the value is written to both the timer register and the register buffer. If  $\langle TB0RDE \rangle = 1$ , the value is written to the register buffer only.

The addresses of the Timer Registers are as follows:




The Timer Registers are write-only registers and thus cannot be read.

#### (4) Capture Registers (TB0CP0H/L and TB0CP1H/L)

These 16-bit registers are used to latch the values in the up-counter UCO.

Data in the Capture Registers should be read using a 2-byte data load instruction or two 1-byte data load instructions. The least significant byte is read first, followed by the most significant byte.

The addresses of the Capture Registers are as follows:



The Capture Registers are read-only registers and thus cannot be written to.

### (5) Capture input control

This circuit controls the timing to latch the value of up-counter UC0 into TB0CP0, TB0CP1. The latch timing for the capture register is determined by TB0MOD<TB0CPM1, TB0CPM0>.

In addition, the value in the up-counter can be loaded into a capture register by software. Whenever 0 is written to TB0MOD<TB0CP0>, the current value in the up-counter is loaded into capture register TB0CP0. It is necessary to keep the prescaler in Run Mode (i.e. TB0RUN<TB0PRUN> must be held at a value of 1).

### (6) Comparators (CP0 and CP1)

CP0 and CP1 are 16-bit comparators which compare the value in the up-counter UC0 with the value set in TB0RG0 or TB0RG1 respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB00 or INTTB01 respectively).

### (7) Timer flip-flops (TB0FF0 and TB0FF1)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the Capture Registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C1T1, TB0C0T1, TB0E1T1, TB0E0T1>. After a Reset the value of TB0FF0 is undefined. If 00 is written to TB0FFCR<TB0FF0C1, TB0FF0C0> or <TB0FF1C1, TB0FF1C0>, TB0FF0 will be inverted. If 01 is written to the capture registers, the value of TB0FF0 will be set to 1.If 10 is written to the capture registers, the value of TB0FF0 will be set to 0. The values of TB0FF0 and TB0FF1 can be output via the Timer Output pins TB0OUT0 (which is shared with P95) and TB0OUT1 (which is shared with P96). Timer output should be specified using the Port 9 Function Register.

## 3.9.3 SFR

# TMRB0 Run Register

|         |             | 7          | 6       | 5 | 4               | 3          | 2             | 1           | 0      |  |
|---------|-------------|------------|---------|---|-----------------|------------|---------------|-------------|--------|--|
| TB0RUN  | Bit symbol  | TB0RDE     | _       |   |                 | I2TB0      | TB0PRUN       |             | TB0RUN |  |
| (0180H) | Read/Write  | R/W        | R/W     |   |                 | R/W        | R/W           |             | R/W    |  |
|         | After Reset | 0          | 0       |   |                 | 0          | 0             |             | 0      |  |
|         | Function    | Double     | Write 0 |   |                 | IDLE2      | Timer Run/S   | top control |        |  |
|         |             | Buffer     |         |   |                 | 0: Stop    | 0: Stop & Cle | ear         |        |  |
|         |             | 0: Disable |         |   |                 | 1: Operate | 1: Run (coun  | t up)       |        |  |
|         |             | 1: Enable  |         |   |                 |            |               |             |        |  |
|         |             |            |         |   |                 |            |               |             |        |  |
|         |             |            |         |   |                 |            |               |             |        |  |
|         |             |            |         |   | Count operation |            |               |             |        |  |
|         |             |            |         |   |                 | 0          | Stop and      | Clear       |        |  |
|         |             |            |         |   |                 | 1          | Count         |             |        |  |

I2TB0: Operation during IDLE2-mode TB0PRUN: Operation of prescaler TB0RUN: Operation of TMRB0

Note: The 1, 4 and 5 of TB0RUN are read as undefined value.

Figure 3.9.2 The Registers for TMRB

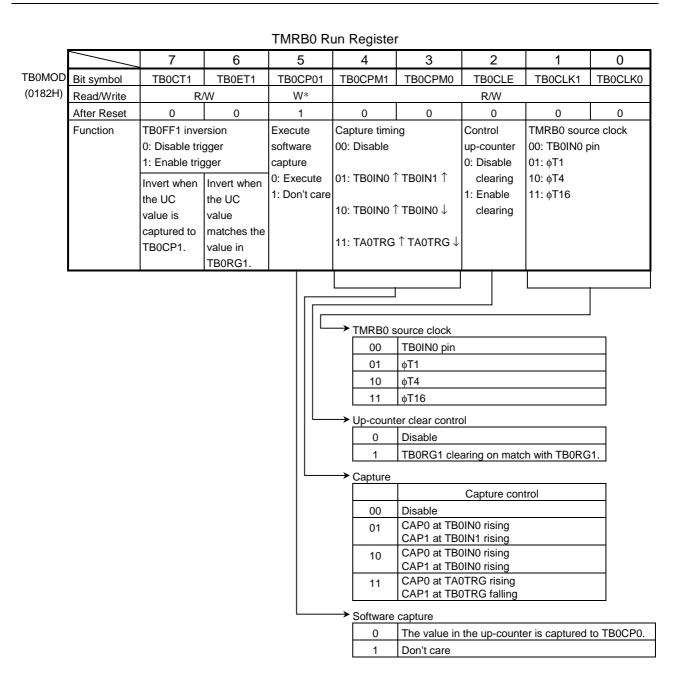



Figure 3.9.3 The registers for TMRB

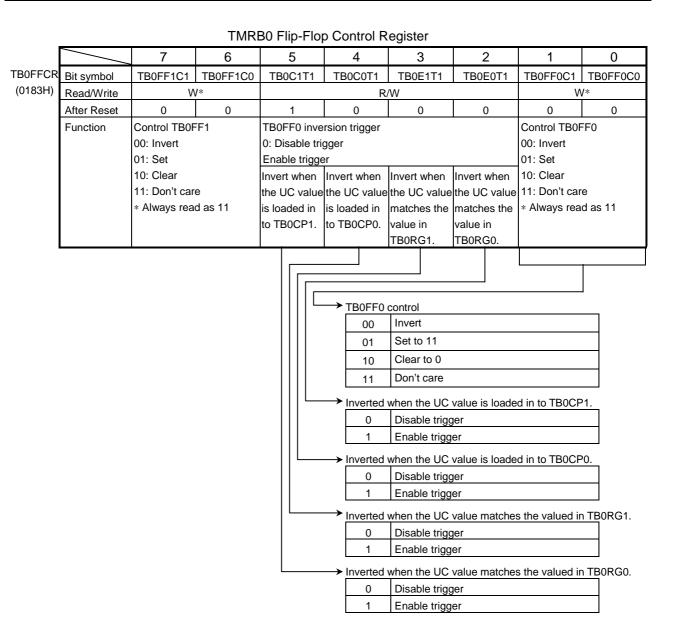



Figure 3.9.4 The Registers for TMRB

## 3.9.4 Operation in each mode

## (1) 16-Bit Interval Timer Mode

Generating interrupts at fixed intervals

In this example, the interrupt INTTB01 is set to be generated at fixed intervals. The interval time is set in the timer register TB0RG1.

```
5
                          4
                                 2
                                     1 0
TB0RUN
                0
                   0
                      Х
                          Х
                                     Х
                                                   Stop TMRB0.
INTETB01
               x 1
                      0
                          0
                                                   Enable INTTB01 and set Interrupt Level 4. Disable
                             x 0
                                                   INTTB00.
TB0FFCR
                   1
                       0
                          0
                              0
                                                   Disable the trigger.
                                                  Select internal clock for input and
TB0MOD
                   0
                       1
                          0
                                                   disable the capture function.
                                  10, 11)
TB0RG1
                                                   Set the interval time (16 bits).
                                                  Start TMRB0.
                   0
TB0RUN
                0
                      Х
                          Χ
                                 1 X 1
```

Note: X = Don't care; "-" = No change

### (2) 16-Bit Event Counter Mode

As described above, in 16-Bit Timer Mode, if the external clock (TB0IN0 pin input) is selected as the input clock, the timer can be used as an event counter. To read the value of the counter, first perform software capture once, then read the captured value.

```
5
                          4
                              3
                                 2
                                     1
TB0RUN
                   Ω
                      Х
                         Х
                                     Х
                                       Ω
                                                  Stop TMRB0.
P8CR
                                                  Set P93 input mode
                                                  Enable INTTB01 and set Interrupt Level 4. Disable
INTETB01
                                                  INTTR00
TB0FFCR
                   1
                       0
                          0
                              0
                                 0
                                                  Disable the trigger.
TB0MOD
                   0
                       1
                          0
                              0
                                 1
                                                  Select TB0IN0 as the input clock.
TB0RG1
                                                  Set the number of counts (16 bits).
TB0RUN
            \leftarrow 0 0
                                                  Start TMRB0.
                     Х
                         x - 1 x 1
```

Note: X = Don't care; "-" = No change

When the timer is used as an event counter, set the prescaler in Run Mode (i.e. with TB0RUN<TB0PRUN> = 1).

TMP91C219

## (3) 16-Bit Programmable Pulse Generation (PPG) Output Mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either Low-active or High-active.

The PPG mode is obtained by inversion of the timer flip-flop TB0FF0 that is to be enabled by the match of the up-counter UC0 with timer register TB0RG0 or TB0RG1 and to be output to TB0OUT0. In this mode the following conditions must be satisfied.

(Value set in TB0RG0) < (Value set in TB0RG1)

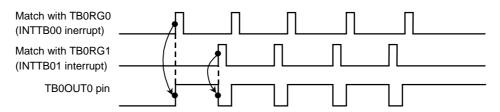



Figure 3.9.5 Programmable Pulse Generation (PPG) Output Waveforms

When the TB0RG0 double buffer is enabled in this mode, the value of Register Buffer 0 will be shifted into TB0RG0 at match with TB0RG1. This feature facilitates the handling of low-duty waves.

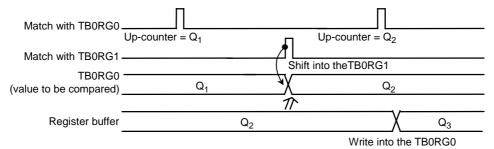



Figure 3.9.6 Operation of Register Buffer

The following block diagram illustrates this mode.

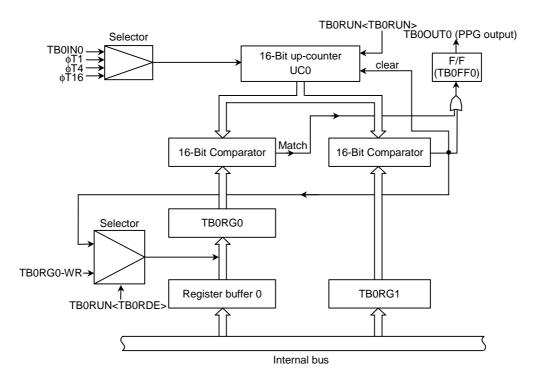



Figure 3.9.7 Block Diagram of 16-BIT Mode

The following example shows how to set 16-Bit PPG Output Mode:

```
TB0RUN
                                                      Disable the TB0RG0 double buffer and stop TMRB0.
TB0RG0
                                                      Set the duty ratio (16 bits).
TB0RG1
                                                      Set the frequency (16 bits).
TB0RUN
                                                      Enable the TB0RG0 double buffer.
                                                      (The duty and frequency are changed on an INTTB01
                                                      interrupt.)
                                                      Set the mode to invert TB0FF0 at the match with
TB0FFCR
                                                      TB0RG0/TB0RG1. Set TB0FF0 to 0.
TB0MOD
                                                      Select the internal clock as the input clock and disable
                                    10, 11)
                                                      the capture function.
P9CR
                                                      Set P95 to function as TB0OUT0.
P9FC
TB0RUN
                                                      Start TMRB0.
```

Note: X = Don't care; "-" = No change

# 3.10 Serial Channel

TMP91C829 includes one serial I/O channel. Either UART Mode (asynchronous transmission) or I/O Interface Mode (synchronous transmission) can be selected.

 I/O Interface Mode — Mode 0: For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.

UART Mode
 Mode 1: 7-bit data
 Mode 2: 8-bit data
 Mode 3: 9-bit data

In Mode 1 and Mode 2 a parity bit can be added. Mode 3 has a wake-up function for making the master controller start slave controllers via a serial link (a multi-controller system).

Figure 3.10.4 and 3 are block diagrams.

Table 3.10.1 Channels 0 and 1

|          | Channel 0         | Channel 1         |
|----------|-------------------|-------------------|
| Pin Name | TXD0 (P80)        | TXD1 (P84)        |
|          | RXD0 (P81)        | RXD1 (P85)        |
|          | CTS0 /SCLK0 (P82) | CTS0 /SCLK1 (P86) |
|          | /STS0 (P83)       | /STS1 (P87)       |

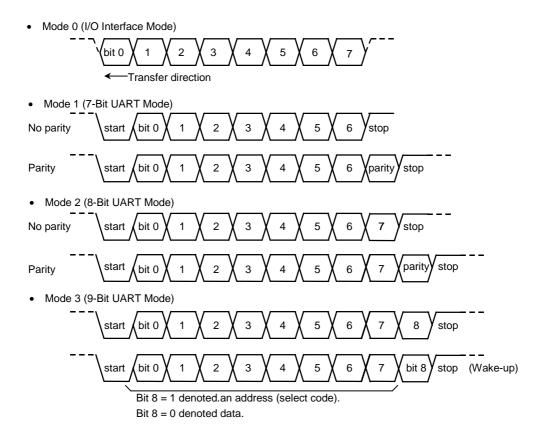



Figure 3.10.1 Data formats

## 3.10.1 Block diagrams

Figure 3.10.2 is a block diagram representing Serial Channel 0.

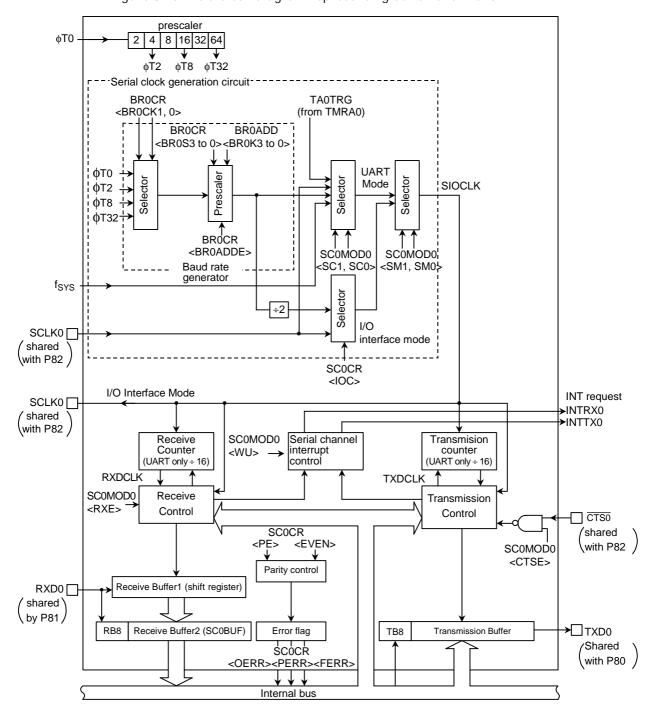



Figure 3.10.2 Block diagram of the Serial Channel 0

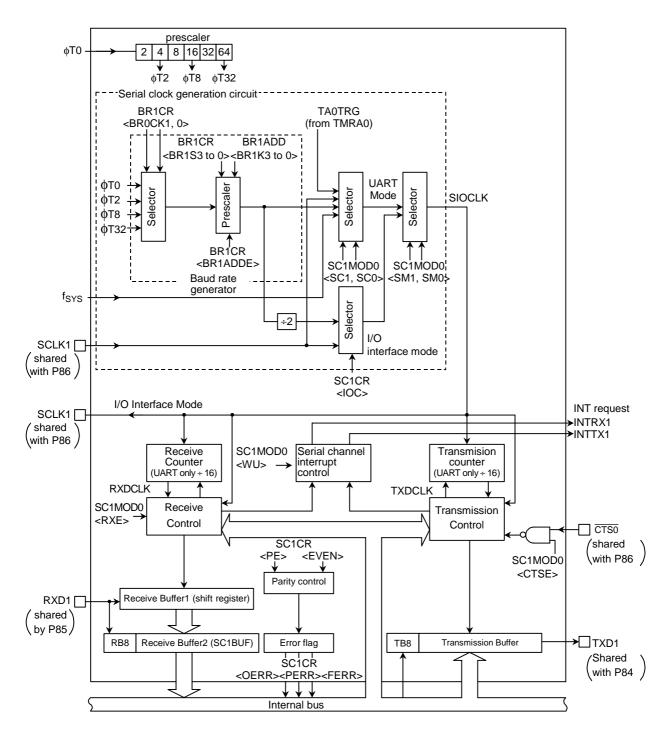



Figure 3.10.3 Block diagram of the Serial Channel 1

# 3.10.2 Operation of each circuit

(1) Prescaler, Prescaler clock select

There is a 6-bit prescaler for waking serial clock. The clock selected using SYSCR<PRCK1:PRCK0> is divided by 4 and input to the prescaler as  $\phi$ T0. The prescaler can be run by selecting the baud rate generator as the waking serial clock.

Table 3.10.2 shows prescaler clock resolution into the baud rate generator.

Table 3.10.2 Prescaler Clock Resolution to Baud Rate Generator

| Select Prescaler Clock         | Gear Value                                                                                                                                                                    | Prescaler Output Clock Resolution |                   |                    |                    |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|--------------------|--------------------|--|--|
| <prck1 prck0="" to=""></prck1> | <gear2 gear0="" to=""></gear2>                                                                                                                                                | φΤ0                               | φΤ2               | φΤ8                | фТ32               |  |  |
|                                | 000 (fc)                                                                                                                                                                      | fc/2 <sup>2</sup>                 | fc/24             | fc/2 <sup>6</sup>  | fc/28              |  |  |
|                                | 001 (fc/2)                                                                                                                                                                    | fc/23                             | fc/2 <sup>5</sup> | fc/2 <sup>7</sup>  | fc/29              |  |  |
| 00<br>(f <sub>EPH</sub> )      | PRCK0> <gear2 gear0="" to=""> φT0 φT2  000 (fc) fc/2² fc/2⁴ 001 (fc/2) fc/2³ fc/2⁵ 010 (fc/4) fc/2⁴ fc/2⁶ 011 (fc/8) fc/2⁵ fc/2⁵ 100 (fc/16) fc/2⁶ fc/2⁶  XXX — fc/2⁶</gear2> | fc/2 <sup>6</sup>                 | fc/2 <sup>8</sup> | fc/2 <sup>10</sup> |                    |  |  |
| (IFPH)                         | 011 (fc/8)                                                                                                                                                                    | fc/2 <sup>5</sup>                 | fc/2 <sup>7</sup> | fc/29              | fc/2 <sup>11</sup> |  |  |
|                                | 100 (fc/16)                                                                                                                                                                   | fc/2 <sup>6</sup>                 | fc/2 <sup>8</sup> | fc/2 <sup>10</sup> | fc/2 <sup>12</sup> |  |  |
| 10<br>(fc/16 clock)            | XXX                                                                                                                                                                           |                                   | fc/2 <sup>8</sup> | fc/2 <sup>10</sup> | fc/2 <sup>12</sup> |  |  |

Note: X = Don't care; "-" = Cannot be used

The Baud Rate Generator selects between 4 clock inputs :  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$ , and  $\phi T32$  among the prescaler outputs.

## (2) Baud rate generator

The baud rate generator is a circuit which generates transmission and receiving clocks which determine the transfer rate of the serial channels.

The input clock to the baud rate generator,  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$  or  $\phi T32$ , is generated by the 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1 to BR0CK0> field in the Baud Rate Generator Control Register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N +  $\frac{(16 - K)}{16}$  to 16 values, determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3 to BR0S0> and BR0ADD<BR0K3 to BR0K0>.

### • In UART Mode

(1) When BROCR < BROADDE > = 0

The settings BR0ADD<BR0K3 to BR0K0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3 to BR0S0>.  $(N = 1, 2, 3 \cdot 16)$ 

(2) When BROCR < BROADDE > = 1

The N + (16 - K) / 16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K) / 16 using the value of N set in BR0CR<BR0S3 to BR0S0> (N = 2, 3 ··· 15) and the value of K set in BR0ADD<BR0K3 to BR0K0> (K = 1, 2, 3 ··· 15)

Note: If N = 1 or N = 16, the N + (16 - K) / 16 division function is disabled. Set BR0CR<BR0ADDE> to 0.

• In I/O Interface Mode

The N + (16 - K) / 16 division function is not available in I/O Interface Mode. Set BROCR<BROADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

• In UART Mode

Baud Rate = 
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$$

In I/O Interface Mode

Baud Rate = 
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$$

Integer divider (N divider)

For example, when the source clock frequency (fc) = 12.288 MHz, the input clock frequency =  $\phi$ T2 (fc/16), the frequency divider N (BR0CR<BR0S3 to BR0S0>) = 5, and BR0CR<BR0ADDE> = 0, the baud rate in UART Mode is as follows:

Baud Rate = 
$$\frac{\text{fc/16}}{5} \div 16$$
  
= 12.288 × 10<sup>6</sup> ÷ 16 ÷ 5 ÷ 16 = 9600 (bps)

Note: The N + (16 - K) / 16 division function is disabled and setting BR0ADD<BR0K3 to BR0K0> is invalid.

• N + (16-K)/16 divider (UART Mode only)

Accordingly, when the source clock frequency (fc) = 4.8 MHz, the input clock frequency =  $\phi$ T0 , the frequency divider N (BR0CR<BR0S3 to BR0S0>) = 7, K (BR0ADD<BR0K3 to BR0K0>) = 3, and BR0CR <BR0ADDE> = 1, the baud rate in UART Mode is as follows:

\* Clock state

Baud Rate = 
$$\frac{fc/4}{7 + (16 - 3)/16} \div 16$$
  
=  $4.8 \times 10^6 \div 4 \div (7 + 13/16) \div 16 = 9600 \text{ (bps)}$ 

Table 3.10.3 and 3.10.4 show examples of UART Mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial Channels 0 and 1). The method for calculating the baud rate is explained below:

In UART Mode

Baud rate = external clock input frequency ÷ 16
It is necessary to satisfy (external clock input cycle) ≥ fc / 4

• In I/O Interface Mode

Baud rate = external clock input frequency

It is necessary to satisfy (external clock input cycle)  $\geq$  16 / fc

|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |       | Unit (kbps) |
|-----------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| fc [MHz]  | Input Clock Frequency Divider | φТО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | фТ2                                                                                                                    | фТ8   | фТ32        |
|           | 2                             | 76.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.200                                                                                                                 | 4.800 | 1.200       |
| 9.830400  | 4                             | κ         φT0         φT2         φT8         φ           76.800         19.200         4.800         1           38.400         9.600         2.400         0           19.200         4.800         1.200         0           9.600         2.400         0.600         0           38.400         9.600         2.400         0           19.200         4.800         1.200         0           115.200         76.800         19.200         4.800         1           38.400         9.600         2.400         0 | 0.600                                                                                                                  |       |             |
| 9.030400  | 8                             | 19.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.800                                                                                                                  | 1.200 | 0.300       |
|           | 0                             | 9.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.400                                                                                                                  | 0.600 | 0.150       |
| 12.288000 | 5                             | 38.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.600                                                                                                                  | 2.400 | 0.600       |
| 12.200000 | A                             | 19.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.200 4.800<br>9.600 2.400<br>4.800 1.200<br>2.400 0.600<br>9.600 2.400<br>4.800 1.200<br>19.200 4.800<br>9.600 2.400 | 0.300 |             |
|           | 2                             | 115.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        |       |             |
| 14 745600 | 3                             | 76.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.200                                                                                                                 | 4.800 | 1.200       |
| 14.745600 | 6                             | 38.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.600                                                                                                                  | 2.400 | 0.600       |
|           | С                             | 19.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.800                                                                                                                  | 1.200 | 0.300       |

Table 3.10.3 Transfer rate selection (when baud rate generator Is used and BR0CR <BR0ADDE> = 0)

Note 1: Transfer rates in I/O Interface Mode are eight times faster than the values given above.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc and the system clock is the prescaler clock input.

Unit (kbps)

| fc<br>TA0REG0 | 12.288 MHz | 12 MHz | 9.8304 MHz | 8 MHz | 6.144 MHz |
|---------------|------------|--------|------------|-------|-----------|
| 1H            | 96         |        | 76.8       | 62.5  | 48        |
| 2H            | 48         |        | 38.4       | 31.25 | 24        |
| 3H            | 32         | 31.25  |            |       | 16        |
| 4H            | 24         |        | 19.2       |       | 12        |
| 5H            | 19.2       |        |            |       | 9.6       |
| 8H            | 12         |        | 9.6        |       | 6         |
| AH            | 9.6        |        |            |       | 4.8       |
| 10H           | 6          | ·      | 4.8        |       | 3         |
| 14H           | 4.8        | ·      |            |       | 2.4       |

Method for calculating the transfer rate (when TMRA0 is used):

Transfer rate = 
$$\frac{\text{Clock frequency determined by SYSCR0}}{\text{TA0REG} \times 8 \times 16}$$
(when TMRA0 (input clock  $\phi$ T1) is used)

Note 1: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface Mode.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc and the system clock is the prescaler clock input.

## (3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

### • In I/O Interface Mode

In SCLK Output Mode with the setting SCOCR < IOC > = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK Input Mode with the setting SC0CR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SC0CR<SCLKS> register to generate the basic clock.

#### In UART Mode

The SC0MOD0 <SC1 to SC0> setting determines whether the baud rate generator clock, the internal system clock fSYS, the match detect signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

## (4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART Mode which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times – on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

### (5) Receiving control

### • In I/O Interface Mode

In SCLK Output Mode with the setting SC0CR<IOC> = 0, the RXD0 signal is sampled on the rising edge of the shift clock which is output on the SCLK0 pin.

In SCLK Input Mode with the setting SCOCR < IOC > = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SCOCR < SCLKS > setting.

#### In UART Mode

The receiving control block has a circuit which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

## (6) The Receiving Buffers

To prevent Overrun errors, the Receiving Buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in Receiving Buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in Receiving Buffer 1, the stored data is transferred to Receiving Buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated. The CPU only reads Receiving Buffer 2 (SC0BUF). Even before the CPU has finished reading the contents of Receiving Buffer 2 (SC0BUF), more data can be received and stored in Receiving Buffer 1. However, if Receiving Buffer 2 (SC0BUF) has not been read completely before all the bits of the next data item are received by Receiving Buffer 1, an Overrun error occurs. If an Overrun error occurs, the contents of Receiving Buffer 1 will be lost, although the contents of Receiving Buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit – added in 8-Bit UART Mode – or the most significant bit (MSB) – in 9-Bit UART Mode.

In 9-Bit UART Mode the wake-up function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

## (7) Transmission counter

The transmission counter is a 4-bit binary counter which is used in UART Mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

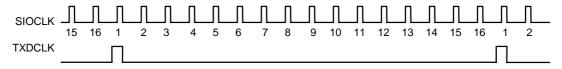



Figure 3.10.4 Generation of the transmission clock

#### (8) Transmission controller

## • In I/O Interface Mode

In SCLK Output Mode with the setting SC0CR<IOC> = 0, the data in the Transmission Buffer is output one bit at a time to the TXD0 pin on the rising edge of the shift clock which is output on the SCLK0 pin.

In SCLK Input Mode with the setting SCOCR<IOC> = 1, the data in the Transmission Buffer is output one bit at a time on the TXDO pin on the rising or falling edge of the SCLKO input, according to the SCOCR<SCLKS> setting.

## • In UART Mode

When transmission data sent from the CPU is written to the Transmission Buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

## Handshake function

Serial Channels 0 and 1 each have a  $\overline{\text{CTSO}}$  pin. Use of this pin allows data can be sent in units of one frame; thus, Overrun errors can be avoided. The handshake functions is enabled or disabled by the SCOMOD <CTSE> setting.

When the  $\overline{\text{CTSO}}$  pin foes High on completion of the current data send, data transmission is halted until the  $\overline{\text{CTSO}}$  pin foes Low again. However, the INTTX0 Interrupt is generated, it requests the next data send to the CPU. The next data is written in the Transmission Buffer and data sending is halted.

Although there is no  $\overline{\text{RTS}}$  pin, a handshake function can easily be configured by assigning any port to perform the  $\overline{\text{RTS}}$  function. The RTS should be output High to request send data halt after data receive is completed by software in the RXD interrupt routine.

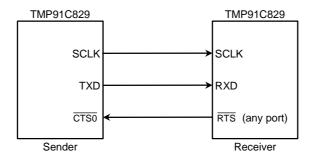
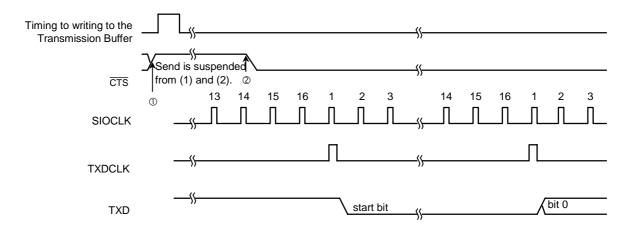




Figure 3.10.5 Handshake function



Note 1: If the  $\overline{\text{CTS}}$  signal goes High during transmission, no more data will be sent after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.10.6 CTS (Clear to send) Timing

### (9) Transmission Buffer

The Transmission Buffer (SC0BUF) shifts out and sends the transmission data written from the CPU, in order one bit at a time starting with the least significant bit (LSB) and finishing with the most significant bit (MSB). When all the bits have been shifted out, the empty Transmission Buffer generates an INTTX0 interrupt.

## (10) Parity control circuit

When SCOCR<PE> in the Serial Channel Control Register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-Bit UART Mode or 8-Bit UART Mode. The SCOCR<EVEN> field in the Serial Channel Control Register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the Transmission Buffer SC0BUF. The data is transmitted after the parity bit has been stored in SC0BUF<TB7> in 7-Bit UART Mode or in SC0MOD0<TB8> in 8-Bit UART Mode. SC0CR<PE> and SC0CR<EVEN> must be set before the transmission data is written to the Transmission Buffer.

In the case of receiving, data is shifted into Receiving Buffer 1, and the parity is added after the data has been transferred to Receiving Buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-Bit UART Mode or with SC0CR<RB8> in 8-Bit UART Mode. If they are not equal, a Parity error is generated and the SC0CR<PERR> flag is set.

## (11) Error flags

Three error flags are provided to increase the reliability of data reception.

#### 1. Overrun error <OERR>

If all the bits of the next data item have been received in Receiving Buffer 1 while valid data still remains stored in Receiving Buffer 2 (SC0BUF), an Overrun error is generated.

## 2. Parity error <PERR>

The parity generated for the data shifted into Receiving Buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a Parity error is generated.

### 3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a Framing error is generated.

# (12) Timing generation

## ① In UART Mode

## Receiving

| Mode                 | 9-Bit<br>(Note)            | 8-Bit + Parity<br>(Note)        | 8-Bit, 7-Bit + Parity, 7-Bit |
|----------------------|----------------------------|---------------------------------|------------------------------|
| Interrupt timing     | Center of last bit (bit 8) | Center of last bit (parity bit) | Center of stop bit           |
| Framing error timing | Center of stop bit         | Center of stop bit              | Center of stop bit           |
| Parity error timing  | -                          | Center of last bit (parity bit) | Center of stop bit           |
| Overrun error timing | Center of last bit (bit 8) | Center of last bit (parity bit) | Center of stop bit           |

Note: In 9-Bit Mode and 8-Bit + Parity Mode, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to allow a 1-bit period to elapse (so that the stop bit can be transferred) in order to allow proper framing error checking.

# Transmitting

| Mode             | 9-Bit                   | 8-Bit + Parity        | 8-Bit, 7-Bit + Parity, 7-Bit |
|------------------|-------------------------|-----------------------|------------------------------|
| Interrupt timing | Just before stop bit is | Just before last data | Just before last data bit is |
|                  | transmitted             | bit is transmitted    | transmitted                  |

## ② I/O interface

| Transmission        |                  |                                                                    |  |  |  |  |  |  |
|---------------------|------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Interrupt           | SCLK Input Mode  | Immediately after rise of last SCLK signal Rising Mode, or         |  |  |  |  |  |  |
| timing              |                  | immediately after fall in Falling Mode. (See Figure 3.10.20)       |  |  |  |  |  |  |
| Description         | SCLK Output Mode | Timing used to transfer received to data Receive Buffer 2 (SC0BUF) |  |  |  |  |  |  |
| Receiving           |                  | (i.e. immediately after last SCLK). (See Figure 3.10.21)           |  |  |  |  |  |  |
| Interrupt<br>timing | SCLK Input Mode  | Timing used to transfer received data to Receive Buffer 2 (SC0BUF) |  |  |  |  |  |  |
| uming               |                  | (i.e. immediately after last SCLK). (See Figure 3.10.22)           |  |  |  |  |  |  |

## 3.10.3 SFR

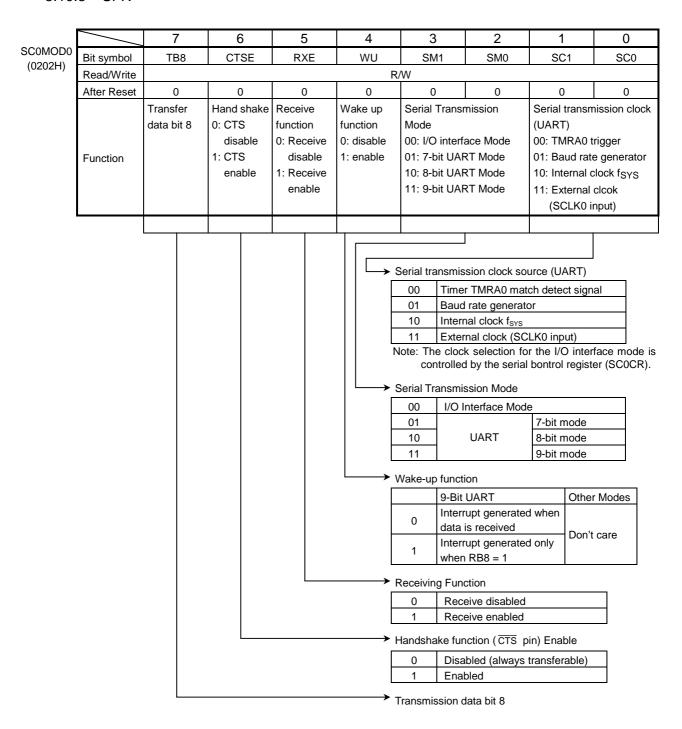



Figure 3.10.7 Serial Mode Control Register (channel 0, SC0MOD0)

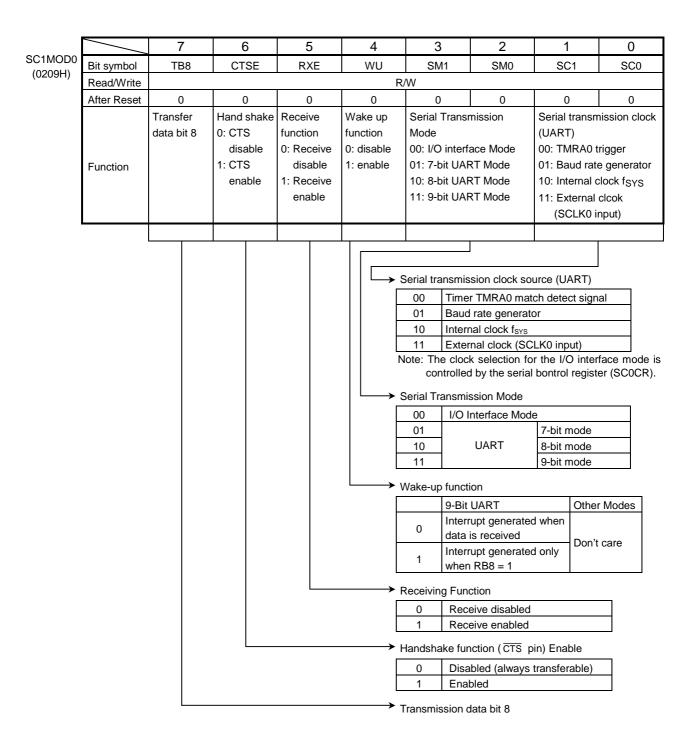
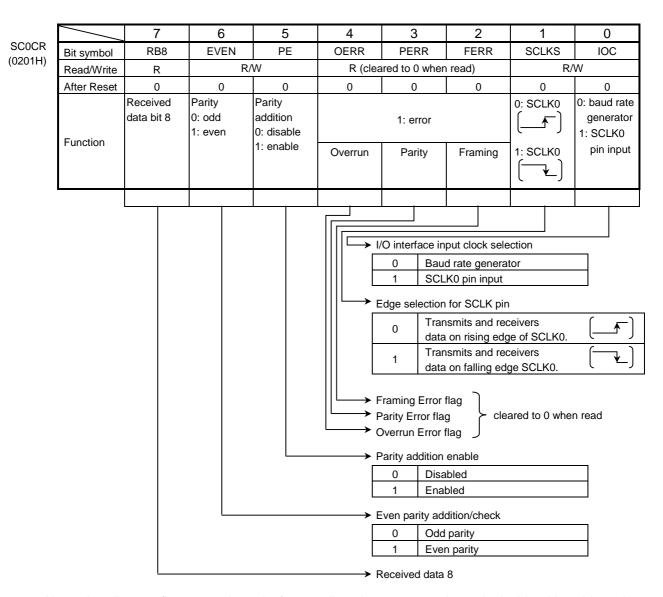
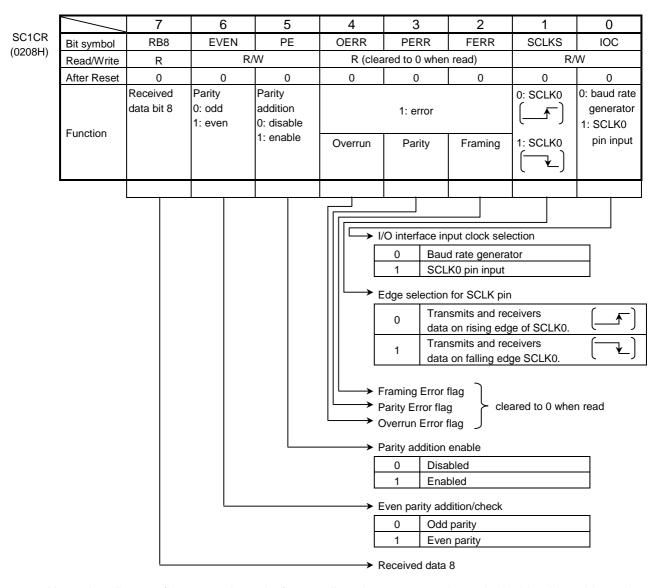





Figure 3.10.8 Serial Mode Control Register (channel 1, SC1MOD0)



Note: As all error flags are cleared after reading do not test only a single bit with a bit-testing instruction.

Figure 3.10.9 Serial Control Register (channel 0, SC0CR)



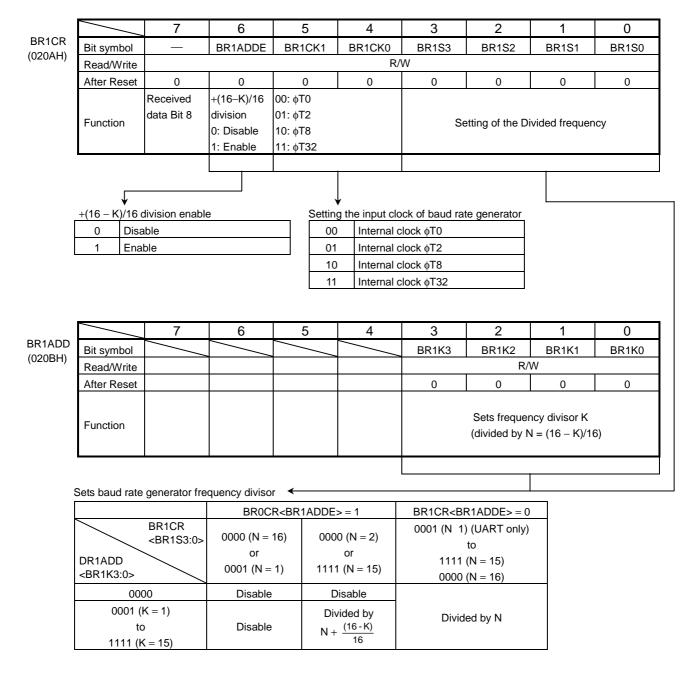

Note: As all error flags are cleared after reading do not test only a single bit with a bit-testing instruction.

Figure 3.10.10 Serial Control Register (channel 1, SC1CR)

|                   |                     | 7                            | 6                  |                                                                                                                          | 5        | 4                 | 3                                                               | 2                    | 1              | 0     |
|-------------------|---------------------|------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------------------------------------------------------|----------------------|----------------|-------|
| BROCR             | Bit symbol          | _                            | BR0ADDE            | E BR0CK1                                                                                                                 |          | BR0CK0            | BR0S3                                                           | BR0S2                | BR0S1          | BR0S0 |
| (0203H)           | Read/Write          |                              | 1.                 |                                                                                                                          |          |                   | R/W                                                             | ı                    |                | 1.    |
|                   | After Reset         | 0                            | 0                  |                                                                                                                          | 0 0      |                   | 0                                                               | 0                    | 0              | 0     |
|                   |                     | Received                     | +(16-K)/16         | 00: ф                                                                                                                    | ТО       |                   |                                                                 |                      |                |       |
|                   | Function            | data Bit 8                   | division           | 01: ф                                                                                                                    | Τ2       |                   | 9,                                                              | atting of the D      | ivided frequer | acv.  |
|                   | 1 diletion          |                              | 0: Disable         | 10: ф                                                                                                                    |          |                   |                                                                 | etting of the D      | ivided irequei | Ю     |
|                   |                     |                              | 1: Enable          | 11: φ <sup>-</sup>                                                                                                       | T32      |                   |                                                                 |                      |                |       |
|                   |                     |                              |                    |                                                                                                                          |          | ı                 |                                                                 |                      | <del>- 1</del> |       |
|                   | _                   |                              |                    |                                                                                                                          |          |                   |                                                                 |                      |                |       |
|                   | ¥ (40 K)(40         | 10. 2 a Cara - a cara la II  |                    |                                                                                                                          | 0 - 111- | <b>∤</b><br>      | l l 6 l l                                                       |                      |                |       |
|                   | +(16 – K)/16        |                              | <u>e</u>           |                                                                                                                          |          |                   | lock of baud ra                                                 | te generator         |                |       |
|                   | 0 Disa              |                              |                    |                                                                                                                          | 00       |                   | clock                                                           |                      |                |       |
|                   | 1 Ena               | DIE                          |                    |                                                                                                                          | 10       |                   | clock φT2                                                       |                      |                |       |
|                   |                     |                              |                    |                                                                                                                          | 11       |                   | clock                                                           |                      |                |       |
|                   |                     |                              |                    |                                                                                                                          |          | IIILEIIIa         | CIOCK WI 32                                                     |                      |                |       |
| DD0ADD.           |                     |                              |                    |                                                                                                                          |          |                   |                                                                 |                      |                |       |
|                   |                     | 7                            | 6                  |                                                                                                                          | 5        | 4                 | 3                                                               | 2                    | 1              | 0     |
| BR0ADD<br>(0204H) | Bit symbol          |                              |                    |                                                                                                                          |          |                   | BR0K3                                                           | BR0K2                | BR0K1          | BR0K0 |
| (020411)          | Read/Write          |                              |                    |                                                                                                                          |          |                   | R/W                                                             |                      |                |       |
|                   | After Reset         |                              |                    |                                                                                                                          |          |                   | 0                                                               | 0                    | 0              | 0     |
|                   |                     |                              |                    |                                                                                                                          |          |                   |                                                                 |                      |                |       |
|                   | Function            |                              |                    |                                                                                                                          |          |                   |                                                                 | •                    | ncy divisor K  |       |
|                   |                     |                              |                    |                                                                                                                          |          |                   |                                                                 | (divided by I        | N = (16 - K)/1 | 6)    |
|                   |                     |                              |                    |                                                                                                                          |          |                   |                                                                 |                      |                |       |
|                   |                     |                              |                    |                                                                                                                          |          |                   |                                                                 |                      | 1              |       |
|                   | Sets baud rate      | generator fre                | quency diviso      | r ←                                                                                                                      |          |                   |                                                                 |                      |                |       |
|                   |                     |                              | BR0C               | R <br< td=""><td>0ADDE:</td><td>&gt;=1</td><td>BR0CR<b< td=""><td>ROADDE&gt; = 0</td><td>)</td><td></td></b<></td></br<> | 0ADDE:   | >=1               | BR0CR <b< td=""><td>ROADDE&gt; = 0</td><td>)</td><td></td></b<> | ROADDE> = 0          | )              |       |
|                   |                     | BR0CR<br><br0s3:0></br0s3:0> | 0000 (N =          | 16)                                                                                                                      | 000      | 0 (N = 2)         | 0001 (N 1                                                       | ) (UART only)        | )              |       |
|                   | DR0ADD              |                              | or                 |                                                                                                                          |          | or                | 1111                                                            | to<br>(N = 15)       |                |       |
|                   | <br0k3:0></br0k3:0> |                              | 0001 (N =          | 1)                                                                                                                       | 1111     | 1 (N = 15)        |                                                                 | (N = 15)<br>(N = 16) |                |       |
|                   |                     |                              |                    |                                                                                                                          |          |                   | 5500                                                            | (11 – 10)            |                |       |
|                   | 00                  | 0000                         |                    | e Disable                                                                                                                |          |                   |                                                                 |                      |                |       |
|                   |                     |                              | Disable            | 1                                                                                                                        |          |                   | _                                                               |                      |                |       |
|                   | 0001 (              | K = 1)                       | Disable<br>Disable |                                                                                                                          | Div      | vided by (16 - K) | Divid                                                           | ed by N              |                |       |

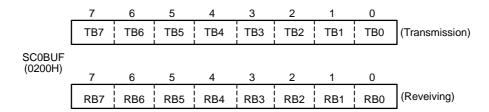
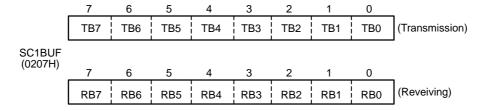

- Note 1: The baud rate generator can be set 1 when UART mode and disable + (16 K)/16 division function. Don't use in I/O interface mode.
- Note 2: Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD<BR0K3 to 0> when + (16 K)/16 division function is used.
- Note 3: + (16 K)/16 division function is possible to use in only UART mode. Set BR0CR <BR0ADDE> to 0 and disable + (16 - K)/16 division function in I/O interface mode.

Figure 3.10.11 Baud rate generator control (channel 0, BR0CR, BR0ADD)



- Note 1: The baud rate generator can be set 1 when UART mode and disable + (16 K)/16 division function. Don't use in I/O interface mode.
- Note 2: Set BR1CR <BR1ADDE> to 1 after setting K (K = 1 to 15) to BR1ADD<BR1K3 to 0> when + (16 K)/16 division function is used.
- Note 3: + (16 K)/16 division function is possible to use in only UART mode. Set BR1CR <BR1ADDE> to 0 and disable + (16 - K)/16 division function in I/O interface mode.

Figure 3.10.12 Baud rate generator control (channel 1、BR1CR, BR1ADD)




Note: Prohibit Read modify write for SC0BUF.

Figure 3.10.13 Serial Transmission/Receiving Buffer Registers (channel 0, SC0BUF)

| (0205H) |             | 7       | 6       | 5 | 4 | 3 | 2 | 1 | 0         |
|---------|-------------|---------|---------|---|---|---|---|---|-----------|
|         | Bit symbol  | 1280    | FDPX0   |   |   |   |   |   | STSEN0    |
|         | Read/Write  | R/W     | R/W     |   |   |   |   |   | W         |
|         | After Reset | 0       | 0       |   |   |   |   |   | 1         |
|         |             | IDLE2   | duplex  |   |   |   |   |   | STS0      |
|         | Function    | 0: Stop | 0: half |   |   |   |   |   | 0:Enable  |
|         |             | 1: Run  | 1: full |   |   |   |   |   | 1:Disable |

Figure 3.10.14 Serial Mode Control Register 1 (channel 0, SC0MOD1)



Note: Prohibit Read modify write for SC1BUF.

Figure 3.10.15 Serial Transmission/Receiving Buffer Registers (channel 1, SC1BUF)

| (020CH) F |             | 7       | 6       | 5 | 4 | 3 | 2 | 1 | 0         |
|-----------|-------------|---------|---------|---|---|---|---|---|-----------|
|           | Bit symbol  | 1280    | FDPX0   |   |   |   |   |   | STSEN0    |
|           | Read/Write  | R/W     | R/W     |   |   |   |   |   | W         |
|           | After Reset | 0       | 0       |   |   |   |   |   | 1         |
|           |             | IDLE2   | duplex  |   |   |   |   |   | STS1      |
|           | Function    | 0: Stop | 0: half |   |   |   |   |   | 0:Enable  |
|           |             | 1: Run  | 1: full |   |   |   |   |   | 1:Disable |

Figure 3.10.16 Serial Mode Control Register 1 (channel 1, SC1MOD1)

# 3.10.4 Operation in each mode

## (1) Mode 0 (I/O Interface Mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input external synchronous clock SCLK.

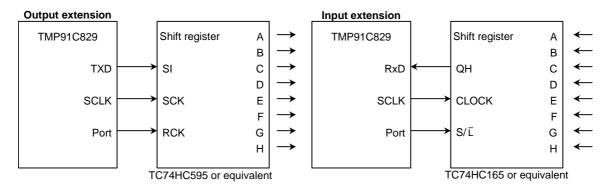



Figure 3.10.17 SCLK Output Mode connection example

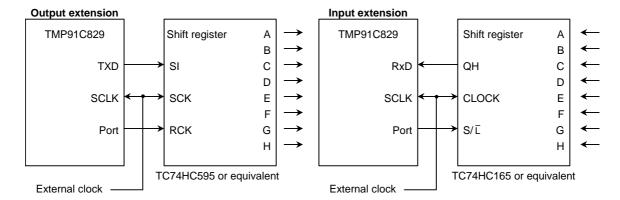



Figure 3.10.18 Example of SCLK Input Mode Connection

### ① Transmission

In SCLK Output Mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the Transmission Buffer.

When all the data has been output, INTESO <ITXOC> is set to 1, causing an INTTX0 interrupt to be generated.

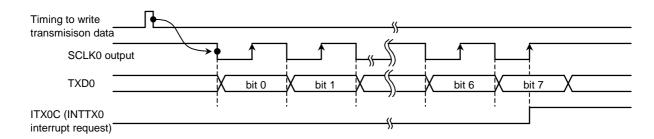



Figure 3.10.19 Transmitting Operation in I/O Interface Mode (SCLK0 Output Mode) (Channel 0)

In SCLK Input Mode, 8-bit data is output on the TXD0 pin when the SCLK0 input becomes Active after the data has been written to the Transmission Buffer by the CPU.

When all the data has been output, INTESO <ITXOC> is set to 1, causing an INTTX0 interrupt to be generated.

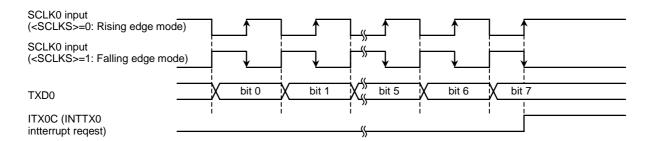



Figure 3.10.20 Transmitting Operation in I/O Interface Mode (SCLK0 Input Mode) (channel 0)

## 2 Receiving

In SCLK Output Mode the synchronous clock is output on the SCLK0 pin and the data is shifted to Receiving Buffer 1. This is initiated when the Receive Interrupt flag INTESO<IRXOC> is cleared as the received data is read. When 8-bit data is received, the data is transferred to Receiving Buffer 2 (SC0BUF) following the timing shown below and INTESO<IRXOC> is set to 1 again, causing an INTRX0 interrupt to be generated.

Setting SC0MOD0<RXE>to 1 initiates SCLK0 output.

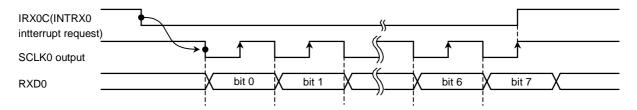



Figure 3.10.21 Receiving operation in I/O Interface Mode (SCLK0 Output Mode) (Channel 0)

In SCLK Input Mode the data is shifted to Receiving Buffer 1 when the SCLK input goes Active. The SCLK input goes Active when the Receive Interrupt flag INTESO <IRXOC> is cleared as the received data is read. When 8-bit data is received, the data is shifted to Receiving Buffer 2 (SC0BUF) following the timing shown below and INTESO <IRXOC> is set to 1 again, causing an INTRXO interrupt to be generated.

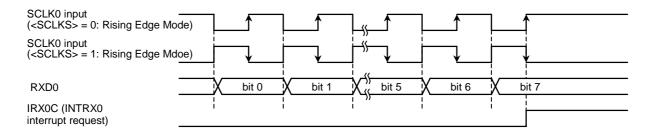



Figure 3.10.22 Receiving Operation in I/O interface Mode (SCLK0 Input Mode) (Channel 0)

Note: The system must be put in the Receive Enable state (SCMOD0<RXE> = 1) before data can be received.

## ③ Transmission and Receiving (Full Duplex Mode)

When Full Duplex Mode is used, set the Receive Interrupt Level to 0 and set enable the level of transmit interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

Example: Channel 0, SCLK output Baud rate = 9600 bps fc = 14.7456 MHz

System clock: High frequency (fc)

Clock gear: 1 (fc)
Prescaler clock: ffph

#### Main routine

|                          | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|--------------------------|---|---|---|---|---|---|---|---|--|
| INTES0                   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |
| P8CR                     | - | - | - | - | - | 1 | 0 | 1 |  |
|                          |   |   |   |   |   |   |   |   |  |
| P8FC                     | - | - | - | - | - | 1 | - | 1 |  |
| SC0MOD0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| SC0MOD1                  | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| SC0CR                    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                          |   |   |   |   |   |   |   |   |  |
| BR0CR                    | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |  |
| SC0MOD0                  | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| SC0BUF                   | * | * | * | * | * | * | * | * |  |
| INTTX0 interrupt routine |   |   |   |   |   |   |   |   |  |

Acc SCOBUF SCOBUF - - X X - 1 X X

Note: X = Don't care; "-" = No change

Set the INTTX0 level to 1. Set the INTRX0 level to 0.

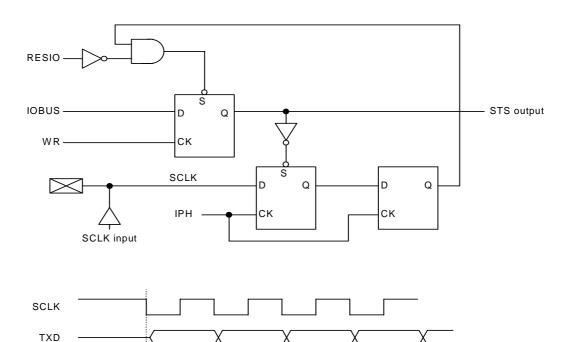
Set P80, P81 and P82 to function as the TXD0, RXD0 and SCLK0 pins respectively.

Select I/O Interface Mode. Select Full Duplex Mode.

Sclk\_out, transmit on negative edge, receive on positive edge

Baud rate = 9600 bps
Enable receiving

Set the transmit data and start.


Read the receiving buffer. Set the next transmit data. This UPU have STS0, STS1 pins that request the next data send to the CPU. P8CR sets to output mode, P8FC sets STS using mode, and bit 0 of SC0MOD1 (SC1MOD1) register sets H revel. And then STS is enable to start to transfer the data.

When SCLK signal is exactly falling edge, STS is disable.

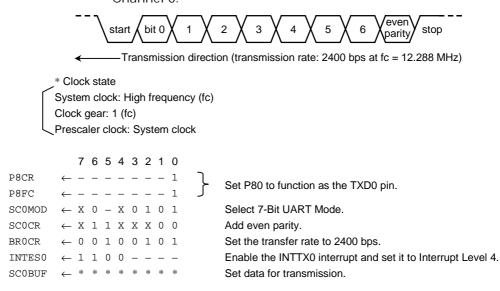
And when it is ended to transfer 8-bits data, you set the STS function is Enable and you set to request to the another CPU the next data.

In SCLK output mode you can not use this STS function.

/STS



-/STS is H level, when SCLK is falling edge timing.

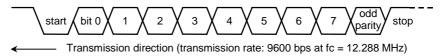

REG WR by programing

## (2) Mode 1 (7-bit UART Mode)

7-Bit UART Mode is selected by setting the Serial Channel Mode Register SC0MOD0<SM1,SM0> field to 01.

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the Serial Channel Control Register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (enabled).

Setting example: When transmitting data of the following format, the control registers should be set as described below. This explanation applies to Channel 0.




Note: X = Don't care; "-" = No change

## (3) Mode 2 (8-Bit UART Mode)

8-Bit UART Mode is selected by setting SC0MOD0<SM1,SM0> to 10. In this mode a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to 1 (enabled).

Setting example: When receiving data of the following format, the control registers should be set as described below.



```
* Clock state

System clock: High frequency (fc)

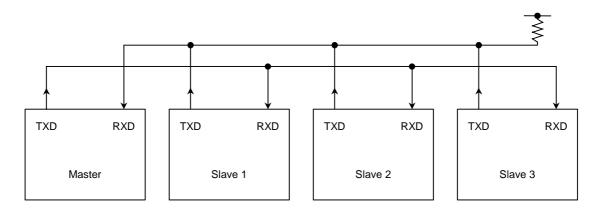
Clock gear: 1 (fc)

Prescaler clock: System clock
```

## Main settings

```
7 6 5 4 3 2 1 0
PACR
                 _ _ _ _ _ _ 0 _
                                             Set P80 to function as the TXD0 pin.
           SC0MOD
                                             Enable receiving in 8-Bit UART Mode.
SC0CR
           \leftarrow X 0 1 X X X 0 0
                                             Add even parity.
BR0CR
           \leftarrow 0 0 0 1 0 1 0 1
                                             Set the transfer rate to 9600 bps.
INTESO \leftarrow - - - - 1 1 0 0
                                             Enable the INTTX0 interrupt and set it to Interrupt Level 4.
Interrupt processing
           \leftarrow \mathsf{SC0CR} \; \mathsf{AND} \; \mathsf{00011100}
                                             Check for errors.
           ≠ 0 then ERROR
if Acc
Acc
           \leftarrow SC0BUF
                                             Read the received data.
```

Note: X = Don't care; "-" = No change


## (4) Mode 3 (9-Bit UART Mode)

9-Bit UART Mode is selected by setting SC0MOD0<SM1,SM0> to 11. In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SC0MOD0<TB8>. In the case of receiving it is stored in SC0CR<RB8>. When the buffer is written and read, the MSB is read or written first, before the rest of the SC0BUF data.

## Wake-up function

In 9-Bit UART Mode, the wake-up function for slave controllers is enabled by setting SC0MOD0<WU> to 1. The interrupt INTRX0 can only be generated when <RB8>=1.

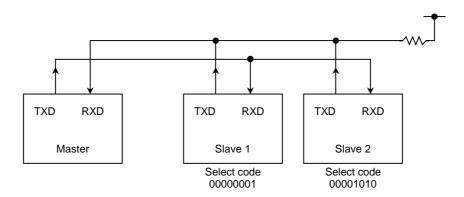


Note: The TXD pin of each slave controller must be in Open-Drain Output Mode.

Figure 3.10.23 Serial Link using Wake-up function

# Protocol

- ① Select 9-Bit UART Mode on the master and slave controllers.
- ② Set the SCOMODO<WU> bit on each slave controller to 1 to enable data receiving.
- The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (bit 8) of the data (<TB8>) is set to 1.




- Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its WU bit to 0.
- © The master controller transmits data to the specified slave controller (the controller whose SC0MOD<WU> bit has been cleared to 0). The MSB (bit 8) of the data (<TB8>) is cleared to 0.



⑥ The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (bit 8 or <RB8>) are set to 0, disabling INTRX0 interrupts. The slave controller whose WU bit = 0 can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.

Setting example: To link two slave controllers serially with the master controller using the internal clock fsys as the transfer clock.



Since Serial Channels 0 and 1 operate in exactly the same way, Channel 0 only is used for the purposes of this explanation.

• Setting the master controller

Main

#### P8CR Set P80 and P81 to function as the TXD0 and RXD0 pins - - - - X 1 respectively. INTES0 $\leftarrow$ 1 1 0 0 1 1 0 1 Enable the INTTX0 interrupt and set it to Interrupt Level 4. Enable the INTRX0 interrupt and set it to Interrupt Level 5. SC0MOD0 $\leftarrow \ \ 1 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 1 \ \ 0$ Set f<sub>SYS</sub> as the transmission clock for 9-Bit UART Mode. $\leftarrow$ 0 0 0 0 0 0 0 1 Set the select code for slave controller 1. SC0BUF INTTX0 interrupt SC0MOD0 Set TB8 to 0. SC0BUF Set data for transmission.

• Setting the slave controller

```
\label{eq:acc} \mbox{Acc} \leftarrow \mbox{SC0BUF} if Acc = select code then SC0MOD0 \leftarrow --- 0 - - - Clear <WU> to 0.
```

# 3.11 Analog/Digital Converter

The TMP91C829 incorporates a 10-bit successive approximation-type analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0 to AN7) are shared with the input-only port Port A and can thus be used as an input port.

Note: When IDLE2, IDLE1 or STOP Mode is selected, so as to reduce the power, with some timings the system may enter a standby mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

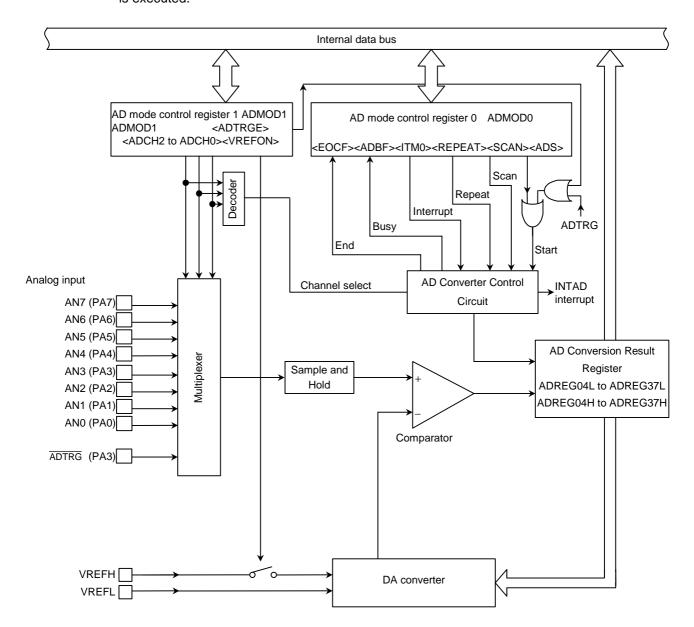



Figure 3.11.1 Block diagram of AD converter

## 3.11.1 Analog/Digital converter registers

The AD converter is controlled by the two AD Mode Control Registers: ADMOD0 and ADMOD1. The eight AD Conversion Data Upper and Lower Registers (ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L) store the results of AD conversion.

Figure 3.11.2 shows the registers related to the AD converter.

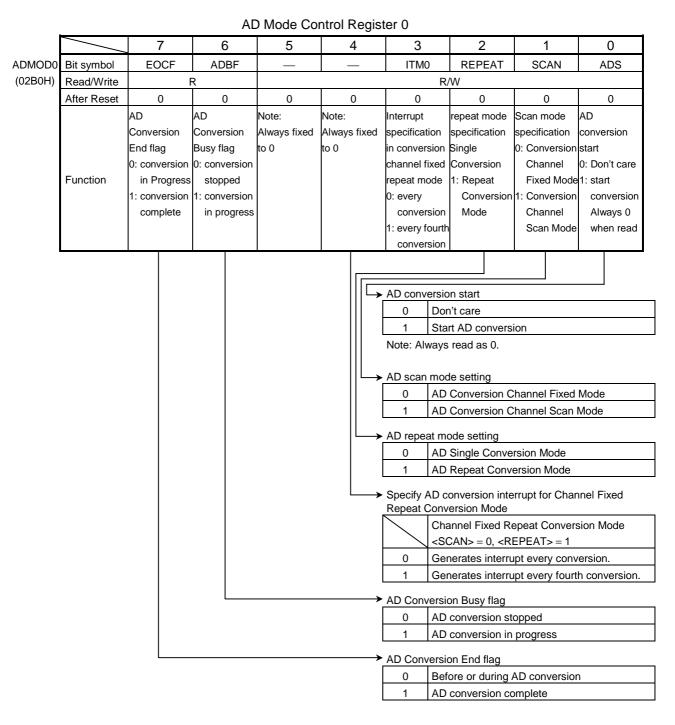



Figure 3.11.2 AD Converter Related Register

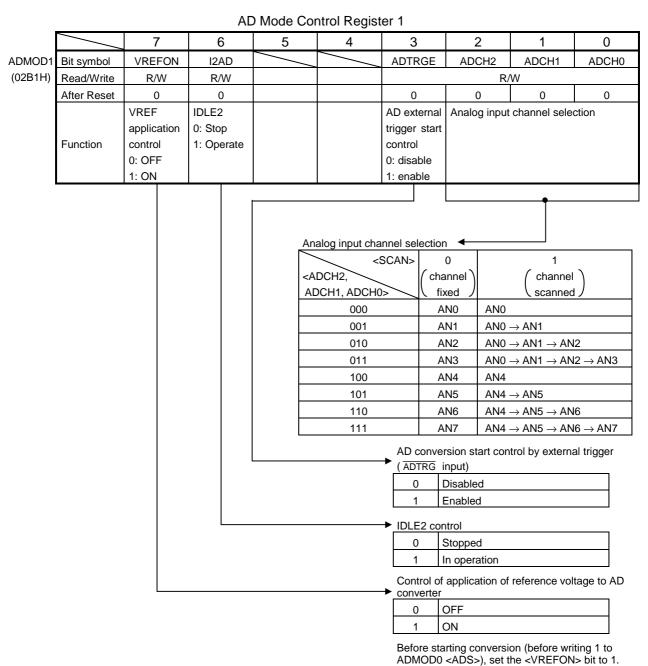



Figure 3.11.3 AD Converter Related Register

# AD Conversion Data Low Register 0/4

|          |             |                |        |   |   | , |   |   |                                                             |
|----------|-------------|----------------|--------|---|---|---|---|---|-------------------------------------------------------------|
|          |             | 7              | 6      | 5 | 4 | 3 | 2 | 1 | 0                                                           |
| ADREG04L | Bit symbol  | ADR01          | ADR00  |   |   |   |   |   | ADR0RF                                                      |
| (02A0H)  | Read/Write  | F              | ₹      |   |   |   |   |   | R                                                           |
|          | After Reset | Unde           | efined |   |   |   |   |   | 0                                                           |
|          | Function    | Stores lower a |        |   |   |   |   |   | AD Conversion Data Storage flag 1: Conversion result stored |

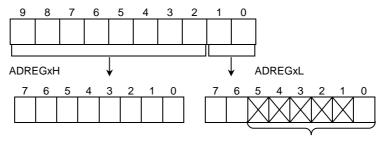
AD Conversion Data Upper Register 0/4

ADREG04H (02A1H)

|              | 7     | 6                                             | 5     | 4     | 3     | 2     | 1     | 0     |  |  |  |
|--------------|-------|-----------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| H Bit symbol | ADR09 | ADR08                                         | ADR07 | ADR06 | ADR05 | ADR04 | ADR03 | ADR02 |  |  |  |
| Read/Write   |       | R                                             |       |       |       |       |       |       |  |  |  |
| After Reset  |       | Undefined                                     |       |       |       |       |       |       |  |  |  |
| Function     |       | Stores upper eight bits AD conversion result. |       |       |       |       |       |       |  |  |  |

AD Conversion Data Lower Register 1/5

ADREG15L (02A2H)


|   |             | 7                            | 6     | 5 | 4 | 3 | 2 | 1 | 0                                                     |
|---|-------------|------------------------------|-------|---|---|---|---|---|-------------------------------------------------------|
| L | Bit symbol  | ADR11                        | ADR10 |   |   |   |   |   | ADR1RF                                                |
|   | Read/Write  | F                            | ₹     |   |   |   |   |   | R                                                     |
|   | After Reset | Undefined                    |       |   |   |   |   |   | 0                                                     |
|   |             | Stores lower a conversion re |       |   |   |   |   |   | AD Conversion Result flag 1: Conversion result stored |

AD Conversion Data Upper Register 1/5

ADREG15H (02A3H)

|              | 7     | 6                                             | 5     | 4     | 3     | 2     | 1     | 0     |  |  |  |
|--------------|-------|-----------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| H Bit symbol | ADR19 | ADR18                                         | ADR17 | ADR16 | ADR15 | ADR14 | ADR13 | ADR12 |  |  |  |
| Read/Write   |       | R                                             |       |       |       |       |       |       |  |  |  |
| After Reset  |       | Undefined                                     |       |       |       |       |       |       |  |  |  |
| Function     |       | Stores upper eight bits AD conversion result. |       |       |       |       |       |       |  |  |  |

Channel x conversion result



- Bits 5-1 are always read as 1.
- Bit 0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.4 AD Converter Related Registers

# AD Conversion Result Lower Register 2/6

|          |             |                              |       |   |   | <u> </u> |   |   |                                                             |
|----------|-------------|------------------------------|-------|---|---|----------|---|---|-------------------------------------------------------------|
|          |             | 7                            | 6     | 5 | 4 | 3        | 2 | 1 | 0                                                           |
| ADREG26L | Bit symbol  | ADR21                        | ADR20 |   |   |          |   |   | ADR2RF                                                      |
| (02A4H)  | Read/Write  | F                            | ₹     |   |   |          |   |   | R                                                           |
|          | After Reset | Unde                         | fined |   |   |          |   |   | 0                                                           |
|          |             | Stores lower 2 conversion re |       |   |   |          |   |   | AD conversion data storage flag 1: Conversion result stored |

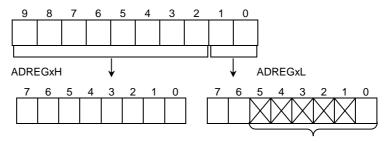
AD Conversion Data Upper Register 2/6

ADREG26H (02A5H)

|              | 7     | 6                                                | 5     | 4     | 3     | 2     | 1     | 0     |  |  |  |
|--------------|-------|--------------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| H Bit symbol | ADR29 | ADR28                                            | ADR27 | ADR26 | ADR25 | ADR24 | ADR23 | ADR22 |  |  |  |
| Read/Write   |       | R                                                |       |       |       |       |       |       |  |  |  |
| After Reset  |       | Undefined                                        |       |       |       |       |       |       |  |  |  |
| Function     |       | Stores upper eight bits of AD conversion result. |       |       |       |       |       |       |  |  |  |

AD Conversion Data Lower Register 3/7

ADREG37H (02A6H)


|              | 7                            | 6         | 5 | 4 | 3 | 2 | 1 | 0                                                       |
|--------------|------------------------------|-----------|---|---|---|---|---|---------------------------------------------------------|
| H Bit symbol | ADR31                        | ADR30     |   |   |   |   |   | ADR3RF                                                  |
| Read/Write   | F                            | Ŕ         |   |   |   |   |   | R                                                       |
| After Reset  | Unde                         | Undefined |   |   |   |   |   | 0                                                       |
| Function     | Stores lower a conversion re |           |   |   |   |   |   | AD Date<br>Storage<br>1: Conversion<br>result<br>stored |

AD Conversion Result Upper Register 3/7

ADREG37H (02A7H)

|             | 7     | 6                                                | 5     | 4     | 3     | 2     | 1     | 0     |  |  |  |
|-------------|-------|--------------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| Bit symbol  | ADR39 | ADR48                                            | ADR37 | ADR36 | ADR35 | ADR34 | ADR33 | ADR32 |  |  |  |
| Read/Write  |       | R                                                |       |       |       |       |       |       |  |  |  |
| After Reset |       | Undefined                                        |       |       |       |       |       |       |  |  |  |
| Function    |       | Stores upper eight bits of AD conversion result. |       |       |       |       |       |       |  |  |  |
|             |       |                                                  |       |       |       |       |       |       |  |  |  |

Channel x conversion result



- Bits 5-1 are always read as 1.
- Bit 0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.5 AD Converter Related Registers

TMP91C829

# 3.11.2 Description of operation

#### (1) Analog reference voltage

A high-level analog reference voltage is applied to the VREFH pin; a low-level analog reference voltage is applied to the VREFL pin. To perform AD conversion, the reference voltage, the difference between VREFH and VREFL, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write a 0 to ADMOD1<VREFON> in AD Mode Control Register 1. To start AD conversion in the OFF state, first write a 1 to ADMOD1<VREFON>, wait 3  $\mu$ s until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0<ADS> to 1.

### (2) Analog input channel selection

The analog input channel selection varies depends on the operation mode of the AD converter.

- In Analog Input Channel Fixed Mode (ADMOD0<SCAN> = 0)
   Setting ADMOD1<ADCH2 to ADCH0> selects one of the input pins AN0 to AN7 as the input channel.
- In Analog Input Channel Scan Mode (ADMOD0<SCAN> = 1)
   Setting ADMOD1<ADCH2 to ADCH0> selects one of the four scan modes.

Table 3.11.1 illustrates analog input channel selection in each operation mode.

On a Reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH2 to ADCH0> is initialized to 000. Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

| <adch2 0="" to=""></adch2> | Channel fixed<br><scan> = 0</scan> | Channel scan<br><scan> = 1</scan>     |
|----------------------------|------------------------------------|---------------------------------------|
| 000                        | AN0                                | AN0                                   |
| 001                        | AN1                                | AN0 → AN1                             |
| 010                        | AN2                                | $AN0 \rightarrow AN1 \rightarrow AN2$ |
| 011                        | AN3                                | $AN0 \to AN1 \to AN2 \to AN3$         |
| 100                        | AN4                                | AN4                                   |
| 101                        | AN5                                | AN4 → AN5                             |
| 110                        | AN6                                | $AN4 \rightarrow AN5 \rightarrow AN6$ |
| 111                        | AN7                                | $AN4 \to AN5 \to AN6 \to AN7$         |

Table 3.11.1 Analog input channel selection

#### (3) Starting AD Conversion

To start AD conversion, write a 1 to ADMOD0<ADS> in AD Mode Control Register 0 or ADMOD1<ADTRGE> in AD Mode Control Register 1, pull the ADTRG pin input from High to Low. When AD conversion starts, the AD Conversion Busy flag ADMOD0<ADBF> will be set to 1, indicating that AD conversion is in progress.

Writing a 1 to ADMOD0<ADS> during AD conversion restarts conversion. At that time, to determine whether the AD conversion results have been preserved, check the value of the conversion data storage flag ADREGxxL<ADRxRF>.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

#### (4) AD conversion modes and the AD Conversion End interrupt

The four AD conversion modes are:

- Channel Fixed Single Conversion Mode
- Channel Scan Single Conversion Mode
- Chanel Fixed Repeat Conversion Mode
- Channel Scan Repeat Conversion Mode

The ADMOD0<REPET> and ADMOD0<SCAN> settings in AD Mode Control Register 0 determine the AD mode setting.

Completion of AD coversion triggers an INTAD AD Conversion End interrupt request. Also, ADMOD0<EOCF> will be set to 1 to indicate that AD conversion has been completed.

① Channel Fixed Single Conversion Mode

Setting ADMOD0<REPET> and ADMOD0<SCAN> to 00 selects Conversion Channel Fixed Single Conversion Mode.

In this mode data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

2 Channel Scan Single Conversion Mode

Setting ADMOD0<REPET> and ADMOD0<SCAN> to 01 selects Conversion Channel Scan Single Conversion Mode.

In this mode data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

3 Channel Fixed Repeat Conversion Mode

Setting ADMOD0<REPET> and ADMOD0<SCAN> to 10 selects Conversion Channel Fixed Repeat Conversion Mode.

In this mode data on one specified channel is converted repeatedly. When conversion has been completed, ADMODO<EOCF> is set to 1 and ADMODO<ADBF> is not cleared to 0 but held at 1. INTAD interrupt request generation timing is determined by the setting of ADMODO<ITMO>.

Setting <ITM0> to 0 generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to 1 generates an interrupt request on completion of every fourth conversion.

### Channel Scan Repeat Conversion Mode

Setting ADMOD0<REPET> and ADMOD0<SCAN> to 11 selects Conversion Channel Scan Repeat Conversion Mode.

In this mode data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to 1 and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to 0 but held at 1.

To stop conversion in a repeat conversion mode (i.e. in cases  $\$ 3 and  $\$ 4), write a 0 to ADMOD0<REPET>. After the current conversion has been completed, the repeat conversion mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2 Mode with ADMOD1<I2AD> cleared to 0, IDLE1 Mode or STOP Mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (i.e. in cases 3 and 4), when the halt is released, conversion restarts from the beginning. In single conversion modes (i.e. in cases 1 and 2), conversion does not restart when the halt is released (the converter remains stopped).

Table 3.11.2 shows the relationship between the AD conversion modes and interrupt requests.

|                                         | •                                         |               |                   |               |
|-----------------------------------------|-------------------------------------------|---------------|-------------------|---------------|
| Mode                                    | Interrupt Request Generation              |               | ADMOD0            |               |
| iviode                                  | interrupt Nequest Generation              | <itm0></itm0> | <repeat></repeat> | <scan></scan> |
| Channel Fixed Single<br>Conversion Mode | After completion of conversion            | Х             | 0                 | 0             |
| Channel Scan Single Conversion Mode     | After completion of scan conversion       | X             | 0                 | 1             |
| Channel Fixed Repeat                    | Every conversion                          | 0             | 1                 | 0             |
| Conversion Mode                         | Every forth conversion                    | 1             | l                 | U             |
| Channel Scan Repeat Conversion Mode     | After completion of every scan conversion | Х             | 1                 | 1             |

Table 3.11.2 Relationship Between AD Conversion Modes and Interrupt Requests

#### X: Don't care

# (5) AD conversion time

202 states (11.22  $\mu s$  @ fFPH = 36 MHz) are required for the AD conversion of one channel.

#### (6) Storing and reading the results of AD conversion

The AD Conversion Data Upper and Lower Registers (ADREG04H/L to ADREG37H/L) store the results of AD conversion. (ADREG04H/L to ADRG37H/L are read-only registers.)

In Channel Fixed Repeat Conversion Mode, the conversion results are stored successively in registers ADREG04H/L to ADRG37H/L. In other modes the AN0 and AN4, AN1 and AN5, AN2 and AN6, AN3 and AN7 conversion results are stored in ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L respectively.

Table 3.11.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

AD Conversion Result Register Analog input channel Channel fixed repeat Conversion modes (Port A) conversion mode other than at right (every 4th conversion) ADREG04H/L AN0 ADREG04H/L ← AN4 AN1 ADREG15H/L ADREG15H/L AN5 AN<sub>2</sub> ADREG26H/L ADREG26H/L AN6 ADREG37H/L AN<sub>3</sub> ADREG37H/L AN7

Table 3.11.3 Correspondence Between Analog Input Channels and AD Conversion Result Registers

<ADRxRF>, bit 0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to 1. When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to 0.

Reading the AD conversion result also clears the AD Conversion End flag ADMOD0<EOCF> to 0.

#### Setting example:

① Convert the analog input voltage on the AN3 pin and write the result, to memory address 0800H using the AD interrupt (INTAD) processing routine.

#### Main routine:

```
7 6 5 4 3 2 1 0
INTE0AD
              \leftarrow \text{ x 1 0 0 - - - - }
                                                 Enable INTAD and set it to Interrupt Level 4.
ADMOD1
              \leftarrow 1 1 X X 0 0 1 1
                                                 Set pin AN3 to be the analog input channel.
ADMOD0
                                                 Start conversion in Channel Fixed Single Conversion Mode.
              \leftarrow \texttt{X} \texttt{X} \texttt{0} \texttt{0} \texttt{0} \texttt{0} \texttt{0} \texttt{1}
Interrupt routine processing example:
WA
              ← ADREG37
                                                 Read value of ADREG37L and ADREG37H into 16-bit
                                                 general-purpose register WA.
WΑ
              > > 6
                                                 Shift contents read into WA six times to right and zero-fill upper
(M0080)
             \leftarrow WA
                                                 Write contents of WA to memory address 0800H.
```

This example repeatedly converts the analog input voltages on the three pins ANO, AN1 and AN2, using Channel Scan Repeat Conversion Mode.

Note: X = Don't care; "-" = No change

# 3.12 Watchdog timer (runaway detection timer)

The TMP91C829 features a watchdog timer for detecting runaway.

The watchdog timer (WDT) is used to return the CPU to Normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the Reset pin internally forces a reset.

# 3.12.1 Configuration

Figure 3.12.1 is a block diagram of he watchdog timer (WDT).

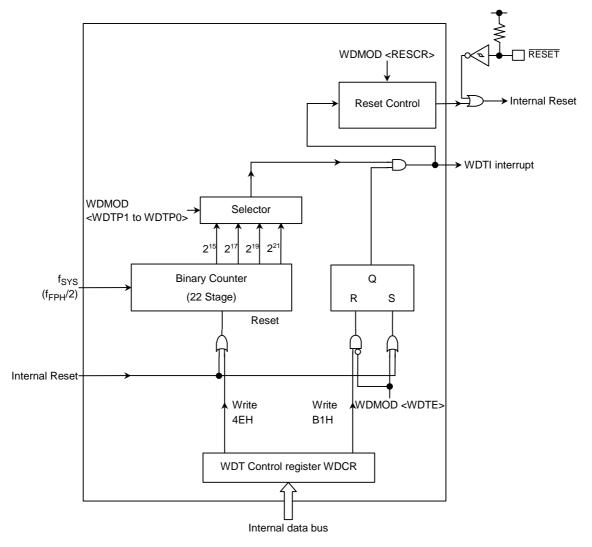



Figure 3.12.1 Block diagram of watchdog timer

Note: The watchdog timer cannot operate by disturbance noise in some case. Take care when design the device.

The watchdog timer consists of a 22-stage binary counter which uses the system clock (fsys) as the input clock. The binary counter can output fsys/ $2^{15}$ , fsys/ $2^{17}$ , fsys/ $8^{29}$  and fsys/ $2^{21}$ . Selecting one of the outputs using WDMOD<WDTP1,WDTP0> generates a Watchdog interrupt and outputs watchdog timer out when an overflow occurs.

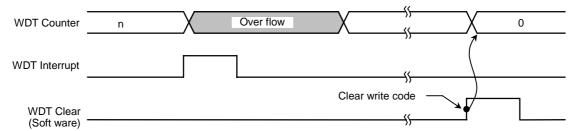



Figure 3.12.2 Normal Mode

The runaway detection result can also be connected to the Reset pin internally. In this case, the reset time will be between 22 and 29 states as shown in Figure 3.12.3.

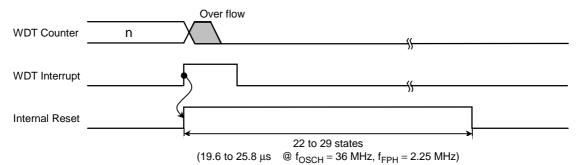



Figure 3.12.3 Reset Mode

# 3.12.2 Control registers

The watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog Timer Mode Register (WDMOD)
  - Setting the detection time for the watchdog timer in <WDTP>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway. On a Reset this register is initialized to WDMOD<WDTP1,WDTP0> = 00.

The detection times for WDT are shown in Figure 3.12.4.

② Watchdog Timer Enable/Disable Control Register < WDTE>

On a Reset WDMOD<WDTE> is initialized to 1, enabling the watchdog timer. To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the Watchdog Timer Control Register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

③ Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR>is initialized to 0 on a Reset, a Reset by the watchdog timer will not be performed.

(2) Watchdog Timer Control Register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

Disable control

The watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

Enable control

Set WDMOD<WDTE>to 1.

Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

```
WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).
```

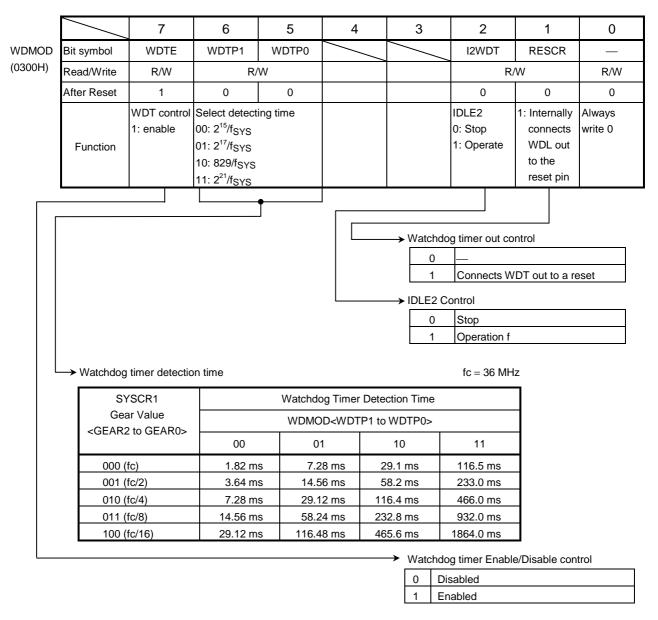



Figure 3.12.4 Watchdog Timer Mode Register

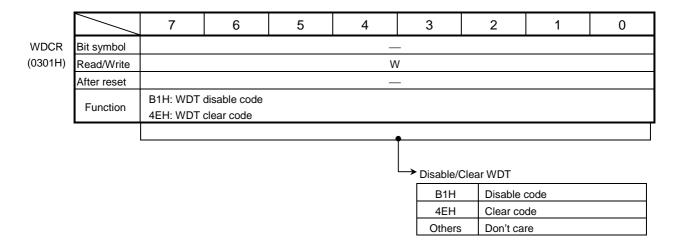



Figure 3.12.5 Watchdog Timer Control Register

# 3.12.3 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<BDTP1,WDTP0> has elapsed. The watchdog timer must be zero-cleared in software before an INTWD interrupt will be generated. If the CPU malfunctions (i.e. if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-mulfunction program. By connecting the Watchdog Timer Out pin to a peripheral device's reset input, the occurrence of a CPU malfunction can also be relayed to other devices.

#### The watch dog timer works immediately after reset.

The watchdog timer does not operate in IDLE1 or STOP Mode, as the binary counter continues counting during bus release (When BUSAK goes Low).

When the device is in IDLE2 Mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 Mode.

Example: ① Clear the binary counter.

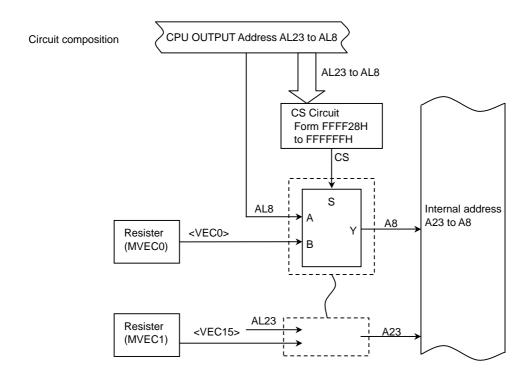
```
WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH). ② Set the watchdog timer detection time to 2^{17} / fsys. WDMOD \leftarrow 1 0 1 - - - - - - . ③ Disable the watchdog timer. WDMOD \leftarrow 0 - - - - - X X Clear WDTE to 0. WDCR \leftarrow 1 0 1 1 0 0 0 1 Write the disable code (B1H).
```

## 3.13 Multi-Vector Control

#### 3.13.1 Multi-Vector Controller

#### (1) Outline

By rewriting the value of multi-vector control resister (MVEC 0 and 1), a vector table is arbitrarily movable.


## (2) Control resister

The amount of 228 bytes become an interruption vector area from the value set as vector control resister (MVEC 0 and 1).

#### Vector control resister composition

|         |             | 7    | 6                        | 5    | 4    | 3    | 2    | 1    | 0    |  |  |
|---------|-------------|------|--------------------------|------|------|------|------|------|------|--|--|
| MVEC0   | Bit symbol  | VEC7 | VEC6                     | VEC5 | VEC4 | VEC3 | VEC2 | VEC1 | VEC0 |  |  |
| (00AEH) | Read/Write  | R/W  | R/W                      | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |  |  |
|         | After reset | 1    | 1                        | 1    | 1    | 1    | 1    | 1    | 1    |  |  |
|         | Function    |      | Vector Address A15 to A8 |      |      |      |      |      |      |  |  |

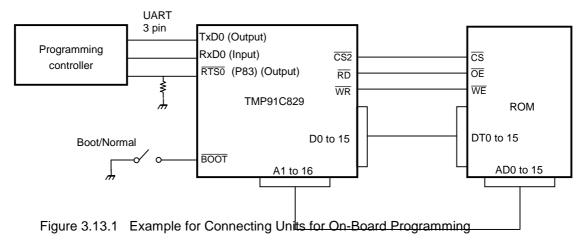
| MVEC1   |             | 7                         | 6     | 5     | 4     | 3     | 2     | 1    | 0    |  |  |
|---------|-------------|---------------------------|-------|-------|-------|-------|-------|------|------|--|--|
| MVEC1   | Bit symbol  | VEC15                     | VEC14 | VEC13 | VEC12 | VEC11 | VEC10 | VEC9 | VEC8 |  |  |
| (00AFH) | Read/Write  | R/W                       | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  | R/W  |  |  |
|         | After reset | 1                         | 1     | 1     | 1     | 1     | 1     | 1    | 1    |  |  |
|         | Function    | Vector Address A23 to A16 |       |       |       |       |       |      |      |  |  |



Note: Write MVEC1,0 after making an interruption prohibition state.

#### 3.13.2 Multi-Boot Mode

#### (1) Outline


The TMP91C829 has multi-boot mode available as an on-board programming operation mode. When in multi-boot mode, the boot ROM is mapped into memory space. This boot ROM is a mask ROM that contains a program to rewrite the flash memory on-board.

Rewriting is accomplished by connecting the TMP91C829's SIO and the programming tool (controller) and then sending commands from the controller to the target board.

The boot program included in the boot ROM only has the function of a loader for transferring program data from an external source into the device's internal RAM.

Rewriting can be performed by UART. From 1000H to 105FH in device's internal RAM is work area of boot program. Don't transfer program data in this work area.

Figure 3.12.1 shows an example of how to connect the programming controller and the target board. (When ROM has 16-bit data bus.)



# (2) Mode setting

To execute on-board programming, start the TMP91C829 in multi-boot mode. Settings necessary to start up in multi-boot mode are shown below.



After setting the  $\overline{\text{BOOT}}$  pin each to the above conditions and a  $\overline{\text{RESET}}$ , the TMP91C829 start up in multi-boot mode.

#### (3) Memory Map

Figure 3.12.2 shows memory maps for multi-chip and multi-boot modes. When start up in multi-boot mode, internal boot ROM is mapped in FFF800H address, the boot program starts up.

When start up in multi-chip mode, internal boot ROM is mapped in 1F800H address, it can be made to operate arbitrarily by the user. Program starting address is 1F800H.

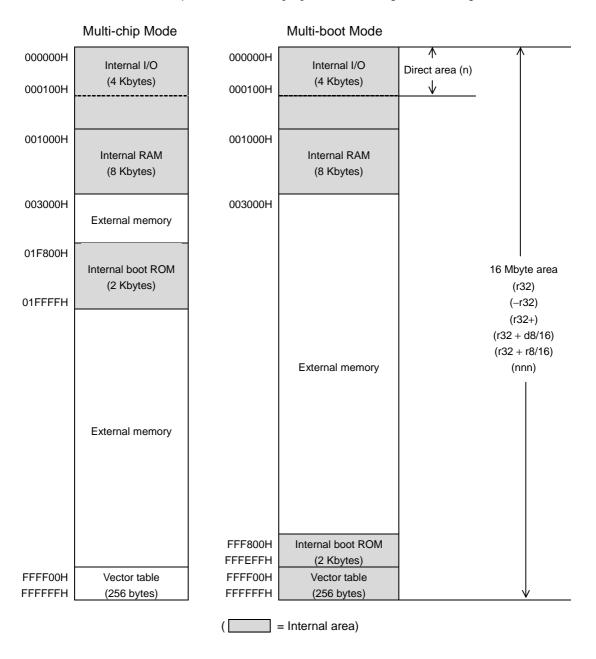



Figure 3.13.2 TMP91C829 Memory Map

### (4) SIO interface specifications

The following shows the SIO communication format in multi-boot mode.

Before on-board programming can be executed, the communication format on the programming controller side must also be set up in the same way as for the TMP91C829.

Note that although the default baud rate is 9600 bps, it can be changed to other values as shown in Table 3.13.3.

Serial transfer mode : UART(asynchronous communication)mode,

full-duplex communication

Data length : 8-bits
Parity bit : None
STOP bit : 1-bit

Handshake : Micro-controller (P83) → Programming controller

Baud rate(default) : 9600 bps

### (5) SIO data transfer format

Table 3.13.1 through 3.13.6 show supported frequencies, data transfer format, baud rate modification commands, operation commands, version management information, and frequency measurement result with data store location, respectively.

Also refer to the description of boot program operation in the latter pages of this manual as you read these tables.

Table 3.13.1 Supported Frequencies

| 16.000 MHz     | 20.000 MHz    | 22.579 MHz     | 25.000 MHz    | 32.000 MHz    | 33.868 MHz    | 36.000 MHz    |
|----------------|---------------|----------------|---------------|---------------|---------------|---------------|
| 10.000 1011 12 | 20.000 WII IZ | ZZ.J/ 3 WII IZ | 23.000 WII IZ | 32.000 WII IZ | 33.000 WII IZ | 30.000 WII IZ |

Table 3.13.2 Transfer Format

|      | Number of Bytes<br>Transferred | Transfer Data from Controller to TMP91C829 | Baud Rate             | Transfer Data from TMP91C829 to<br>Controller                  |
|------|--------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------|
| воот | 1st byte                       | Matching data (5AH)                        | 9600 bps              | — (Frequency measurement and baud                              |
| ROM  | 2nd byte                       | _                                          | 9600 bps              | rate auto set) OK: Echoback data (5AH) NG: Nothing transmitted |
|      | 3rd byte<br>:<br>6th byte      | _                                          | 9600 bps              | Version management information (See Table 3.13.5)              |
|      | 7th byte                       |                                            | 9600 bps              | Frequency information (See Table 3.13.6)                       |
|      | 8th byte                       | Baud rate modification command             | 9600 bps              |                                                                |
|      | 9th byte                       | (See Table 3.13.3)                         | 9600 bps              | OK: Echoback data                                              |
|      |                                | <u> </u>                                   |                       | NG: Error code X 3                                             |
|      | 10th byte                      | User program                               | Changed new baud rate | NG: Operation stop by checksum error                           |
|      | :                              | Extended Intel Hex format(binary)          |                       |                                                                |
|      | n'th -4 byte                   |                                            |                       |                                                                |
|      | n'th -3 byte                   | <del>_</del>                               | Changed new baud rate | ` ` ,                                                          |
|      |                                |                                            |                       | (See (6) (iii) Notes on SUM)                                   |
|      | n'th -2 byte                   | _                                          | Changed new baud rate | OK:SUM(Low)                                                    |
|      | n'th -1 byte                   | User program start command (C0H)           | Changed new baud rate | _                                                              |
|      |                                | (See Table 3.13.4)                         | Changed new baud rate | OK: Echoback data (C0H)                                        |
|      | n'th byte                      | _                                          |                       | NG: Error code X 3                                             |
| RAM  | _                              | JUMP to user program start address         |                       |                                                                |

Error code X 3 means sending an error code three times. Example, when error code is 62H, TMP91C829 sends 62H three times. About error code, see (6)(ii) Error Code.

#### Table 3.13.3 Baud Rate Modification Command

| Baud Rate (bps)      | 9600 | 19200 | 38400 | 57600 | 115200 |
|----------------------|------|-------|-------|-------|--------|
| Modification command | 28H  | 18H   | 07H   | 06H   | 03H    |

# Table 3.13.4 Operation Command

| Operation command | Operation          |
|-------------------|--------------------|
| C0H               | Start user program |

#### Table 3.13.5 Version Management Information

| Version Information | ASCII code         |
|---------------------|--------------------|
| FRM1                | 46H, 52H, 4DH, 31H |

#### Table 3.13.6 Frequency Measurement Result Data

| Frequency of Resonator (MHz) | 16.000 | 20.000 | 22.579 | 25.000 | 32.000 | 33.868 | 36.000 |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|
| 1000H<br>(RAM store address) | 00H    | 01H    | 02H    | 03H    | 04H    | 05H    | 06H    |

#### (6) Description of SIO boot program operation

When you start the TMP91C829 in multi-boot mode, the boot program starts up. The boot program provides the RAM loader function described below.

#### RAM loader

The RAM loader transfers the data sent from the controller in Extended Intel Hex format into the internal RAM. When the transfer has terminated normally, the RAM loader calculates the SUM and sends the result to the controller before it starts executing the user program. The execution start address is the first address received. This RAM loader function provides the user's own way to control on-board programming.

To execute on-board programming in the user program, you need to use the flash memory command sequence to be connected. (Must be matched to the flash memory addresses in multi-boot mode).

#### (i) Operational procedure of RAM loader

- 1. Connect the serial cable. Make sure to perform connection before resetting the microcontroller.
- 2. Set the BOOT pin to "Boot" and reset the micro-controller.
- 3. The receive data in the 1st byte is the matching data. When the boot program starts in multi-boot mode, it goes to a state in which it waits for the matching data to receive. Upon receiving the matching data, it automatically adjusts the serial channels' initial baud rate to 9600 bps. The matching data is 5AH.
- 4. The 2nd byte is used to echo back 5AH to the controller upon completion of the automatic baud rate setting in the first byte. If the device fails in automatic baud rate setting, it goes to an idle state.
- 5. The 3rd byte through 6th byte are used to send the version management information of the boot program in ASCII code. The controller should check that the correct version of the boot program is used.

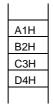
- The 7th byte is used to send information of the measured frequency.
   The controller should check that the frequency of the resonator is measured correctly.
- 7. The receive data in the 8th byte is the baud rate modification data. The five kinds of baud rate modification data shown in Table 3.13.3 are available. Even when you do not change the baud rate, be sure to send the initial baud rate data (28H;9600 bps). Baud rate modification becomes effective after the echoback transmission is completed.
- 8. The 9th byte is used to echo back the received data to the controller when the data received in the 8th byte is one of the baud rate modification data corresponding to the device's operating frequency. Then the baud rate is changed. If the received baud rate data does not correspond to the device's operating frequency, the device goes to an idle state after sending 3 bytes of baud rate modification error code (62H).
- 9. The receive data in the 10th byte through n'th 4 byte is received as binary data in Extended Intel Hex format. No received data is echoed back to the controller. The RAM loader processing routine ignores the received data until it receives the start mark (3AH for ":") in Extended Intel Hex format. Nor does it send error code to the controller. After receiving the start mark, the routine receives a range of data from the data length to checksum and writes the received data to the specified RAM addresses successively.
  - After receiving one record of data from start mark to checksum, the routine goes to a start mark waiting state again.
  - If a receive error or checksum error of Extended Hex format occurs, the device goes to an idle state without returning error code to the controller.
  - Because the RAM loader processing routine executes a SUM calculation routine upon detecting the end record, the controller should be placed in a SUM waiting state after sending the end record to the device.
- 10. The n'th 3 byte and the n'th 2 byte are the SUM value that is sent to the controller in order of upper byte and lower byte. For details on how to calculate the SUM, refer to "Notes on SUM" in the latter page of this manual. The SUM calculation is performed only when no write error, receive error, or Extended Intel Hex format error has been encountered after detecting the end record. Soon after calculation of SUM, the device sends the SUM data to the controller. The controller should determine whether writing to the RAM has terminated normally depending on whether the SUM value is received after sending the end record to the device.
- 11. After sending the SUM, the device goes to a state waiting for the user program start code. If the SUM value is correct, the controller should send the user program start command to the n'th 1 byte. The user program start command is COH.
- 12. The n'th byte is used to echo back the user program start code to the controller. After sending the echoback to the controller, the stack pointer is set to 105FH and the boot program jumps to the first address that is received as data in Extended Intel Hex format.
- 13. If the user program start code is wrong or a receive error occurs, the device goes to an idle state after returning three bytes of error code to the controller.

# (ii) Error Code

The boot program sends the processing status to the controller using various code. The error code is listed in the table below.

Table 3.13.7 Error Code

| Error Code | Meaning of Error Code                    |  |  |  |
|------------|------------------------------------------|--|--|--|
| 62H        | Baud rate modification error occurred.   |  |  |  |
| 64H        | Operation command error occurred.        |  |  |  |
| A1H        | Framing error in received data occurred. |  |  |  |
| A3H        | Overrun error in received data occurred. |  |  |  |


<sup>\*1:</sup> When a receive error occurs when receiving the user program, the device does not send the error code to the controller.

#### (iii) Notes on SUM

#### 1. Calculation method

SUM consists of byte+byte.....+byte, the sum of which is returned in word as the result. Namely, data is read out in byte and sum of which is calculated, with the result returned in word.

### Example:



If the data to be calculated consists of the four bytes shown to the left, SUM of the data is:

A1H+B2H+C3H+D4H = 02EAH

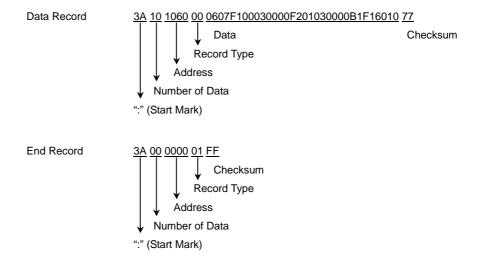
SUM(HIGH) = 02H

SUM(LOW) = EAH

#### Calculation data

The data from which SUM is calculated is the RAM data from the first address received to the last address received.

The received RAM write data is not the only data to be calculated for SUM. Even when the received addresses are noncontiguous and there are some unwritten areas, data in the entire memory area is calculated. The user program should not contain unwritten gaps.


#### (iv) Notes on Extended Intel Hex Format (binary)

- 1. After receiving the checksum of a record, the device waits for the start mark (3AH for ":") of the next record. Therefore, the device ignores all data received between records during that time unless the data is 3AH.
- 2. Make sure that once the controller program has finished sending the checksum of the end record, it does not send anything and waits for two byes of data to be received (upper and lower bytes of SUM). This is because after receiving the checksum of the end record, the boot program calculates the SUM and returns the calculated SUM in two bytes to the controller.
- 3. It becomes the cause of incorrct operation to write to areas out of device's internal RAM. Therefore, when an extended record is transmitted, be sure to set a paragraph address to 0000H.
- 4. Always make sure the first record type is an extended record. Because the initial value of the address pointer is 00H.

<sup>\*2:</sup> After sending the error code, the device goes to an idle state.

5. Transmit a user program not by the ASCII code but by binary. However, start mark ":" is 3AH (ASCII code).

Example: Transmit data in the case of writing in 16 bytes data from address 1060H



# (v) Error When Receiving User Program

If the following errors occur in Extended Intel Hex format when receiving the user program, the device goes to an idle state.

- When the record type is not 00H, 01H, 02H
- When a checksum error occurs

#### (vi) Error between Frequency Measurement and Baud Rate

The boot program measures the resonator frequency when receiving matching data. If an error is under 3%, the boot program decides on that frequency. Since there is an overlap between the margin of 3% for 32.000 MHz and 33.868 MHz, the boundary is set at the intermediate value between the two. The baud rate is set based on the measured frequency. Each baud rate includes a set error shown in Table 3.13.8. For example, in the case of 20.000 MHz and 9600 bps, the baud rate is actually set at 9615.38 bps with an error of 0.2%. To establish communication, the sum of the baud rate set error shown in Table 3.13.8 and the frequency error need to be under 3%.

| Table 6.7616 Get Eller of Each Bada Nate (76) |          |           |           |           |            |  |  |  |  |  |
|-----------------------------------------------|----------|-----------|-----------|-----------|------------|--|--|--|--|--|
|                                               | 9600 bps | 19200 bps | 38400 bps | 57600 bps | 115200 bps |  |  |  |  |  |
| 16.000 MHz                                    | 0.2      | 0.2       | 0.2       | -0.6      | -0.8       |  |  |  |  |  |
| 20.000 MHz                                    | 0.2      | 0.2       | 0.2       | -0.2      | 0.9        |  |  |  |  |  |
| 22.579 MHz                                    | 0        | 0.7       | 0         | 0         | 0          |  |  |  |  |  |
| 25.000 MHz                                    | -0.2     | 0.5       | -0.1      | 0.5       | 0.5        |  |  |  |  |  |
| 32.000 MHz                                    | 0.1      | 0.2       | 0.2       | 0         | 0.6        |  |  |  |  |  |
| 33.868 MHz                                    | 0.2      | 0.2       | 0.2       | 0         | 0.7        |  |  |  |  |  |
| 36.000 MHz                                    | 0.2      | 0.2       | -0.7      | 0.2       | 0.2        |  |  |  |  |  |

Table 3.13.8 Set Error of Each Baud Rate (%)

# (7) Ports setup of the boot program

Only ports shown in Table 3.13.9 are set up in the boot program. At the time of boot program use, be careful of the influence on a user system. Do not use  $\overline{\text{CSO}}$  space and P60 in the system which uses the boot program.

Other ports are not setting up, and are the reset state or the state of boot program starting.

Table 3.13.9 Ports setting list

| Ports | Function | Input/Output | High/Low | Notes                                                 |
|-------|----------|--------------|----------|-------------------------------------------------------|
| P60   | CS0      | Output       | _        | CS0 space is 20000H to 201FFH                         |
| P61   | Port     | Output       | _        |                                                       |
| P62   | Port     | Output       | High     |                                                       |
| P63   | Port     | Output       |          |                                                       |
| P80   | Port     | Input        | High     | Not open drain port.                                  |
|       |          |              |          | This port becomes TxD0 after matching data reception. |
| P81   | RxD0     | Input        | High     |                                                       |
| P82   | Port     | Input        | _        |                                                       |
| P83   | Port     | Input        | Low      | This port is set as the output and becomes RTS0 after |
|       |          |              |          | matching data reception.                              |
| P84   | Port     | Input        | _        |                                                       |
| P85   | Port     | Input        | _        |                                                       |
| P86   | Port     | Input        | _        |                                                       |
| P87   | Port     | Input        |          |                                                       |

—: Un-setting up

# (8) Setting Method of Microcontroller Peripherals

Although P83 has the  $\overline{\text{RTS0}}$  function, it is initially in a high impedance state and not set as  $\overline{\text{RTS0}}$ . To establish serial communication, attach a pull-down resister to P83.

# 4. Electrical Characteristics (tentative)

# 4.1 Absolute Maximum Ratings

| Parameter                     | Symbol  | Rating            | Unit |
|-------------------------------|---------|-------------------|------|
| Power Supply Voltage (5 V)    | HVcc    | -0.5 to 5.75      | V    |
| Power Supply Voltage (3 V)    | LVcc    | -0.5 to 4.0       | V    |
| Input Voltage                 | VIN     | -0.5 to Vcc + 0.5 | V    |
| Output Current (per pin)      | IOL     | 2                 | mA   |
| Output Current (per pin)      | IOH     | -2                | mA   |
| Output Current (total)        | ΣΙΟL    | 80                | mA   |
| Output Current (total)        | ΣΙΟΗ    | -80               | mA   |
| Power Dissipation (Ta = 85°C) | PD      | 600               | mW   |
| Soldering Temperature (10 s)  | TSOLDER | 260               | °C   |
| Storage Temperature           | TSTG    | -65 to 150        | °C   |
| Operating Temperature         | TOPR    | -20 to 70         | °C   |

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

# 4.2 DC Characteristics (1/2)

|                                               | Parameter                                                                  | Symbol           | Condition         | Min        | Typ. (Note) | Max        | Unit |
|-----------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------|------------|-------------|------------|------|
| (AVcc = I                                     | upply Voltage (5V)<br>HVcc)<br>DVss = 0 V)                                 | HVCC             | fc = 10 to 36 MHz | 4.75       |             | 5.25       | V    |
| Power St                                      | upply Voltage (3V)                                                         | LVCC             | fc = 10 to 36 MHz | 3.0        |             | 3.6        |      |
|                                               | D7, P10 to P17<br>(D9 to D15)                                              | HV <sub>IL</sub> |                   |            |             | 0.8        |      |
| No Itage The o                                | other Ports                                                                | V <sub>IL1</sub> |                   |            |             | 0.3 HVcc   |      |
| % P56 (P72 (P72 (P72 (P72 (P72 (P72 (P72 (P72 | ET , MMI<br>(INT0), P70 (INT1)<br>(INT2), P73 (INT3)<br>(INT4), P90 (INT5) | $V_{IL2}$        |                   | -0.3       |             | 0.25 HVcc  |      |
| AM0,                                          |                                                                            | V <sub>IL3</sub> |                   |            |             | 0.3        |      |
| X1                                            |                                                                            | $V_{IL4}$        |                   |            |             | 0.2 LVcc   | V    |
|                                               | D7, P10 to P17 (D9 to D15)                                                 | $V_{IH}$         |                   | 2.2        |             |            | V    |
| The o                                         | other Ports                                                                | V <sub>IH1</sub> |                   | 0.7 HVcc   |             |            |      |
| % P56 (<br>P72 (                              | ET , NMI<br>(INT0), P70 (INT1)<br>(INT2), P73 (INT3)<br>(INT4), P90 (INT5) | V <sub>IH2</sub> |                   | 0.75 HVcc  |             | HVcc + 0.3 |      |
| AM0,                                          |                                                                            | V <sub>IH3</sub> |                   | HVcc - 0.3 |             |            |      |
| X1                                            |                                                                            | V <sub>IH4</sub> |                   | 0.8 LVcc   |             | LVcc + 0.3 |      |
| Output Lo                                     | .ow Voltage                                                                | $V_{OL}$         | IOL = 1.6 mA      |            |             | 0.45       | V    |
| Output H                                      | ligh Voltage                                                               | $V_{OH}$         | IOH = – 400 μA    | 4.2        |             |            | V    |

Note: Typical values are for when Ta = 25 °C and HVcc = 5.0 V LVcc = 3.3 V uncles otherwise noted.

# DC Characteristics (2/2)

| Parameter                                  | Symbol | Min | Typ.<br>(Note) | Max | Condition                                                     | Unit |
|--------------------------------------------|--------|-----|----------------|-----|---------------------------------------------------------------|------|
| Input Leakage Current                      | ILI    |     | 0.02           | ±5  | 0.0 ≤ V <sub>IN</sub> ≤ HVcc                                  |      |
| Output Leakage Current                     | ILO    |     | 0.05           | ±10 | $0.2 \le V_{IN} \le HVcc - 0.2$                               | μΑ   |
| Power Down Voltage<br>(@STOP, RAM back-up) | VSTOP  | 2.0 |                | 3.6 | $V_{IL2} = 0.2 \text{ HVcc},$<br>$V_{IH2} = 0.8 \text{ HVcc}$ | V    |
| RESET Pull-up Resistor                     | RRST   | 40  |                | 200 | HVcc = 5 V ± 5%                                               | kΩ   |
| Pin Capacitance                            | CIO    |     |                | 10  | Fc = 1 MHz                                                    | pF   |
| Schmitt Width RESET, NMI, INTO             | VTH    | 0.4 | 1.0            |     |                                                               | V    |
| Programmable Pull-up Resistor              | RKH    | 40  |                | 200 | HVcc = 5 V ± 5%                                               | kΩ   |
| NORMAL (Note 2)                            |        |     |                | 40  | HVcc = 5 V ± 5%                                               |      |
| IDLE2                                      | Icc    |     |                | 20  | LVcc = 3.0 to 3.6V                                            | mA   |
| IDLE1                                      |        |     |                | 14  | fc = 36 MHz                                                   |      |
| STOP                                       |        |     |                | 100 | HVcc = 5 V ± 5%<br>LVcc = 3.0 to 3.6V<br>Ta ≤ 70°C            | μΑ   |

Note 1: Typical values are for when Ta = 25 °C and HVcc = 5.0 V LVcc = 3.3 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL):

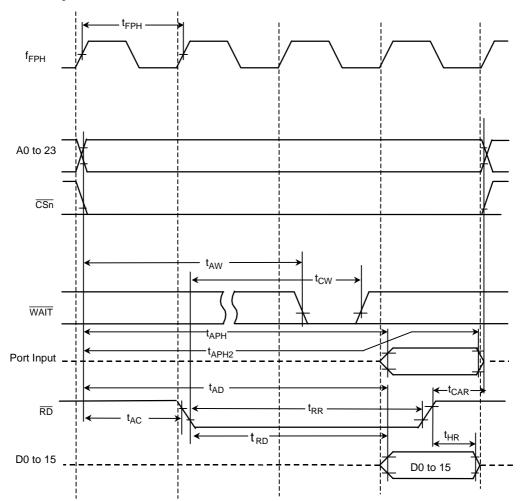
All functions are operational; output pins are open and input pins are fixed.

# 4.3 AC Characteristics

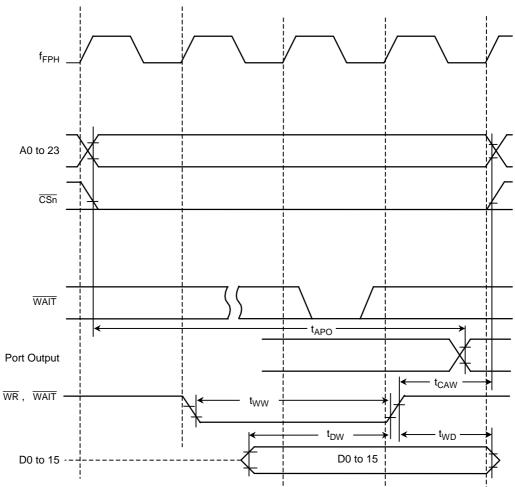
(1)  $HVcc = 5.0 V \pm 5\%$ , LVcc = 3.0 to 3.6 V

| No. | Parameter                                                                                           | Symbol            | Variable   |           |      | 36 MHz | - Unit |
|-----|-----------------------------------------------------------------------------------------------------|-------------------|------------|-----------|------|--------|--------|
| NO. | raidilletei                                                                                         | Symbol            | Min        | Max       | Min  | Max    | Offic  |
| 1   | f <sub>FPH</sub> Period ( = x )                                                                     | t <sub>FPH</sub>  | 27.6       | 100       | 27.6 |        | ns     |
| 2   | A0 to 23 Vaild $ ightarrow  \overline{\text{RD}}  /  \overline{\text{WR}}    \text{Fall}$           | t <sub>AC</sub>   | x – 26     |           | 1.6  |        | ns     |
| 3   | $\overline{\text{RD}} \ \ \text{Rise} \rightarrow \text{A0 to A23 Hold}$                            | tCAR              | 0.5x -13.8 |           | 0.0  |        | ns     |
| 4   | $\overline{\text{WR}} \ \text{Rise} \rightarrow \text{A0 to A23 Hold}$                              | t <sub>CAW</sub>  | x – 13     |           | 14.6 |        | ns     |
| 5   | A0 to A23 Valid $\rightarrow$ D0 to D15 Input                                                       | t <sub>AD</sub>   |            | 3.5x - 40 |      | 56.6   | ns     |
| 6   | $\overline{\text{RD}} \text{ Fall} \rightarrow \text{D0 to D15 Input}$                              | t <sub>RD</sub>   |            | 2.5x - 34 |      | 35.0   | ns     |
| 7   | RD Low Width                                                                                        | t <sub>RR</sub>   | 2.5x - 25  |           | 44.0 |        | ns     |
| 8   | $\overline{\text{RD}} \ \ \text{Rise} \rightarrow \text{D0} \ \text{to} \ \text{A15} \ \text{Hold}$ | tHR               | 0          |           | 0    |        | ns     |
| 9   | WR Low Width                                                                                        | t <sub>WW</sub>   | 2.0x - 25  |           | 30.2 |        | ns     |
| 10  | D0 to D15 Valid $\rightarrow \overline{\text{WR}}$ Rise                                             | t <sub>DW</sub>   | 1.5x - 35  |           | 6.4  |        | ns     |
| 11  | $\overline{\text{WR}} \;\; \text{Rise} \rightarrow \text{D0 to D15 Hold} \;\;^{\text{(1WAIT+n)}}$   | t <sub>WD</sub>   | x – 25     |           | 2.6  |        | ns     |
| 12  | A0 to A23 Valid $\rightarrow \overline{\text{WAIT}}$ Input (1WAIT+n)                                | t <sub>AW</sub>   |            | 3.5x - 60 |      | 36.6   | ns     |
| 13  | $\overline{\text{RD}}/\overline{\text{WR}}\text{Fall} 	o \overline{\text{WAIT}}\text{Hold}$         | t <sub>CW</sub>   | 2.5x + 0   |           | 69.0 |        | ns     |
| 14  | A0 to A23 Valid → PORT Input                                                                        | t <sub>APH</sub>  |            | 3.5x - 76 |      | 20.0   | ns     |
| 15  | A0 to A23 Valid $\rightarrow$ PORT Hold                                                             | t <sub>APH2</sub> | 3.5x       |           | 96.6 |        | ns     |
| 16  | A0 to A23 Valid $\rightarrow$ PORT Valid                                                            | t <sub>APO</sub>  |            | 3.5x + 60 |      | 156.6  | ns     |

# **AC Measuring Conditions**


 $\bullet$  Output Level  $\,$  : High = 2.2 V, Low = 0.8 Vcc, CL = 50 pF

• Input Level : High = 2.4 V, Low = 0.45 V (D0 to D15)


: High 0.8 Vcc / Low 0.2 Vcc (except D0 to D15)

Note: Symbol "x" in the above table means the period of clock "f<sub>FPH</sub>", it's half period of the system clock "f<sub>SYS</sub>" for CPU core. The period of f<sub>FPH</sub> depends on the clock gear setting.

# (2) Read Cycle







TMP91C829

# 4.4 AD Conversion Characteristics

AVcc = HVcc, AVss = Vss

| parameter                                                               | Symbol               | Min                      | Тур.             | Max              | Unit |
|-------------------------------------------------------------------------|----------------------|--------------------------|------------------|------------------|------|
| Analog Reference Voltage (+)                                            | VREFH                | HV <sub>CC</sub> – 0.2 V | HV <sub>CC</sub> | HV <sub>CC</sub> |      |
| Analog Reference Voltage (-)                                            | VREFL                | DV <sub>SS</sub>         | DV <sub>SS</sub> | DVss + 0.2 V     | V    |
| Analog Input Voltage Range                                              | VAIN                 | V <sub>REFL</sub>        |                  | $V_{REFH}$       |      |
| Analog Current for Analog<br>Reference Voltage<br><vrefon> = 1</vrefon> | IREF<br>(VREFL = 0V) |                          | 0.85             | 1.20             | mA   |
| <vrefon> = 0</vrefon>                                                   |                      |                          | 0.02             | 5.0              | μА   |
| Error (not including quantizing errors)                                 | _                    |                          | ± 1.0            | ± 4.0            | LSB  |

Note 1: 1 LSB = (VREFH - VREFL)/1024 [V]

Note 2: The value for Icc includes the current which flows through the AVcc pin.

# 4.5 Serial Channel Timing (I/O Internal Mode)

Note: Symbol "x" in the above table means the period of clock " $f_{FPH}$ ", it's half period of the system clock " $f_{SYS}$ " for CPU core. The period of  $f_{FPH}$  depends on the clock gear setting .

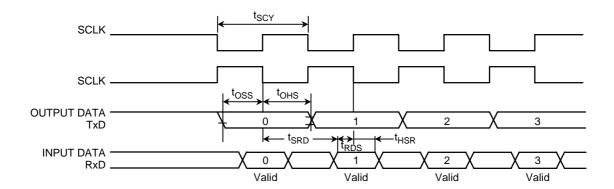
# (1) SCLK Input Mode

| Parameter                                                | Symbol           | Variable                  |                      | 36 MHz<br>(Note) |     | Unit |
|----------------------------------------------------------|------------------|---------------------------|----------------------|------------------|-----|------|
|                                                          |                  | Min                       | Max                  | Min              | Max |      |
| SCLK Period                                              | tSCY             | 16X                       |                      | 0.44             |     | μs   |
| Output Data $\rightarrow$ SCLK Rising/Falling Edge*      | toss             | t <sub>SCY</sub> /2-4X-85 |                      | 25               |     | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Output Data Hold | tons             | $t_{SCY}/2 + 2X + 0$      |                      | 276              |     | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Input Data Hold  | t <sub>HSR</sub> | 3X + 10                   |                      | 92               |     | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Valid Data Input | tSRD             |                           | t <sub>SCY</sub> - 0 |                  | 440 | ns   |
| Valid Data Input $\rightarrow$ SCLK Rising/Falling Edge* | t <sub>RDS</sub> | 0                         |                      | 0                |     | ns   |

\*) SCLK Rinsing/Falling Edge: The rising edge is used in SCLK Rising Mode.

The falling edge is used in SCLK Falling Mode.

Note: at  $t_{SCY} = 16X$ 


## (2) SCLK Output Mode

| Parameter                                                | Symbol           | Variable                 |                               |      | ИНz<br>(Note) | Unit |
|----------------------------------------------------------|------------------|--------------------------|-------------------------------|------|---------------|------|
|                                                          |                  | Min                      | Max                           | Min  | Max           |      |
| SCLK Period (programable)                                | tscy             | 16X                      | 8192X                         | 0.44 |               | μs   |
| Output Data →SCLK Rising/Falling Edge*                   | toss             | t <sub>SCY</sub> /2 - 40 |                               | 180  |               | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Output Data Hold | tons             | t <sub>SCY</sub> /2 - 40 |                               | 180  |               | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Input Data Hold  | tHSR             | 0                        |                               | 0    |               | ns   |
| SCLK Rising/Falling Edge* $\rightarrow$ Valid Data Input | t <sub>SRD</sub> |                          | t <sub>SCY</sub> /2 - 1X - 90 |      | 324           | ns   |
| Valid Data Input $\rightarrow$ SCLK Rising/Falling Edge* | t <sub>RDS</sub> | 1X + 90                  |                               | 117  |               | ns   |

\*) SCLK Rinsing/Falling Edge: The rising edge is used in SCLK Rising Mode.

The falling edge is used in SCLK Falling Mode.

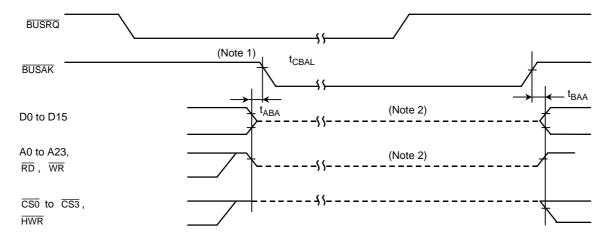
Note: at  $t_{SCY} = 16X$ 



# 4.6 Event Counter (TA0IN, TA4IN, TB0IN0, TB0IN1, TB1IN0, TB1IN1)

| Darameter              | Cumbal            | Vari     | able | 36 N | Lloit |      |  |
|------------------------|-------------------|----------|------|------|-------|------|--|
| Parameter              | Symbol            | Min      | Max  | Min  | Max   | Unit |  |
| Clock Perild           | t <sub>VCK</sub>  | 8X + 100 |      | 320  |       | ns   |  |
| Clock Low Level Width  | t <sub>VCKL</sub> | 4X + 40  |      | 150  |       | ns   |  |
| Clock High Level Width | tvckh             | 4X + 40  |      | 150  |       | ns   |  |

Note: Symbol "x" in the above table means the period of clock " $f_{FPH}$ ", it's half period of the system clock " $f_{SYS}$ " for CPU core. The period of  $f_{FPH}$  depends on the clock gear setting .


# 4.7 Interrupts

Note: Symbol "x" in the above table means the period of clock " $f_{FPH}$ ", it's half period of the system clock " $f_{SYS}$ " for CPU core. The period of  $f_{FPH}$  depends on the clock gear setting .

## (1) NMI, INTO to INT5 Interrupts

| Parameter                          | Symbol             | Vari    | 36 N | Unit |     |       |  |
|------------------------------------|--------------------|---------|------|------|-----|-------|--|
| Falanielei                         | Symbol             | Min     | Max  | Min  | Max | Offic |  |
| NMI, INT0 to INT5 Low level width  | tINTAL             | 4X + 40 |      | 150  |     | ns    |  |
| NMI, INTO to INT5 High level width | t <sub>INTAH</sub> | 4X + 40 |      | 150  |     | ns    |  |

# 4.8 Bus Request/Bus Acknowledge



| Parameter                      | Symbol           | Vari | able | f <sub>FPH</sub> = 3 | 36 MHz | Unit  |
|--------------------------------|------------------|------|------|----------------------|--------|-------|
| i didilicio                    | Cymbol           | Min  | Max  | Min                  | Max    | OTIIL |
| Output Buffer to BUSAK Low     | t <sub>ABA</sub> | 0    | 80   | 0                    | 80     | ns    |
| BUSAK High to output Buffer On | t <sub>BAA</sub> | 0    | 80   | 0                    | 80     | ns    |

Note 1: Even if the BUSRQ Signal foes Low, the bus will not be released while the WAIT signal is Low.

The bus will only be released when BUSRQ goes Low while WAIT is High.

Note 2: This line shows only that the output buffer is in the Off state.

It does not indicate that the signal level is fixed.

Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since fixing of the level is delayed.

The internal programmable pull-up/pull-down resistor is switched between the Active and Non-Active states by the internal signal.

## 5. Table of SFRs

(SFR; special function register)

The SFRs include the I/O ports and peripheral control registers allocated to the 4-Kbyte address space from 000000H to 000FFFH.

- (1) I/O Port
- (2) I/O Port Control
- (3) Interrupt Control
- (4) Chip Select / Wait Control
- (5) Clock Gear
- (6) 8-bit Timer
- (7) 16-bit Timer
- (8) UART/Serial Channel
- (9) AD Converter
- (10) Watchdog Timer
- (11) Multi Vector Controllor

# Table layout

| Symbol | Name | Address | 7 | 6    | [ | 1 | 0 |                                                                                                                |
|--------|------|---------|---|------|---|---|---|----------------------------------------------------------------------------------------------------------------|
|        |      |         |   | <br> |   |   |   | <ul> <li>→ Bit symbol</li> <li>→ Read/Write</li> <li>→ Initial value after Reset</li> <li>→ Remarks</li> </ul> |

Note: "Prohibit RMW" in the a table means that you cannot use RMW instructions on these register.

Example: When setting bit0 only of the registerP0CR, the instruction "SET 0, (0002G)" cannot be used. The LD (transfer) instruction must be used to write all eight bits.

#### Read/Write

R/W; Both read and write are possible.

R; Only read is possible.

W; Only write is possible.

W\*; Both read and write are possible (when this bit is read as1)

Prohibit RMW; Read-Modify-Write instructions are prohibited. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TEST, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read-modify-write instructions.)

Prohibit RMW\*; Read-modify-write is prohibited when controlling the pull-up resistor.

Table 5.1 Address map SFRs

# [1]PORT

| Address | Name |
|---------|------|
| 0000H   |      |
| 1H      | P1   |
| 2H      |      |
| 3H      |      |
| 4H      | P1CR |
| 5H      |      |
| 6H      | P2   |
| 7H      |      |
| 8H      |      |
| 9H      | P2FC |
| AH      |      |
| BH      |      |
| CH      |      |
| DH      | P5   |
| EH      |      |
| FH      |      |

| Address | Name |
|---------|------|
| 0010H   | P5CR |
| 1H      | P5FC |
| 2H      | P6   |
| 3H      | P7   |
| 4H      | P6CR |
| 5H      | P6FC |
| 6H      | P7CR |
| 7H      | P7FC |
| 8H      | P8   |
| 9H      | P9   |
| AH      | P8CR |
| ВН      | P8FC |
| CH      | P9CR |
| DH      | P9FC |
| EH      | PA   |
| FH      |      |

| Address | Name |
|---------|------|
| 0020H   |      |
| 1H      |      |
| 2H      |      |
| 3H      |      |
| 4H      |      |
| 5H      |      |
| 6H      |      |
| 7H      |      |
| 8H      |      |
| 9H      |      |
| AH      |      |
| BH      |      |
| CH      |      |
| DH      |      |
| EH      |      |
| FH      | ODE  |

| Address | Name |
|---------|------|
| 0070H   |      |
| 1H      |      |
| 2H      |      |
| 3H      |      |
| 4H      |      |
| 5H      |      |
| 6H      |      |
| 7H      |      |
| 8H      |      |
| 9H      |      |
| AH      |      |
| BH      |      |
| CH      |      |
| DH      | PZ   |
| EH      | PZCR |
| FH      | PZFC |

# [2] INTC

| Address | Name   |
|---------|--------|
| H0800   | DMA0V  |
| 1H      | DMA1V  |
| 2H      | DMA2V  |
| 3H      | DMA3V  |
| 4H      |        |
| 5H      |        |
| 6H      |        |
| 7H      |        |
| 8H      | INTCLR |
| 9H      | DMAR   |
| AH      | DMAB   |
| ВН      |        |
| CH      | IIMC0  |
| DH      | IIMC1  |
| EH      |        |
| FH      |        |

| Address                    | Name               |
|----------------------------|--------------------|
| 0090H                      | INTE0AD            |
| 1H                         | INTE12             |
| 2H                         | INTE34             |
| 3H                         | INTE5              |
| 4H                         |                    |
| 5H                         | INTETA01           |
| 6H                         | INTETA23           |
| 7H                         | INTETA45           |
| 8H                         |                    |
| 9H                         | INTETB01           |
| AH                         |                    |
| ВН                         | INTETB0V           |
| CH                         | INTES0             |
| DH                         | INTES1             |
| EH                         |                    |
| FH                         |                    |
| AH<br>BH<br>CH<br>DH<br>EH | INTETB0V<br>INTES0 |

| Address | Name     |
|---------|----------|
| 00A0H   | INTETC01 |
| 1H      | INTETC23 |
| 2H      |          |
| 3H      |          |
| 4H      |          |
| 5H      |          |
| 6H      |          |
| 7H      |          |
| 8H      |          |
| 9H      |          |
| AH      |          |
| BH      |          |
| CH      |          |
| DH      |          |
| EH      | MVEC0    |
| FH      | MVEC1    |

Note: Do not access to the unnamed addresses, i.e. addresses to which no register has been allocated.

[3] CS/WAIT

| Address | Name  |
|---------|-------|
| 00C0H   | B0CS  |
| 1H      | B1CS  |
| 2H      | B2CS  |
| 3H      | B3CS  |
| 4H      |       |
| 5H      |       |
| 6H      |       |
| 7H      | BEXCS |
| 8H      | MSAR0 |
| 9H      | MAMR0 |
| AH      | MSAR1 |
| BH      | MAMR1 |
| CH      | MSAR2 |
| DH      | MAMR2 |
| EH      | MSAR3 |
| FH      | MAMR3 |

[4] CGEAR, DFM

| Address | Name   |
|---------|--------|
| 00E0H   | SYSCR0 |
| 1H      | SYSCR1 |
| 2H      | SYSCR2 |
| 3H      | EMCCR0 |
| 4H      | EMCCR1 |
| 5H      |        |
| 6H      |        |
| 7H      |        |
| 8H      |        |
| 9H      |        |
| AH      |        |
| BH      |        |
| CH      |        |
| DH      |        |
| EH      |        |
| FH      |        |

# [5] TMRA

| Address | Name    |
|---------|---------|
| 0100H   | TA01RUN |
| 1H      |         |
| 2H      | TA0REG  |
| 3H      | TA1REG  |
| 4H      | TA01MOD |
| 5H      | TA1FFCR |
| 6H      |         |
| 7H      |         |
| 8H      | TA23RUN |
| 9H      |         |
| AH      | TA2REG  |
| BH      | TA3REG  |
| CH      | TA23MOD |
| DH      | TA3FFCR |
| EH      |         |
| FH      |         |

| Address | Name    |
|---------|---------|
| 0110H   | TA45RUN |
| 1H      |         |
| 2H      | TA4REG  |
| 3H      | TA5REG  |
| 4H      | TA45MOD |
| 5H      | TA5FFCR |
| 6H      |         |
| 7H      |         |
| 8H      |         |
| 9H      |         |
| AH      |         |
| BH      |         |
| CH      |         |
| DH      |         |
| EH      |         |
| FH      |         |

Note: Do not access to the unnamed addresses, i.e. addresses to which no register has been allocated.

## [6] TMRB

| Address | Name    |
|---------|---------|
| 0180H   | TB0RUN  |
| 1H      |         |
| 2H      | TB0MOD  |
| 3H      | TB0FFCR |
| 4H      |         |
| 5H      |         |
| 6H      |         |
| 7H      |         |
| 8H      | TB0RG0L |
| 9H      | TB0RG0H |
| AH      | TB0RG1L |
| ВН      | TB0RG1H |
| CH      | TB0CP0L |
| DH      | TB0CP0H |
| EH      | TB0CP1L |
| FH      | TB0CP1H |

### [7] UART/SIO

| Address | Name                                                                                |
|---------|-------------------------------------------------------------------------------------|
| 0200H   | SC0BUF                                                                              |
| 1H      | SC0CR                                                                               |
| 2H      | SC0MOD0                                                                             |
| 3H      | BR0CR                                                                               |
| 4H      | BR0ADD                                                                              |
| 5H      | SC0MOD1                                                                             |
| 6H      |                                                                                     |
| 7H      | SC1BUF                                                                              |
| 8H      | SC1CR                                                                               |
| 9H      | SC1MOD0                                                                             |
| AH      | BR1CR                                                                               |
| BH      | BR1ADD                                                                              |
| CH      | SC1MOD1                                                                             |
| DH      |                                                                                     |
| EH      |                                                                                     |
| FH      |                                                                                     |
|         | 0200H<br>1H<br>2H<br>3H<br>4H<br>5H<br>6H<br>7H<br>8H<br>9H<br>AH<br>BH<br>CH<br>DH |

### [8] 10-bit ADC

| [0] TO BIL ADO |          |
|----------------|----------|
| Address        | Name     |
| 02A0H          | ADREG04L |
| 1H             | ADREG04H |
| 2H             | ADREG15L |
| 3H             | ADREG15H |
| 4H             | ADREG26L |
| 5H             | ADREG26H |
| 6H             | ADREG37L |
| 7H             | ADREG37H |
| 8H             |          |
| 9H             |          |
| AH             |          |
| ВН             |          |
| CH             |          |
| DH             |          |
| EH             |          |
| FH             |          |

| Address | Name   |
|---------|--------|
| 02B0H   | ADMOD0 |
| 1H      | ADMOD1 |
| 2H      |        |
| 3H      |        |
| 4H      |        |
| 5H      |        |
| 6H      |        |
| 7H      |        |
| 8H      |        |
| 9H      |        |
| AH      |        |
| BH      |        |
| CH      |        |
| DH      |        |
| EH      |        |
| FH      |        |

Note: Do not access to the unnamed addresses i.e. addresses to which no register has been allocated.

# [9] WDT

| [0] WB1 |       |
|---------|-------|
| Address | Name  |
| 0300H   | WDMOD |
| 1H      | WDCR  |
| 2H      |       |
| 3H      |       |
| 4H      |       |
| 5H      |       |
| 6H      |       |
| 7H      |       |
| 8H      |       |
| 9H      |       |
| AH      |       |
| BH      |       |
| CH      |       |
| DH      |       |
| EH      |       |
| FH      |       |

Note: Do not access to the unnamed addresses, i.e. addresses to which no register has been allocated.

(1) I/O port

| <u> </u> | 1) 1/O po | · ·     |                                     | 1                                  | 1   | 1     |       |      |     | <del>, , , , , , , , , , , , , , , , , , , </del> |
|----------|-----------|---------|-------------------------------------|------------------------------------|-----|-------|-------|------|-----|---------------------------------------------------|
| Symbol   | Name      | Address | 7                                   | 6                                  | 5   | 4     | 3     | 2    | 1   | 0                                                 |
| P1       | PORT1     | 01H     | P17                                 | P16                                | P15 | P14   | P13   | P12  | P11 | P10                                               |
|          |           |         | R/W                                 |                                    |     |       |       |      |     |                                                   |
|          |           |         | 0                                   | 0                                  | 0   | 0     | 0     | 0    | 0   | 0                                                 |
|          |           |         | Input mode                          |                                    |     |       |       |      |     |                                                   |
|          | PORT2     | 06H     | P27                                 | P26                                | P25 | P24   | P23   | P22  | P21 | P20                                               |
| P2       |           |         | R/W                                 |                                    |     |       |       |      |     |                                                   |
|          |           |         | 1                                   | 1                                  | 1   | 1     | 1     | 1    | 1   | 1                                                 |
|          |           |         | Input mode                          |                                    |     |       |       |      |     |                                                   |
|          | PORT5     | 0DH     |                                     | P56                                | P55 | P54   | P53   |      |     |                                                   |
| P5       |           |         | R/W                                 |                                    |     |       |       |      |     |                                                   |
|          |           |         | 1                                   |                                    |     |       |       |      |     |                                                   |
|          |           |         |                                     | Input mode (With Pull-up resistor) |     |       |       |      |     |                                                   |
|          | PORT6     | 12H     |                                     |                                    |     |       | P63   | P62  | P61 | P60                                               |
| P6       |           |         |                                     |                                    |     |       | R/W   |      |     |                                                   |
|          |           |         |                                     |                                    |     |       | 1     | 0    | 1   | 1                                                 |
|          | PORT7     | 13H     |                                     |                                    | P75 | P74   | P73   | P72  | P71 | P70                                               |
| P7       |           |         | R/W                                 |                                    |     |       |       |      |     |                                                   |
|          |           |         |                                     |                                    | 1   | 1     | 1     | 1    | 1   | 1                                                 |
|          |           |         |                                     |                                    |     | T     | Input | mode |     |                                                   |
|          | PORT8     | 18H     | P87                                 | P86                                | P85 | P84   | P83   | P82  | P81 | P80                                               |
| P8       |           |         |                                     | ı                                  | ı   | R/    | 1     |      |     | 1                                                 |
|          |           |         | 1                                   | 1                                  | 1   | 1     | 1     | 1    | 1   | 1                                                 |
|          |           |         |                                     | ı                                  | ı   | Input | 1     |      |     |                                                   |
| P9       | PORT9     | 19H     |                                     | P96                                | P95 | P94   | P93   |      |     | P90                                               |
|          |           |         |                                     | I                                  | I   | F     |       | 1    | 1   |                                                   |
|          |           |         |                                     | 1                                  | 1   | 1     | 1     |      |     | 1                                                 |
|          |           |         | Input mode (With Pull-up resistor ) |                                    |     |       |       |      |     |                                                   |
| PA       | PORTA     | 1EH     | PA7                                 | PA6                                | PA5 | PA4   | PA3   | PA2  | PA1 | PA0                                               |
|          |           |         | R                                   |                                    |     |       |       |      |     |                                                   |
|          |           |         |                                     | Input mode                         |     |       |       |      |     |                                                   |
| PZ       | PORTZ     | 7DH     |                                     |                                    |     |       | PZ3   | PZ2  |     |                                                   |
|          |           |         |                                     | T                                  | T   | 1     | R/    | W    |     |                                                   |
|          |           |         |                                     |                                    |     |       | 1     | 1    |     |                                                   |
|          |           |         |                                     |                                    |     |       | Input | mode |     |                                                   |

# (2) I/O port control (1/2)

| Symbol | Name              | Address                  | 7                                 | 6          | 5         | 4         | 3         | 2          | 1         | 0         |
|--------|-------------------|--------------------------|-----------------------------------|------------|-----------|-----------|-----------|------------|-----------|-----------|
| Cynnon | Traine            | 71001000                 | P17C                              | P16C       | P15C      | P14C      | P13C      | P12C       | P11C      | P10C      |
| P1CR   | PORT1<br>Control  | 04H<br>(Prohibit<br>RMW) | W W                               |            |           |           |           |            |           |           |
|        |                   |                          | 0                                 | 0          | 0         | 0         | 0         | 0          | 0         | 0         |
|        |                   |                          | 0: IN 1: OUT                      |            |           |           |           |            |           |           |
|        |                   | ŕ                        | P27F                              | P26F       | P25F      | P24F      | P23F      | P22F       | P21F      | P20F      |
| P2FC   | PORT2<br>Function | 09H<br>(Prohibit<br>RMW) | W                                 |            |           |           |           |            |           |           |
|        |                   |                          | 1                                 | 1          | 1         | 1         | 1         | 1          | 1         | 1         |
|        |                   |                          | 0: Port, 1: Address bus (A23-A16) |            |           |           |           |            |           |           |
| P5CR   | PORT5<br>Control  | 10H                      |                                   | P56C       | P55C      | P54C      | P53C      |            |           |           |
|        |                   |                          |                                   |            | <u> </u>  | ٧         |           |            |           |           |
|        |                   | (Prohibit                |                                   | 0          | 0         | 0         | 0         |            |           |           |
|        |                   | RMW)                     |                                   |            | 0: IN     | 1: OUT    |           |            |           |           |
| P5FC   | PORT5<br>Function | 11H                      |                                   | P56F       |           | P54F      | P53F      |            |           |           |
|        |                   |                          | W                                 |            |           |           |           |            |           |           |
|        |                   |                          |                                   | 0          |           | 0         | 0         |            |           |           |
|        |                   | (Prohibit                |                                   | 0: PORT    |           | 0: PORT   | 0: PORT   |            |           |           |
|        |                   | RMW)                     |                                   | 1: INT0    |           | 1: BUSAK  | 1: BUSRQ  |            |           |           |
|        | PORT6<br>Function | 15H                      |                                   |            |           |           | P63F      | P62F       | P61F      | P60F      |
| P6FC   |                   |                          | W                                 |            |           |           |           |            |           |           |
|        |                   |                          |                                   |            |           |           | 0         | 0          | 0         | 0         |
|        |                   | (Prohibit                |                                   |            |           |           | 0: PORT   | 0: PORT    | 0: PORT   | 0: PORT   |
|        |                   | RMW)                     |                                   |            |           |           | 1: CS3    | 1: CS2     | 1: CS1    | 1: CS0    |
|        | PORT7<br>Control  |                          |                                   |            | P75C      | P74C      | P73C      | P72C       | P71C      | P70C      |
| P7CR   |                   | 16H                      |                                   | 1          |           | T .       | V         |            |           |           |
|        |                   | (Prohibit                |                                   |            | 0         | 0         | 0         | 0          | 0         | 0         |
|        |                   | RMW)                     |                                   | DZOEO      | DZEE      | P74F      | 0 :       |            |           | DZOE      |
| D750   | PORT7<br>Function |                          |                                   | P72F2<br>W | P75F<br>W | W W       | P73F<br>W | P72F1<br>W | P71F<br>W | P70F<br>W |
| P7FC   |                   |                          |                                   | 0          | 0         | 0         | 0         | 0          | 0         | 0         |
|        |                   | (Prohibit                |                                   | 0: PORT    | 0: PORT   | 0: PORT   | 0: PORT   | 0: PORT    | 0: PORT   | 0: PORT   |
|        |                   | RMW)                     |                                   | 1: INT2    | 1: INT4   | 1: TA5OUT | 1: INT3   | 1: TA3OUT  | 1: TA1OUT | 1: INT1   |
|        | PORT8<br>Control  | 1AH                      | P87C                              | P86C       | P85C      | P84C      | P83C      | P82C       | P81C      | P80C      |
| P8CR   |                   |                          |                                   | 1          | 1         |           | V         |            |           |           |
|        |                   | (Prohibit                | 0                                 | 0          | 0         | 0         | 0         | 0          | 0         | 0         |
|        |                   | RMW)                     | D075                              | Deec       |           | 0: IN     | 1: OUT    | Dear       |           | Door      |
|        | PORT8<br>Function | 1BH                      | P87F<br>W                         | P86F<br>W  |           | P84F<br>W | P83F<br>W | P82F<br>W  |           | P80F<br>W |
| P8FC   |                   |                          | 0                                 | 0          |           | 0         | 0         | 0          |           | 0         |
|        |                   | (Prohibit                |                                   | 0: PORT    |           | 0: PORT   | 0: PORT   | 0: PORT    |           | 0: PORT   |
|        |                   | RMW)                     | 1: STS1                           | 1: SCLK1   |           | 1: TXD1   | 1: STS0   | 1: SCLK0   |           | 1: TXD0   |

TMP91C829

# I/O Port control (2/2)

| Symbol | Name        | Address   | 7 | 6          | 5          | 4         | 3      | 2       | 1 | 0         |
|--------|-------------|-----------|---|------------|------------|-----------|--------|---------|---|-----------|
|        |             |           |   | P96C       | P95C       | P94C      | P93C   |         |   | P90C      |
| P9CR   | PORT9       | 1CH       |   |            |            | ٧         | /      |         |   |           |
|        | Control     | (Prohibit |   | 0          | 0          | 0         | 0      |         |   | 0         |
|        |             | RMW)      |   |            |            | 0: IN     | 1: OUT |         |   |           |
|        |             |           |   | P96F       | P95F       |           |        |         |   | P90F      |
| P9FC   | PORT9       | 1DH       |   | W          | W          |           |        |         |   | W         |
|        | Function    | (Prohibit |   | 0          | 0          |           |        |         |   | 0         |
|        |             | RMW)      |   |            | 0: PORT    |           |        |         |   | 0: PORT   |
|        |             |           |   | 1: TB0OUT1 | 1: TB0OUT0 |           |        |         |   | 1: TNT5   |
|        |             |           |   |            |            |           | PZ3C   | PZ2C    |   |           |
| PZCR   | PORT5       | 7EH       |   |            | 1          | I         | ١      | N       |   | 1         |
|        | Control     | (Prohibit |   |            |            |           | 0      | 0       |   |           |
|        |             | RMW)      |   |            |            |           | 0: IN  | 1: OUT  |   |           |
|        |             |           |   |            |            |           |        | PZ2F    |   |           |
| PZFC   | PORT5       | 7FH       |   |            |            |           |        | W       |   |           |
|        | Function    |           |   |            |            |           |        | 0       |   |           |
|        |             | (Prohibit |   |            |            |           |        | 0: PORT |   |           |
|        |             | RMW)      |   |            |            |           |        | 1: HWR  |   |           |
|        |             |           |   |            |            | ODE81     |        |         |   | ODE80     |
| ODE    | Sirial Open | 2FH       |   |            |            | W         |        |         |   | W         |
|        | Drain       | (Prohibit |   |            |            |           |        |         |   | 0         |
|        |             | RMW)      |   |            |            | 1: P81ODE |        |         |   | 1: P80ODE |

### (3) Interrupt control (1/3)

|          | •                   | •       | , ,        |         |               |         |             |            |                |         |
|----------|---------------------|---------|------------|---------|---------------|---------|-------------|------------|----------------|---------|
| Symbol   | Name                | Address | 7          | 6       | 5             | 4       | 3           | 2          | 1              | 0       |
|          |                     |         |            | INT     | TAD           | 1       |             | IN         | T0             | _       |
| INTE0AD  | Interrupt           | 90H     | IADC       | IADM2   | IADM1         | IADM0   | IOC         | 10M2       | IOM1           | I0M0    |
|          | Enable              |         | R          |         | R/W           |         | R           |            | R/W            | _       |
|          | 0 & AD              |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INTAD   | Inte    | rrpt request  | evel    | 1: INT0     | Inte       | rrpt request l | evel    |
|          | Interrupt           |         |            | IN      | T2            | 1       |             | IN         | T1             |         |
| INTE12   | Enable              | 91H     | I2C        | I2M2    | I2M1          | 12M0    | I1C         | I1M2       | I1M1           | I1M0    |
|          | 2/1                 |         | R          |         | R/W           |         | R           |            | R/W            |         |
|          | 27.                 |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INT2    | Inter   | rupt request  | level   | 1: INT1     | Inte       | rrpt request l | evel    |
|          | Interrupt           |         |            | IN      | T4            |         |             | IN         | T3             |         |
| INTE34   | Interrupt<br>Enable | 92H     | I4C        | I4M2    | I4M1          | I4M0    | I3C         | 13M2       | I3M1           | I3M0    |
|          | 4/3                 |         | R          |         | R/W           |         | R           |            | R/W            |         |
|          | 4/5                 |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INT4    | Inter   | rupt request  | level   | 1: INT3     | Inte       | rrpt request l | evel    |
|          |                     |         |            |         |               |         |             | IN         | T5             |         |
| INTE5    | Interrupt           | 93H     |            |         |               |         | I5C         | 15M2       | I5M1           | I5M0    |
|          | Enable 5            |         |            |         |               |         | R           |            | R/W            |         |
|          |                     |         |            |         |               |         | 0           | 0          | 0              | 0       |
|          |                     |         |            |         |               |         | 1: INT5     | Inte       | rrpt request l | evel    |
|          | Interrupt           |         |            | INTTA1  | (TMRA1)       |         |             | INTTA0 (   | (TMRA0)        |         |
| INTETA01 | Enable              | 95H     | ITA1C      | ITA1M2  | ITA1M1        | ITA1M0  | ITA0C       | ITA0M2     | ITA0M1         | ITA0M0  |
|          | Timer A             |         | R          |         | R/W           |         | R           |            | R/W            |         |
|          | 1/0                 |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          | 1,0                 |         | 1: INTTA1  | Inte    | rrpt request  | evel    | 1: INTTA0   | Inte       | rrpt request l | evel    |
|          | Interrupt           |         |            | INTTA3  | (TMRA3)       | 1       |             | INTTA2 (   | (TMRA2)        |         |
| INTETA23 | Enable              | 96H     | ITA3C      | ITA3M2  | ITA3M1        | ITA3M0  | ITA2C       | ITA2M2     | ITA2M1         | ITA2M0  |
|          | Timer A             |         | R          |         | R/W           |         | R           |            | R/W            | _       |
|          | 3/2                 |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INTTA3  |         | rrpt request  | evel    | 1: INTTA2   |            | rrpt request l | evel    |
|          | Interrupt           |         |            | INTTA5  | (TMRA5)       | 1       |             | INTTA4 (   | (TMRA4)        |         |
| INTETA45 | Enable              | 97H     | ITA5C      | ITA5M2  | ITA5M1        | ITA5M0  | ITA4C       | ITA4M2     | ITA4M1         | ITA4M0  |
|          | Timer A             |         | R          |         | R/W           | 1       | R           |            | R/W            | 1       |
|          | 3/2                 |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INTTA5  |         | rrpt request  | evel    | 1: INTTA4   |            | rrpt request l | evel    |
|          | Interrupt           |         |            |         | (TMRB0)       | 1       |             | INTTB00    | r /            | 1       |
| INTETB0  | Enable              | 99H     | ITB01C     | ITB01M2 | ITB01M1       | ITB01M0 | ITB00C      | ITB00M2    | ITB00M1        | ITB00M0 |
|          | Timer B0            |         | R          |         | R/W           | 1       | R           |            | R/W            |         |
|          |                     |         | 0          | 0       | 0             | 0       | 0           | 0          | 0              | 0       |
|          |                     |         | 1: INTTB01 | Inte    | errpt request | evel    | 1: INTTB00  |            | rrpt request l |         |
|          | Interrupt           |         |            |         |               |         |             | TTBOF0 (TM |                | 1       |
| INTETB0V | Enable              | 9BH     |            |         |               |         | ITF0C       | ITF0M2     | ITF0M1         | ITF0M0  |
|          | Timer B0            |         |            |         |               | 1       | R           | -          | R/W            |         |
|          | (over flow)         |         |            |         |               |         | 0           | 0          | 0              | 0       |
|          |                     |         |            |         |               |         | 1: INTTBOF0 | Inte       | rrpt request l | evel    |

# Interrupt control (2/3)

| Symbol    | Name                | Address | 7         | 6      | 5              | 4      | 3         | 2                   | 1              | 0      |  |
|-----------|---------------------|---------|-----------|--------|----------------|--------|-----------|---------------------|----------------|--------|--|
|           |                     |         |           | INT    | TX0            |        |           | INT                 | RX0            |        |  |
| INTES0    | Interrupt           | 9CH     | ITX0C     | ITX0M2 | ITX0M1         | ITX0M0 | IRX0C     | IRX0M2              | IRX0M1         | IRX0M0 |  |
|           | Enable              |         | R         |        | R/W            |        | R         |                     | R/W            |        |  |
|           | Serial 0            |         | 0         | 0      | 0              | 0      | 0         | 0                   | 0              | 0      |  |
|           |                     |         | 1: INTTX0 | Inte   | rrpt request l | evel   | 1: INTRX0 | Inte                | rrpt request l | evel   |  |
|           | la ta ancort        |         |           | INT    | TC1            |        |           | INT                 | INTTC0         |        |  |
| INTETC-01 | Interrupt<br>Enable | A0H     | ITC1C     | ITC1M2 | ITC1M1         | ITC1M0 | ITC0C     | ITC0M2              | ITC0M1         | ITC0M0 |  |
|           | TC0/1               |         | R         |        | R/W            |        | R         |                     | R/W            |        |  |
|           | 100                 |         | 0         | 0      | 0              | 0      | 0         | 0                   | 0              | 0      |  |
|           | La ta assura t      |         |           | INT    | TC3            |        |           | ITC                 | 2M0            |        |  |
| INTETC-23 | Interrupt<br>Enable | A1H     | ITC3C     | ITC3M2 | ITC3M1         | ITC3M0 | ITC2C     | ITC2M2 ITC2M1 ITC2M |                |        |  |
|           | TC2/3               |         | R         |        | R/W            |        | R         |                     | R/W            |        |  |
|           | 102/3               |         | 0         | 0      | 0              | 0      | 0         | 0                   | 0              | 0      |  |

# Interrupt control (3/3)

| Symbol   | Name      | Address   | 7         | 6          | 5        | 4             | 3            | 2               | 1             | 0          |
|----------|-----------|-----------|-----------|------------|----------|---------------|--------------|-----------------|---------------|------------|
| Cyrribor | Ivanic    | Addicas   |           | <u> </u>   | DMA0V5   | DMA0V4        | DMA0V3       | DMA0V2          | DMA0V1        | DMA0V0     |
|          | DMA 0     |           |           |            | DIVIAOVS | DIVIAUV4      | R/           |                 | DIVIAUVI      | DIVIAOVO   |
| DMA0V    | Request   | 80H       |           |            | 0        | 0             | 0            | 0               | 0             | 0          |
|          | Vector    |           |           |            | 0        | 0             | DMA0 sta     |                 | 0             | 0          |
|          |           |           |           |            | DMA1V5   | DMA1V4        | DMA1V3       | DMA1V2          | DMA1V1        | DMA1V0     |
|          | DMA 1     |           |           |            | DIVIATVO | DIVIATV4      | R/           |                 | DIVIATVI      | DIVIATVO   |
| DMA1V    | Request   | 81H       |           |            | 0        | 0             | 0            | 0               | 0             | 0          |
|          | Vector    |           |           |            | 0        | 1 0           | DMA1 sta     |                 | 1 0           | 0          |
|          |           |           |           |            | DMA2V5   | DMA2V4        | DMA2V3       | DMA2V2          | DMA2V1        | DMA2V0     |
|          | DMA 2     |           |           |            | DIVIAZVO | DIVIAZV4      | R/           |                 | DIVIAZVI      | DIVIAZVO   |
| DMA2V    | Request   | 82H       |           |            | 0        | 0             | 0            | 0               | 0             | 0          |
|          | Vector    |           |           |            | 0        | 0             | DMA2 sta     |                 | 0             | U          |
|          |           |           |           |            | DMA3V5   | DMA3V4        | DMA3V3       | DMA3V2          | DMA3V1        | DMA3V0     |
|          | DMA 3     |           |           |            | DIVIASVS | DIVIASV4      | R/           |                 | DIVIASVI      | DIVIASVO   |
| DMA3V    | Request   | 83H       |           |            | 0        | 0             | 0            | 0               | 0             | 0          |
|          | Vector    |           |           |            | 0        |               | DMA3 sta     |                 |               |            |
|          |           |           |           |            | CLRV5    | CLRV4         | CLRV3        | CLRV2           | CLRV1         | CLRV0      |
|          | Interrupt | 88H       |           |            | OLIVO    | OLIVY         | V OLIVO      |                 | OLIVI         | OLIVO      |
| INTCLR   | Clear     | (Prohibit |           |            |          | _             | _            | <u> </u>        | _             |            |
|          | Control   | `RMW)     |           |            | Clear    | interrupt rea | uest DMAflag | n hv writing to |               | ector      |
|          | DMA       |           |           |            |          |               | DMAR3        | DMAR2           | DMAR1         | DMAR0      |
|          | Software  |           |           |            |          |               | R/W          | R/W             | R/W           | R/W        |
| DMAR     | Request   | 89H       |           |            |          |               | 0            | 0               | 0             | 0          |
|          | Register  |           |           |            |          |               |              | : DMA reque     |               |            |
|          | DMA       |           |           |            |          |               | DMAB3        | DMAB2           | DMAB1         | DMAB0      |
|          | Burst     |           |           |            |          |               | R/W          | R/W             | R/W           | R/W        |
| DMAB     | Request   | 8AH       |           |            |          |               | 0            | 0               | 0             | 0          |
|          | Register  |           |           |            |          | I             | 1:           | DMA reques      | t on burst mo |            |
|          |           |           |           | 12EDGE     | I2LE     | I1EDGE        | I1LE         | I0EDGE          | IOLE          | NMIREE     |
|          |           |           | W         | W          | W        | W             | W            | W               | W             | W          |
|          | Interrupt |           | 0         | 0          | 0        | 0             | 0            | 0               | 0             | 0          |
| IIIMOO   | Input     | 8CH       | Always    | INT2 edge  | INT2     | INT1 edge     | INT1         | INT0 edge       | INT0          | 1: NMI     |
| IIMC0    | Mode      |           | Write "0" | 0: Rising  | 0: edge  | 0: Rising     | 0: edge      | 0: Rising       | 0: edge       | operation  |
|          | Control 0 |           |           | 1: Falling | 1: level | 1: Falling    | 1: level     | 1: Falling      | 1: level      | even on    |
|          |           | (Prohibit |           |            |          |               |              |                 |               | NMI rising |
|          |           | RMW)      |           |            |          |               |              |                 |               | Edge       |
|          |           |           |           | 15EDGE     | I5LE     | 14EDGE        | I4LE         | 13EDGE          | I3LE          |            |
|          | Interrupt | 8DH       | W         | W          | W        | W             | W            | W               | W             |            |
|          | Input     |           | 0         | 0          | 0        | 0             | 0            | 0               | 0             |            |
| IIMC1    | Mode      |           | Always    | INT5       | INT5     | INT4          | INT4         | INT3            | INT3          |            |
|          | Control 1 |           | Write "0" | edge       | 0: edge  | edge          | 0: edge      | edge            | 0: edge       |            |
|          |           | (Prohibit |           | 0: Rising  | 1: level | 0: Rising     | 1: level     | 0: Rising       | 1: level      |            |
|          |           | RMW)      |           | 1: Falling |          | 1: Falling    |              | 1: Falling      |               |            |

(4) Chip select / Wait control (1/2)

| Symbol  | Name                 | Address     | 7        | 6        | 5           | 4            | 3            | 2           | 1           | 0        |
|---------|----------------------|-------------|----------|----------|-------------|--------------|--------------|-------------|-------------|----------|
| C)20.   | 110                  | 71441000    | B0E      |          | B00M1       | B00M0        | BOBUS        | B0W2        | B0W1        | B0W0     |
| DOCC    | Dlook 0              | 0011        | W        |          | W           | W            | W            | W           | W           | W        |
| B0CS    | Block 0<br>CS/WAIT   | C0H         | 0        |          | 0           | 0            | 0            | 0           | 0           | 0        |
|         | control              |             | 0: DIS   |          | 00: ROM/SF  |              | Data bus     | 000: 2WAIT  | <u> </u>    |          |
|         | Register             | (Prohibit   | 1: EN    |          | 01:         | o un         | Width        | 001: 1WAIT  |             |          |
|         | rtogiotoi            | RMW)        |          |          |             | served       | 0: 16 bit    | 010: 1 + NW | /AIT 1xx: I | Reserved |
|         |                      | 14,111,     |          |          | 11:         |              | 1: 8 bit     | 011: 0WAIT  |             |          |
|         |                      |             | B1E      |          | B10M1       | B10M0        | B1BUS        | B1W2        | B1W1        | B1W0     |
| B1CS    | Block 1              | C1H         | W        |          | W           | W            | W            | W           | W           | W        |
| БТСЗ    | CS/WAIT              | CIII        | 0        |          | 0           | 0            | 0            | 0           | 0           | 0        |
|         | control              |             | 0: DIS   |          | 00: ROM/SF  | _            | Data bus     | 000: 2WAIT  |             |          |
|         | Register             | (prohibit   | 1: EN    |          | 01:         |              | Width        | 001: 1WAIT  |             |          |
|         | . tog.oto.           | RMW)        |          |          | l l         | served       | 0: 16 bit    | 010: 1 + NW | /AIT 1xx: I | Reserved |
|         |                      | T ( ( ) ( ) |          |          | 11:         |              | 1: 8 bit     | 011: 0WAIT  |             |          |
|         |                      |             | B2E      | B2M      | B20M1       | B20M0        | B2BUS        | B2W2        | B2W1        | B2W0     |
| B2CS    | Block 2              | C2H         | W        | W        | W           | W            | W            | W           | W           | W        |
| DZCO    | CS/WAIT              | OZH         | 1        | 0        | 0           | 0            | 0            | 0           | 0           | 0        |
|         | control              |             | 0: DIS   | 0: 16 M  | 00: ROM/SF  |              | Data bus     | 000: 2WAIT  |             | <u> </u> |
|         | Register             | (prohibit   | 1: EN    | space    | 01:         | o un         | Width        | 001: 1WAIT  |             |          |
|         | rtogiotoi            | RMW)        |          | 1: eria  |             | served       | 0: 16 bit    | 010: 1 + NW | AIT 1xx: I  | Reserved |
|         |                      | T ( ( ) ( ) |          | setting  | 11:         |              | 1: 8 bit     | 011: 0WAIT  |             |          |
|         |                      |             | B3E      |          | B30M1       | B30M0        | B3BUS        | B3W2        | B3W1        | B3W0     |
| B3CS    | Block 3              | СЗН         | W        |          | W           | W            | W            | W           | W           | W        |
| DOUG    | CS/WAIT              | Сэп         | 0        |          | 0           | 0            | 0            | 0           | 0           | 0        |
|         | control              |             | 0: DIS   |          | 00: ROM/SF  | _            | Data bus     | 000: 2WAIT  |             |          |
|         | Register             | (Prohibit   | 1: EN    |          | 01:         | o un         | Width        | 001: 1WAIT  |             |          |
|         | rtogiotoi            | RMW)        |          |          |             | served       | 0: 16 bit    | 010: 1 + NW | AIT 1xx: I  | Reserved |
|         |                      | ,           |          |          | 11:         |              | 1: 8 bit     | 011: 0WAIT  |             |          |
|         |                      |             |          |          |             |              | BEXBUS       | BEXW2       | BEXW1       | BEXW0    |
| BEXCS   | External             | C7H         |          |          |             |              | W            | W           | W           | W        |
| BEAGG   | CS/WAIT              | 0711        |          |          |             |              | 0            | 0           | 0           | 0        |
|         | control              |             |          |          |             |              | Data bus     | 000: 2WAIT  | ·           | •        |
|         | Register             | (Prohibit   |          |          |             |              | Width        | 001: 1WAIT  |             |          |
|         | o o                  | RMW)        |          |          |             |              | 0: 16 bit    | 010: 1 + NW | AIT 1xx: I  | Reserved |
|         |                      | ,           |          |          |             |              | 1: 8 bit     | 011: 0WAIT  |             |          |
|         | Memory               |             | S23      | S22      | S21         | S20          | S19          | S18         | S17         | S16      |
| MSAR0   | Start                | C8H         |          |          |             | R            | W            |             |             |          |
|         | Address              |             | 1        | 1        | 1           | 1            | 1            | 1           | 1           | 1        |
|         | Reg0                 |             |          |          |             | Start addres | s A23 to A16 |             |             |          |
|         |                      |             | V20      | V19      | V18         | V17          | V16          | V15         | V14~9       | V8       |
| MAMR0   | Memory               | C9H         |          |          | •           | R            | W            | •           | •           | •        |
|         | Address<br>Mask Reg0 |             | 1        | 1        | 1           | 1            | 1            | 1           | 1           | 1        |
|         | wask Kegu            |             |          |          | CS0 Area si | ze 0: enab   | e to address | comparision |             | •        |
|         | Memory               |             | S23      | S22      | S21         | S20          | S19          | S18         | S17         | S16      |
| MSAR1   | Start                | CAH         |          | ,        |             |              | W            |             |             |          |
| IVISARI | Address              | CAR         | 1        | 1        | 1           | 1            | 1            | 1           | 1           | 1        |
|         | Reg1                 |             | <u>'</u> | '        | <u>'</u>    |              | A23 to A16   | '           | ı <u>'</u>  | '        |
|         |                      |             | V21      | V20      | V19         | V18          | V17          | V16         | V15~9       | V8       |
|         | Memory               | 05          | V Z I    | V Z U    | VIÐ         |              | W            | V 10        | V 13~3      | VO       |
| MAMR1   | Address              | CBH         | 1        | 1        | 1           | 1            | 1            | 1           | 1           |          |
|         | Mask Reg1            |             | '        | <u> </u> |             |              |              |             |             | l        |
|         |                      |             |          |          | CS1area si  | ze u: enabl  | e to address | comparsion  |             |          |

## Chip select /Wait control (2/2)

| Symbol    | Name              | Address | 7   | 6   | 5          | 4             | 3             | 2          | 1   | 0   |
|-----------|-------------------|---------|-----|-----|------------|---------------|---------------|------------|-----|-----|
|           | Memory            |         | S23 | S22 | S21        | S20           | S19           | S18        | S17 | S16 |
| MSAR2     | Start             | ССН     |     |     |            | R/            | W             |            |     |     |
| WISAKZ    | Address           | ССП     | 1   | 1   | 1          | 1             | 1             | 1          | 1   | 1   |
|           | Reg2              |         |     |     |            | Start address | A23 to A16    |            |     |     |
|           | Marran            |         | V22 | V21 | V20        | V19           | V18           | V17        | V16 | V15 |
| MAMR2     | Memory<br>Address | CDH     |     |     |            | R/            | W             |            |     |     |
| IVIAIVIRZ | Mask Reg2         | _       | 1   | 1   | 1          | 1             | 1             | 1          | 1   | 1   |
|           | Wask Regz         |         |     |     | CS2area s  | size 0:enab   | le address co | mparsion   |     |     |
|           | Memory            |         | S23 | S22 | S21        | S20           | S19           | S18        | S17 | S16 |
| MSAR3     | Start             | CEH     |     |     |            | R/            | W             |            |     |     |
| MOARS     | Address           | CLII    | 1   | 1   | 1          | 1             | 1             | 1          | 1   | 1   |
|           | Reg3              |         |     |     |            | Start address | A23 to A16    |            |     |     |
|           | Marran            |         | V22 | V21 | V20        | V19           | V18           | V17        | V16 | V15 |
| MAMR3     | Memory<br>Address | CFH     |     |     |            | R/            | W             |            |     |     |
| IVIAIVING | Mask Reg3         | _       | 1   | 1   | 1          | 1             | 1             | 1          | 1   | 1   |
|           | Widok Rego        |         |     |     | CS3 area s | ize 0: enab   | le to address | comparsion |     |     |

(5) Clock Gear

| Symbol | Name       | Address | 7          | 6         | 5                                       | 4               | 3            | 2             | 1                                       | 0                                       |
|--------|------------|---------|------------|-----------|-----------------------------------------|-----------------|--------------|---------------|-----------------------------------------|-----------------------------------------|
|        |            |         | _          | _         | _                                       | _               | _            | WUEF          | PRCK1                                   | PRCK0                                   |
| SYSCR0 | System     | E0H     |            |           |                                         | R.              | W            |               |                                         |                                         |
|        | Clock      |         | 1          | 0         | 1                                       | 0               | 0            | 0             | 0                                       | 0                                       |
|        | Control    |         | Always     | Always    | Always                                  | Always          | Always       | Warm-up       | Prscaler clo                            | ck seleciton                            |
|        | Register 0 |         | Write 1    | Write 0   | Write 1                                 | Write 0         | Write 0      | timer         | 00: f <sub>FPH</sub>                    |                                         |
|        |            |         |            |           |                                         |                 |              | 0 write:      | 01: reserve                             | d                                       |
|        |            |         |            |           |                                         |                 |              | Don't care    | 10: fc/16                               |                                         |
|        |            |         |            |           |                                         |                 |              | 1 write:      | 11: reserve                             | d                                       |
|        |            |         |            |           |                                         |                 |              | start         |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | timer         |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 0 read:       |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | end           |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | warm-up       |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 1 read:       |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | not end       |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | warm-up       |                                         |                                         |
|        |            |         |            |           |                                         |                 | _            | GEAR2         | GEAR1                                   | GEAR0                                   |
| SYSCR1 | System     | E1H     |            |           |                                         |                 |              | R/            |                                         | O E / II (O                             |
|        | Clock      |         |            |           |                                         |                 | 0            | 1             | 0                                       | 0                                       |
|        | Control    |         |            |           |                                         |                 | Always       | High-freque   | ency gear val                           |                                         |
|        | Register 1 |         |            |           |                                         |                 | Write 0      | (fc)          | nioj godi vai                           | 40 0010011011                           |
|        |            |         |            |           |                                         |                 | Willo 0      | 000: fc       |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 001: fc/2     |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 010: fc/4     |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 011: fc/8     |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 100: fc/16    |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 101: (reserv  | (ed)                                    |                                         |
|        |            |         |            |           |                                         |                 |              | 110: (reserv  |                                         |                                         |
|        |            |         |            |           |                                         |                 |              | 111: (reserv  |                                         |                                         |
|        |            |         |            | _         | WUPTM1                                  | WUPTM0          | HALTM1       | HALTM0        | , ou,                                   | DRVE                                    |
| SYSCR2 | System     | E2H     |            | R/W       | R/W                                     | R/W             | R/W          | R/W           |                                         | R/W                                     |
|        | Clock      |         |            | 0         | 1                                       | 0               | 1            | 1             |                                         | 0                                       |
|        | Control    |         |            | Always    | Warming-up                              |                 | 00: reserve  |               |                                         | 1: Drive the                            |
|        | Register 2 |         |            | Write 0   | 00: reserve                             |                 | 01: STOP N   |               |                                         | pin in                                  |
|        |            |         |            | William C | 01: 2 <sup>8</sup> /input               |                 | 10: IDLE1 I  |               |                                         | STOP/                                   |
|        |            |         |            |           | 10: 2 <sup>14</sup>                     | moquomoy        | 11: IDLE2 I  |               |                                         | IDLE                                    |
|        |            |         |            |           | 11: 2 <sup>16</sup>                     |                 | 11.102221    | viouc         |                                         | Mode                                    |
|        |            |         | PROTECT    |           |                                         | _               | _            | EXTIN         | _                                       | _                                       |
| EMCCR0 | EMC        | ЕЗН     | R          | R/W       | R/W                                     | R/W             | R/W          | R/W           | R/W                                     | R/W                                     |
| - 1    | Control    |         | 0          | 0         | 1                                       | 0               | 0            | 0             | 1                                       | 1                                       |
|        | Register 0 |         | Protection | Always    | Always                                  | Always          | Always       | 01: fc is     | Always                                  | Always                                  |
|        |            |         | flag       | write 0   | write 1                                 | write 0         | wirte 0.     | external      | write 1                                 | write 1                                 |
|        |            |         | 0: OFF     | 1711100   | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .,,,,,,,        | .,,,,,,,     | clock.        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | *************************************** |
|        |            |         | 1: ON      |           |                                         |                 |              | GIOGN.        |                                         |                                         |
|        | EMC        | 1       | 1. OIN     | l         | 1                                       | 1               | 1            | 1             | 1                                       | 1                                       |
| EMCCR1 | Control    | E4H     |            |           | tion is turned                          |                 |              |               |                                         |                                         |
|        | Register 1 |         | l          | Protec    | tion is turned                          | I ON by writing | na any value | other than 1F | H                                       |                                         |

Note: EMCCR1

If protection is on, write operations to the following SFRs are not possible.

1. CS/WAIT control

B0CS, B1CS, B2CS, B3CS, BEXCS, MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, and MAMR3

2. Clock Gear (only EMCCR1 can be written to) SYSCR0, SYSCR1, SYSCR2 and EMCCR0

### (6) 8-Bit Timer (1/2)

### (6-1) TMRA01

| Symbol  | Name       | Address   | 7             | 6      | 5                        | 4        | 3            | 2           | 1           | 0         |
|---------|------------|-----------|---------------|--------|--------------------------|----------|--------------|-------------|-------------|-----------|
|         |            |           | TA0RDE        |        |                          |          | I2TA01       | TA01PRUN    | TA1RUN      | TA0RUN    |
| TA01-   | Timer      | 100H      | R/W           |        |                          |          | R/W          | R/W         | R/W         | R/W       |
| RUN     | RUN        |           | 0             |        |                          |          | 0            | 0           | 0           | 0         |
|         |            |           | Double        |        |                          |          | IDLE2        | 8-Bit Timer | Run/Stop co | ntrol     |
|         |            |           | Buffer        |        |                          |          | 0: Stop      | 0: Stop 8   | & Clear     |           |
|         |            |           | 0: Disable    |        |                          |          | 1: Operate   | 1: Run (d   | count up)   |           |
|         |            |           | 1: Enable     |        |                          |          |              |             |             |           |
|         | 8-Bit      | 102H      |               |        |                          |          | _            |             |             |           |
| TA0REG  | Timer      | (Prohibit |               |        |                          |          | N            |             |             |           |
|         | Register 0 | RMW)      |               |        |                          | Unde     | efined       |             |             |           |
|         | 8-Bit      | 103H      |               |        |                          |          | _            |             |             |           |
| TA1REG  | Timer      | (Prohibit |               |        |                          | ١        | N            |             |             |           |
|         | Register 1 | RMW)      |               |        |                          | Unde     | efined       |             |             |           |
|         |            |           | TA01M1        | TA01M0 | PWM01                    | PWM00    | TA1CLK1      | TA1CLK0     | TA0CLK1     | TA0CLK0   |
|         | 8-Bit      |           |               |        |                          | R        | W            |             |             |           |
| TA01-   | Timer      |           | 0             | 0      | 0                        | 0        | 0            | 0           | 0           | 0         |
| MOD     | Source     | 104H      | 00: 8-Bit Tin | ner    | 00: Reserve              | d        | 00: TA0TR    | G           | 00: TA0IN p | in        |
|         | CLK &      |           | 01: 16-Bit T  | mer    | 01: 2 <sup>6</sup> – 1 F | WM cycle | 01: φT1      |             | 01: φT1     |           |
|         | MODE       |           | 10: 8-Bit PP  | G      | 10: 2 <sup>7</sup> – 1   |          | 10: φT16     |             | 10: φT4     |           |
|         |            |           | 11: 8-Bit PV  | /M     | 11: 2 <sup>8</sup> – 1   |          | 11: φT256    |             | 11: φT16    | 7         |
|         |            |           |               |        |                          |          | TAFF1C1      | TAFF1C0     | TAFF1IE     | TAFF1IS   |
| TA1FFCR | 8-Bit      | 105H      |               |        |                          |          | V            | <u>/</u> *  | R/          | W         |
|         | Timer      |           |               |        |                          |          | 1            | 1           | 0           | 0         |
|         | Flip-Flop  |           |               |        |                          |          | 00: Invert T |             | 1: TA1FF    | 0: TMRA0  |
|         | Control    |           |               |        |                          |          | 01: Set TA1  | FF          | Invert      | 1: TMRA1  |
|         |            |           |               |        |                          |          | 10: Clear T  |             | Enable      | inversion |
|         |            |           |               |        | ĺ                        |          | 11: Don't ca | are         |             |           |

#### (6-2) TMRA23

| (6–2) TMF | KA23       |           |               |        |                         |           |              |             |             |           |
|-----------|------------|-----------|---------------|--------|-------------------------|-----------|--------------|-------------|-------------|-----------|
| Symbol    | Name       | Address   | 7             | 6      | 5                       | 4         | 3            | 2           | 1           | 0         |
|           |            |           | TA2RDE        |        |                         |           | I2TA23       | TA23PRUN    | TA3RUN      | TA2RUN    |
| TA23-RU   | Timer      | 108H      | R/W           |        |                         |           | R/W          | R/W         | R/W         | R/W       |
| N         | RUN        |           | 0             |        |                         |           | 0            | 0           | 0           | 0         |
|           |            |           | Double        |        |                         |           | IDLE2        | 8-Bit Timer | Run/Stop co | ntrol     |
|           |            |           | Buffer        |        |                         |           | 0: Stop      | 0: Stop &   | Clear       |           |
|           |            |           | 0: Disable    |        |                         |           | 1: Operate   | 1: Run (c   | ount up)    |           |
|           |            |           | 1: Enable     |        |                         |           |              |             |             |           |
|           | 8-Bit      | 10AH      |               |        |                         |           | _            |             |             |           |
| TA2REG    | Timer      | (Prohibit |               |        |                         | ١         | N            |             |             |           |
|           | Register 0 | RMW)      |               |        |                         | Unde      | efined       |             |             |           |
|           | 8-Bit      | 10BH      |               |        |                         |           | _            |             |             |           |
| TA3REG    | Timer      | (Prohibit |               |        |                         | ١         | N            |             |             |           |
|           | Register 1 | RMW)      |               |        |                         | Unde      | efined       |             |             |           |
|           |            |           | TA23M1        | TA23M0 | PWM21                   | PWM20     | TA3CLK1      | TA3CLK0     | TA2CLK1     | TA2CLK0   |
| TA23-MO   | 8-Bit      | 10CH      |               |        |                         | R         | W            |             |             |           |
| D         | Timer      |           | 0             | 0      | 0                       | 0         | 0            | 0           | 0           | 0         |
|           | Source     |           | 00: 8-Bit Tir | ner    | 00: Reserve             |           | 00: TA2TR    | G           | 00: Reserve | ed        |
|           | CLK &      |           | 01: 16-Bit T  | imer   | 01: 2 <sup>6</sup> –1 F | PWM cycle | 01: φT1      |             | 01: φT1     |           |
|           | MODE       |           | 10: 8-Bit PP  | _      | 10: 2 <sup>7</sup> – 1  |           | 10: φT16     |             | 10: φT4     |           |
|           |            |           | 11: 8-Bit PV  | /M     | 11: 28 – 1              |           | 11: φT256    | 1           | 11: φT16    | T         |
|           |            |           |               |        |                         |           | TAFF3C1      | TAFF3C0     | TAFF3IE     | TAFF3IS   |
| TA3FFCR   |            | 10DH      |               |        |                         |           | V            | V*          |             | W         |
|           | Timer      |           |               |        |                         |           | 1            | 1           | 0           | 0         |
|           | Flip-Flop  |           |               |        |                         |           | 00: Invert T | -           | 1: TA3FF    | 0: TMRA2  |
|           | Control    |           |               |        |                         |           | 01: Set TA3  |             | Invert      | 1: TMRA3  |
|           |            |           |               |        |                         |           | 10: Clear T  |             | Enable      | inversion |
|           |            |           |               |        |                         |           | 11: Don't ca | are         |             |           |

# 8-bit Timer (2/2)

(6-3) TMRA45

| Symbol  | Name       | Address   | 7             | 6      | 5                      | 4         | 3            | 2             | 1           | 0         |
|---------|------------|-----------|---------------|--------|------------------------|-----------|--------------|---------------|-------------|-----------|
|         |            |           | TA4RDE        |        |                        |           | I2TA45       | TA45PRUN      | TA5RUN      | TA4RUN    |
|         |            |           | R/W           |        |                        |           | R/W          | R/W           | R/W         | R/W       |
| TA45-   | Timer      |           | 0             |        |                        |           | 0            | 0             | 0           | 0         |
| RUN     | RUN        | 110H      | Double        |        |                        |           | IDLE2        | 8 bit Timer F | Run/Stop Co | ntrol     |
|         |            |           | Buffer        |        |                        |           | 0: Stop      | 0: Stop & Cl  | ear         |           |
|         |            |           | 0: Disable    |        |                        |           | 1: Operate   | 1: Run (Cou   | ınt up)     |           |
|         |            |           | 1: Enable     |        |                        |           |              |               |             |           |
|         | 8-Bit      | 112H      |               |        |                        | _         | _            |               |             |           |
| TA4REG  | Timer      | (Prohibit |               |        |                        | V         | N            |               |             |           |
|         | Register 0 | RMW)      |               |        |                        | Unde      | efined       |               |             |           |
|         | 8-Bit      | 113H      |               |        |                        | _         | _            |               |             |           |
| TA5REG  | Timer      | (Prohibit |               |        |                        | V         | N            |               |             |           |
|         | Register 1 | RMW)      |               |        |                        | Unde      | efined       |               |             |           |
|         |            |           | TA45M1        | TA45M0 | PWM41                  | PWM40     | TA5CLK1      | TA5CLK0       | TA4CLK1     | TA4CLK0   |
| TA45-   | 8-Bit      | 114H      |               |        |                        | R         | W            |               |             |           |
| MOD     | Timer      |           | 0             | 0      | 0                      | 0         | 0            | 0             | 0           | 0         |
|         | Source     |           | 00: 8-Bit Tin | ner    | 00: Reserve            | ed        | 00: TA4TR0   | 3             | 00: TA4IN p | oin       |
|         | CLK &      |           | 01: 16-Bit T  | imer   | 01: 2 <sup>6</sup> – 1 | PWM cycle | 01: φΤ1      |               | 01: φΤ1     |           |
|         | MODE       |           | 10: 8-Bit PP  | G      | 10: 2 <sup>7</sup> – 1 |           | 10: φT16     |               | 10: φT4     |           |
|         |            |           | 11: 8-Bit PV  | VM     | 11: 28 – 1             |           | 11: φT256    | ı             | 11: φT16    | T         |
|         |            |           |               |        |                        |           | TAFF5C1      | TAFF5C0       | TAFF5IE     | TAFF5IS   |
| TA5FFCR |            | 115H      |               |        |                        |           | ٧            | /*            | R/          | W         |
|         | Timer      |           |               |        |                        |           | 1            | 1             | 0           | 0         |
|         | Flip-Flop  |           |               |        |                        |           | 00: Invert T | _             | 1: TA5FF    | 0: Timer4 |
|         | Control    |           |               |        |                        |           | 01: SET TA   | _             | Invert      | 1: Timer5 |
|         |            |           |               |        |                        |           | 10: Clear T  | _             | Enable      | inversion |
|         |            |           |               |        |                        |           | 11: Don't ca | are           |             |           |

# (7) 16-Bit Timer (1/2)

### (7-1) TMRB0

| Symbol    | Name        | Address   | 7            | 6        | 5        | 4              | 3           | 2           | 1             | 0        |
|-----------|-------------|-----------|--------------|----------|----------|----------------|-------------|-------------|---------------|----------|
|           |             |           | TB0RDE       | _        |          |                | I2TB0       | TB0PRUN     |               | TB0RUN   |
| TB0RUN    | Timer       | 180H      | R/W          | R/W      |          |                | R/W         | R/W         |               | R/W      |
|           | Control     |           | 0            | 0        |          |                | 0           | 0           |               | 0        |
|           |             |           | Double       | Always   |          |                | IDLE2       | 16 Bit Time | r Run/Stop co | ontrol   |
|           |             |           | Buffer       | write 0. |          |                | 0: Stop     | 0: Stop&C   |               |          |
|           |             |           | 0: Disable   |          |          |                | 1: Operate  | 1: Run (co  | ount up)      |          |
|           |             |           | 1: Enable    |          |          |                | ·           | ,           | • /           |          |
|           |             |           | TB0CT1       | TB0ET1   | TB0CPOI  | TB0CPM1        | TB0CPM0     | TB0CLE      | TB0CLK1       | TB0CLK0  |
| TB0-MOD   | 16-Bit      | 182H      | R/           | W        | W*       |                |             | R/W         |               |          |
|           | Timer       |           | 0            | 0        | 1        | 0              | 0           | 0           | 0             | 0        |
|           | Source      |           | TB0FF1 IN\   | / TRG    |          | Capture Tin    | ning        | 1: UC0      | Source Cloc   | k        |
|           | CLK         |           |              |          | 0: Soft  | (TBOINO, TE    | B0IN1)      | Clear       |               |          |
|           | & MODE      |           | 0: TRG Disa  | able     | capture  | 00: disable    |             | Enable      | 00: TB0IN0    | pin      |
|           |             |           | 1: TRG Ena   | ble      | 1: Don't | 01: ↑, ↑       |             |             | 01: φT1       |          |
|           |             |           |              |          | care     | 10: ↑, ↓       |             |             | 10: φT4       |          |
|           |             |           |              |          |          | 11: ↑, ↓ (TA   | A1OUT)      |             | 11: φT16      |          |
|           |             |           | TB0FF1C1     | TB0FF1C0 | TB0C1T1  | TB0C0T1        | TB0E1T1     | TB0E0T1     | TB0FF0C1      | TB0FF0C0 |
| TB0FFCR   | 16-Bit      | 183H      | V            | /*       |          | R              | W           |             | V             | /*       |
|           | Timer       |           | 1            | 1        | 0        | 0              | 0           | 0           | 0             | 0        |
|           | Flip-Flop   |           | 00: Invert T | B0FF1    |          | TB0FF0 Inve    | ert Trigger |             | 00: Invert TI | B0FF0    |
|           | Control     |           | 01: Set      |          |          | 0: trigger Dis | sable       |             | 01: Set       |          |
|           |             |           | 10: Clear    |          |          | 1: trigger En  | able        |             | 10: Clear     |          |
|           |             |           | 11: Don't ca | ire      |          |                |             |             | 11: Don't ca  | ire      |
|           | 16-Bit      | 188H      |              |          |          | _              | _           |             |               |          |
| TB0RG0L   | Timer       | (Prohibit |              |          |          | \              | N           |             |               |          |
|           | Register 0L | RMW)      |              |          |          | Unde           | efined      |             |               |          |
|           | 16-Bit      | 189H      |              |          |          | _              | _           |             |               |          |
| TB0RG0H   | Timer       | (Prohibit |              |          |          | \              | N           |             |               |          |
|           | Register 0H | RMW)      |              |          |          | Unde           | efined      |             |               |          |
|           | 16-Bit      | 18AH      |              |          |          | _              | _           |             |               |          |
| TB0RG1L   | Timer       | (Prohibit |              |          |          | \              | N           |             |               |          |
|           | Register 1L | RMW)      |              |          |          | Unde           | efined      |             |               |          |
|           | 16-Bit      | 18BH      |              |          |          | _              | _           |             |               |          |
| TB0RG1H   |             | (Prohibit |              |          |          | 1              | N           |             |               |          |
|           | Register 1H |           |              |          |          |                | efined      |             |               |          |
|           | _           |           |              |          |          |                |             |             |               |          |
| TB0CP0L   | Capture     | 18CH      |              |          |          |                | R           |             |               |          |
|           | Register 0L |           |              |          |          |                | efined      |             |               |          |
|           |             |           |              |          |          | Oriac          | Sililou     |             |               |          |
| ТВ0СР0Н   | Capture     | 18DH      |              |          |          |                | <br>R       |             |               |          |
| 10001 011 | Register 0H | 10011     |              |          |          |                | efined      |             |               |          |
|           |             |           |              |          |          | Onde           | JIIIEU      |             |               |          |
| TB0CP1L   | Capture     | 18EH      |              |          |          |                | <u> </u>    |             |               |          |
| DUCFIL    | Register 1L | IOEII     |              |          |          |                | efined      |             |               |          |
|           |             |           |              |          |          | Unde           | ennea       |             |               |          |
| TDOOD4    | Capture     | 40511     |              |          |          |                |             |             |               |          |
| TB0CP1H   | Register 1H | 18FH      |              |          |          |                | R           |             |               |          |
|           | =           |           |              |          |          | Unde           | efined      |             |               |          |

# (8) UART/Serial Channel

### (8-1) UART/SIO Channel 0

| Symbol   | Name      | Address | 7             | 6                | 5          | 4             | 3               | 2       | 1                                      | 0                      |
|----------|-----------|---------|---------------|------------------|------------|---------------|-----------------|---------|----------------------------------------|------------------------|
|          | Serial    |         | RB7/TB7       | RB6/TB6          | RB5/TB5    | RB4/TB4       | RB3/TB3         | RB2/TB2 | RB1/TB1                                | RB0/TB0                |
| SC0BUF   | Channel 0 | 200H    |               |                  | R          | (receiving)/M | / (transmissio  | on)     |                                        |                        |
|          | Buffer    |         |               |                  |            | Unde          | efined          |         |                                        |                        |
|          |           |         | RB8           | EVEN             | PE         | OERR          | PERR            | FERR    | SCLKS                                  | IOC                    |
|          | Serial    |         | R             | R/               | W          | R (clea       | ared to 0 by re | eading) | R                                      | /W                     |
| SC0CR    | Channel 0 | 201H    | 0             | 0                | 0          | 0             | 0               | 0       | 0                                      | 0                      |
|          | Control   |         | Receiving     | Parity<br>0: Odd | 1: Parity  |               | 1: Error        |         | 0:SCLK0↑                               | 1: Input               |
|          |           |         | data bit 8    | 1: Even          | Enable     | Over run      | Parity          | Framing | 1:SCLK0↓                               | SCLK0 pin              |
|          |           |         | TB8           | CTSE             | RXE        | WU            | SM1             | SM0     | SC1                                    | SC0                    |
|          |           |         |               | •                |            | R             | W               | •       |                                        |                        |
| SC0-     | Serial    |         | 0             | 0                | 0          | 0             | 0               | 0       | 0                                      | 0                      |
| MOD0     | Channel 0 | 202H    | Transmissi    | 1: CTS           | 1: Receive | 1:            | 00: I/O Inter   | face    | 00: TA0TRO                             | i i                    |
| IVIODO   | Mode0     |         | on data bit 8 | Enable           | Enable     | Wake-u        | 01: UART 7      | -Bit    | 01: baud rat                           | e generator            |
|          |           |         |               |                  |            | р             | 10: UART 8      | -Bit    | 10: internal                           | clock f <sub>SYS</sub> |
|          |           |         |               |                  |            | Enable        | 11: UART 9      | -Bit    | 11: external                           | clock SCLK0            |
|          |           |         |               | BR0ADD           | BR0CK1     | BR0CK0        | BR0S3           | BR0S2   | BR0S1                                  | BR0S0                  |
|          |           |         |               | T                |            | R             | W               | T       |                                        | ,                      |
|          | Baud Rate |         | 0             | 0                |            | )             | 0               | 0       | 0                                      | 0                      |
| BR0CR    | Control   | 203H    | Always        | 1: (16-K) /16    | -          |               | 5               |         | ency divisor N                         | ٧.                     |
|          |           |         | write 0.      | divided          | 01: φT2    |               |                 | 0 t     | o F                                    |                        |
|          |           |         |               | Enable           | 10: φT8    |               |                 |         |                                        |                        |
|          |           |         |               |                  | 11:    T32 |               | DD 01/0         | 5501/0  | DD 01/1                                | 5501/0                 |
|          | Serial    |         |               |                  |            |               | BR0K3           | BR0K2   | BR0K1                                  | BR0K0                  |
| BR0-AD   | Channel 0 | 204H    |               |                  |            |               | 0               | 0       | /W<br>T 0                              | 0                      |
| D        | K setting | 204⊓    |               |                  |            |               | U               |         | Rate0 K                                | U                      |
|          | Reg       |         |               |                  |            |               |                 |         | o F                                    |                        |
|          |           |         | 12S0          | FDPX0            |            |               |                 |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | STSEN0                 |
|          |           |         | R/W           | R/W              |            |               |                 |         |                                        | W                      |
|          |           |         | 0             | 0                |            |               |                 |         |                                        | 1                      |
| SC0-MO   | Serial    |         | IDLE2         | I/O interface    |            |               |                 |         |                                        | STS0                   |
| D1       | Channel 0 | 205H    |               | 1: Full          |            |               |                 |         |                                        | 1: Output              |
|          | Mode1     |         | 1: Operate    | Duplex           |            |               |                 |         |                                        | 0: Stop                |
|          |           |         |               | 0: Half          |            |               |                 |         |                                        |                        |
| <u> </u> |           |         |               | Duplex           |            |               |                 |         |                                        |                        |

### (8-2) UART/SIO Channel 1

| Symbol | Name                 | Address | 7              | 6                              | 5          | 4               | 3                            | 2       | 1                                   | 0           |  |  |  |  |
|--------|----------------------|---------|----------------|--------------------------------|------------|-----------------|------------------------------|---------|-------------------------------------|-------------|--|--|--|--|
|        | Serial               |         | RB7/TB7        | RB6/TB6                        | RB5/TB5    | RB4/TB4         | RB3/TB3                      | RB2/TB2 | RB1/TB1                             | RB0/TB0     |  |  |  |  |
| SC1BUF | Channel 1            | 208H    |                | R (receiving)/W (transmission) |            |                 |                              |         |                                     |             |  |  |  |  |
|        | Buffer               |         |                |                                |            | Unde            | efined                       |         |                                     |             |  |  |  |  |
|        |                      |         | RB8            | EVEN                           | PE         | OERR            | PERR                         | FERR    | SCLKS                               | IOC         |  |  |  |  |
|        | Serial               |         | R R/W R (clear |                                |            | ared to 0 by re | eading)                      | R.      | W                                   |             |  |  |  |  |
| SC1CR  | Channel 1            | 209H    | 0              | 0                              | 0          | 0               | 0                            | 0       | 0                                   | 0           |  |  |  |  |
|        | Control              |         | Receiving      | Parity<br>0: Odd               | 1: Parity  |                 | 1: Error                     |         | 0:SCLK0↑                            | 1: Input    |  |  |  |  |
|        |                      |         | data bit 8     | 1: Even                        | Enable     | Over run        | Parity                       | Framing | 1:SCLK0↓                            | SCLK0 pin   |  |  |  |  |
|        |                      |         | TB8            | CTSE                           | RXE        | WU              | SM1                          | SM0     | SC1                                 | SC0         |  |  |  |  |
|        |                      |         |                |                                |            | R               | W                            |         |                                     |             |  |  |  |  |
| SC1-   | Serial               |         | 0              | 0                              | 0          | 0               | 0                            | 0       | 0                                   | 0           |  |  |  |  |
| MOD0   | Channel 1            | 20AH    | Transmissi     | 1: CTS                         | 1: Receive | 1:              | 00: I/O Inter                | face    | 00: TA0TRO                          | ;           |  |  |  |  |
| MODU   | Mode0                |         | on data bit 8  | Enable                         | Enable     | Wake-u          | 01: UART 7-Bit               |         | 01: baud rate generator             |             |  |  |  |  |
|        |                      |         |                |                                |            | р               | 10: UART 8-Bit               |         | 10: internal clock f <sub>SYS</sub> |             |  |  |  |  |
|        |                      |         |                |                                |            | Enable          | 11: UART 9                   | -Bit    | 11: external                        | clock SCLK0 |  |  |  |  |
|        |                      |         |                | BR1ADD                         | BR1CK1     | BR1CK0          | BR1S3                        | BR1S2   | BR1S1                               | BR1S0       |  |  |  |  |
|        | Baud Rate<br>Control |         | R/W            |                                |            |                 |                              |         |                                     |             |  |  |  |  |
|        |                      |         | 0              | 0                              | (          | 0               | 0                            | 0       | 0                                   | 0           |  |  |  |  |
| BR1CR  |                      | 20BH    | Always         | 1: (16-K) /16                  | 00: φΤ0    |                 | Set the frequency divisor N. |         |                                     |             |  |  |  |  |
|        |                      |         | write 0.       | divided                        | 01: φΤ2    |                 | 0 to F                       |         |                                     |             |  |  |  |  |
|        |                      |         |                | Enable                         | 10: φΤ8    |                 |                              |         |                                     |             |  |  |  |  |
|        |                      |         |                |                                | 11:        |                 |                              | -       | 1                                   | ı           |  |  |  |  |
|        | Serial               |         |                |                                |            |                 | BR1K3                        | BR1K2   | BR1K1                               | BR1K0       |  |  |  |  |
| BR1-AD | Channel 1            |         |                |                                |            |                 |                              |         | W                                   | I           |  |  |  |  |
| D      | K setting            | 20CH    |                |                                |            |                 | 0                            | 0       | 0                                   | 0           |  |  |  |  |
|        | Reg                  |         |                |                                |            |                 | Baud Rate0 K                 |         |                                     |             |  |  |  |  |
|        |                      |         | 1001           |                                |            |                 |                              | 1 t     | o F                                 | 0707111     |  |  |  |  |
|        |                      |         | I2S1           | FDPX1                          |            |                 |                              |         |                                     | STSEN1      |  |  |  |  |
|        |                      |         | R/W            | R/W                            |            |                 |                              |         |                                     | W           |  |  |  |  |
|        | Serial               |         | 0              | 0                              |            |                 |                              |         |                                     | 1           |  |  |  |  |
| SC1-MO | Channel 1            | 20DH    |                | I/O interface                  |            |                 |                              |         |                                     | STS1        |  |  |  |  |
| D1     | Mode1                |         |                | 1: Full                        |            |                 |                              |         |                                     | 1: Output   |  |  |  |  |
|        |                      |         | 1: Operate     | Duplex                         |            |                 |                              |         |                                     | 0: Stop     |  |  |  |  |
|        |                      |         |                | 0: Half                        |            |                 |                              |         |                                     |             |  |  |  |  |
|        |                      |         |                | Duplex                         |            |                 |                              |         | l                                   |             |  |  |  |  |

# (9) AD Converter

| Symbol      | Name         | Address | 7          | 6          | 5                 | 4                 | 3         | 2                    | 1                                          | 0                    |
|-------------|--------------|---------|------------|------------|-------------------|-------------------|-----------|----------------------|--------------------------------------------|----------------------|
|             | AD           |         | EOCF       | ADBF       | _                 | ITM1              | ITM0      | REPEAT               | SCAN                                       | ADS                  |
| ADMOD 0     | MODE         | 2B0H    | F          | ₹          | R/W               | R/W               | R/W       | R/W                  | R/W                                        | R/W                  |
|             | Reg0         |         | 0          | 0          | 0                 | 0                 | 0         | 0                    | 0                                          | 0                    |
|             |              |         | 1: End     | 1: busy    | Always<br>write 0 | Interrupt in Mode | Repeat    | 1: Repeat            | 1: Scan                                    | 1: Start             |
|             | AD           |         | VREFON     | I2AD       |                   |                   | ADTRGE    | ADCH2                | ADCH1                                      | ADCH0                |
| ADMOD 1     | MODE         | 2B1H    | R/W        | R/W        |                   |                   | R/W       |                      | R/W                                        |                      |
|             | Reg1         |         | 0          | 0          |                   |                   | 0         | 0                    | 0                                          | 0                    |
|             |              |         | 1: VREF On | IDLE2      |                   |                   | 1: Enable |                      | nput channe                                | I                    |
|             |              |         |            | 0: Abort   |                   |                   | for       | 000: AN0 AN          | 0                                          |                      |
|             |              |         |            | 1: Operate |                   |                   | external  | 001: AN1 AN          | 0 →AN1                                     |                      |
|             |              |         |            |            |                   |                   | start     | 010: AN2 AN          | $0 \rightarrow AN1 \rightarrow AI$         | N2                   |
|             |              |         |            |            |                   |                   |           | 011: AN3 AN          | $0 \rightarrow AN1 \rightarrow AI$         | $N2 \rightarrow AN3$ |
|             |              |         |            |            |                   |                   |           | 100: AN4 AN          | 4                                          |                      |
|             |              |         |            |            |                   |                   |           | 101: AN5 AN          |                                            |                      |
|             |              |         |            |            |                   |                   |           |                      | $4 \rightarrow AN5 \rightarrow AI$         |                      |
|             | AD           |         | ADM27      | ADM26      | ADM25             | ADM24             | ADM23     | 111: AN7 AN<br>ADM22 | $4 \rightarrow AN5 \rightarrow AI$ $ADM21$ | ADM20                |
| ADMOD 2     |              | 2B2H    | ADIVIZI    | ADIVIZO    | ADIVIZO           | R/                |           | ADIVIZZ              | ADIVIZI                                    | ADIVIZU              |
| ADMOD 2     | Reg2         | 20211   | 0          | 0          | 0                 | 1                 | 0         | 0                    | 0                                          | 1                    |
|             | rtogz        |         | 0          | U          |                   | Please W          |           |                      |                                            | <u> </u>             |
|             | AD           |         | ADM37      | ADM36      | ADM35             | ADM34             | ADM33     | ADM32                | ADM31                                      | ADM30                |
| ADMOD 3     |              | 2B3H    | R/W        |            |                   |                   |           |                      |                                            |                      |
| , IDINIOD O | Reg3         |         | 1          | 1          | 0                 | 0                 | 1         | 1                    | 1                                          | 1                    |
|             |              |         |            | <u>'</u>   | U                 | Please W          | l         |                      |                                            | <u> </u>             |
| AD          | AD Result    |         | ADR01      | ADR00      |                   | 11000011          |           |                      |                                            | ADR0RF               |
| REG04L      | Reg 0/4      | 2A0H    |            | ₹          |                   |                   |           |                      |                                            | R                    |
|             | low          |         |            | efined     |                   |                   |           |                      |                                            | 0                    |
| AD          | AD Result    | t 2A1H  | ADR09      | ADR08      | ADR07             | ADR06             | ADR05     | ADR04                | ADR03                                      | ADR02                |
| REG04H      | Reg 0/4      |         | R          |            |                   |                   |           |                      |                                            |                      |
|             | high         |         |            |            |                   | Unde              | fined     |                      |                                            |                      |
| AD          | AD Result    |         | ADR11      | ADR10      |                   |                   |           |                      |                                            | ADR1RF               |
| REG15L      | Reg 1/5 2A2H | 2A2H    | F          | ₹          |                   |                   |           |                      |                                            | R                    |
|             | low          |         | Unde       | efined     |                   |                   |           |                      |                                            | 0                    |
| AD          | AD Result    |         | ADR19      | ADR18      | ADR17             | ADR16             | ADR15     | ADR14                | ADR13                                      | ADR12                |
| REG15H      | Reg 1/5      | 2A3H    |            |            |                   | F                 | ₹         |                      |                                            |                      |
|             | high         |         |            |            |                   | Unde              | fined     |                      |                                            |                      |
| AD          | AD Result    |         | ADR21      | ADR20      |                   |                   |           |                      |                                            | ADR2RF               |
| REG26L      | Reg 2/6      | 2A4H    | F          | ₹          |                   |                   |           |                      |                                            | R                    |
|             | low          |         | Unde       | efined     |                   |                   |           |                      |                                            | 0                    |
| AD          | AD Result    |         | ADR29      | ADR28      | ADR27             | ADR26             | ADR25     | ADR24                | ADR23                                      | ADR22                |
| REG26H      | Reg 2/6      | 2A5H    |            |            |                   | F                 | ₹         |                      |                                            |                      |
|             | high         |         |            |            |                   | Unde              | fined     |                      |                                            |                      |
| AD          | AD Result    |         | ADR31      | ADR30      |                   | _                 | _         | _                    |                                            | ADR3RF               |
| REG37L      | Reg 3/7      | /7 2A6H | R R        |            |                   |                   |           |                      | R                                          |                      |
|             | low          |         | Unde       | fined      |                   |                   |           |                      |                                            | 0                    |
| AD          | AD Result    |         | ADR39      | ADR38      | ADR37             | ADR36             | ADR35     | ADR34                | ADR33                                      | ADR32                |
| REG37H      | Reg 3/7      | 2A7H    |            |            |                   | F                 | ₹         |                      |                                            |                      |
|             | high         |         |            |            |                   | Unde              | fined     |                      |                                            |                      |

# (10) Watchdog Timer

| Symbol | Name    | Address | 7      | 6                        | 5                               | 4           | 3                               | 2          | 1          | 0        |  |  |  |  |
|--------|---------|---------|--------|--------------------------|---------------------------------|-------------|---------------------------------|------------|------------|----------|--|--|--|--|
|        |         |         | WDTE   | WDTP1                    | WDTP0                           |             |                                 | I2WDT      | RESCR      |          |  |  |  |  |
|        | WDT     |         | R/W    | R/W                      | R/W                             |             |                                 | R/W        | R/W        | R/W      |  |  |  |  |
| WDMOD  | MODE    | 300H    | 1      | 0                        | 0                               |             |                                 | 0          | 0          | 0        |  |  |  |  |
|        | Reg     |         | 1: WDT | 00: 2                    | 15/f <sub>sys</sub>             |             |                                 | IDLE2      | 1: RESET   | Always   |  |  |  |  |
|        |         |         | Enable | 01: 2                    |                                 |             |                                 | 0: Abort   | connect    | write 0. |  |  |  |  |
|        |         |         |        | 10: 829/f <sub>sys</sub> |                                 |             |                                 | 1: Operate | internally |          |  |  |  |  |
|        |         |         |        | 11: 2 <sup>2</sup>       | <sup>21</sup> /f <sub>sys</sub> |             |                                 |            | WDT out    |          |  |  |  |  |
|        |         |         |        |                          | -,-                             |             |                                 |            | to Reset   |          |  |  |  |  |
|        |         |         |        |                          |                                 |             |                                 |            | pin        |          |  |  |  |  |
|        |         |         |        | _                        |                                 |             |                                 |            |            |          |  |  |  |  |
| WDCR   | WD      | 301H    | W      |                          |                                 |             |                                 |            |            |          |  |  |  |  |
|        | Control |         |        |                          |                                 |             |                                 |            |            |          |  |  |  |  |
|        |         |         |        |                          | B1H: V                          | /DT Disable | B1H: WDT Disable 4EH: WDT Clear |            |            |          |  |  |  |  |

### (11) Multi Vector Controllor

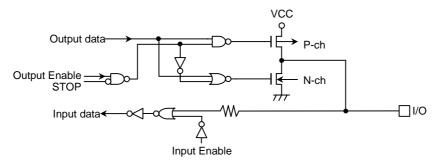
| Symbol | Name                     | Address   | 7                        | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|--------|--------------------------|-----------|--------------------------|------|------|------|------|------|------|------|
| MVEC0  | MULI<br>VECTA<br>Control | CTA 00AEH | VEC7                     | VEC6 | VEC5 | VEC4 | VEC3 | VEC2 | VEC1 | VEC0 |
|        |                          |           | R/W                      | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
|        |                          |           | 1                        | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|        |                          |           | Vector Address A15 to A8 |      |      |      |      |      |      |      |

| Symbol | Name                     | Address    | 7     | 6                         | 5     | 4     | 3     | 2     | 1    | 0    |  |
|--------|--------------------------|------------|-------|---------------------------|-------|-------|-------|-------|------|------|--|
| NAVEO4 | MULI<br>VECTA<br>Control | ECTA 00AFH | VEC15 | VEC14                     | VEC13 | VEC12 | VEC11 | VEC10 | VEC9 | VEC8 |  |
|        |                          |            | R/W   | R/W                       | R/W   | R/W   | R/W   | R/W   | R/W  | R/W  |  |
| MVEC1  |                          |            | 1     | 1                         | 1     | 1     | 1     | 1     | 1    | 1    |  |
|        |                          | OHITOI     |       | Vector Address A23 to A16 |       |       |       |       |      |      |  |

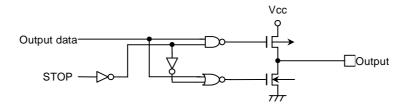
### Notes

Write MVEC1,0 after making an interruption prohibition state.

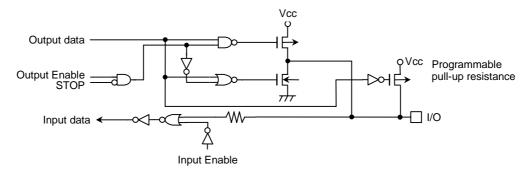
# 6. Port Section Equivalent Circuit Diagrams


• Reading the Circuit Diagrams

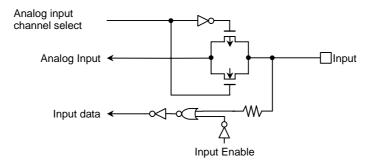
The gate symbols used are essentially the same as those used for the standard CMOS logic IC [74HCXX] Series.


The dedicated signal is described below.

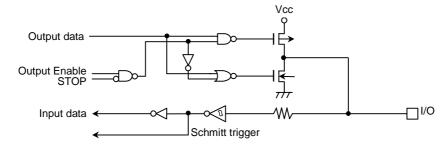
STOP: This signal becomes Active (1) when the Halt Mode setting Register is set to STOP Mode (i.e. when SYSCR2 <HALTM1, 0 > = 0, 1) and the CPU executes the HALT instruction. When the Drive Enable bit SYSCR2 <DRVE> is set to 1, however, STOP will remains at 0


- The input protection resistances ranges from several tens of ohms to several hundreds of ohms.
- D0 to D7, P10 to P17, P20 to P27, A0 to A15, P71, P74, P90, P93 to P96

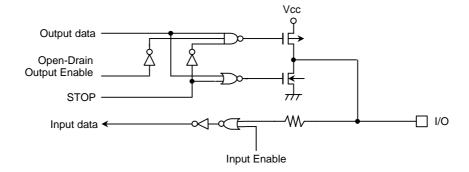



■ RD, WR, P60 to P63




■ P53 to P55, P80 to P87, PZ2, PZ3



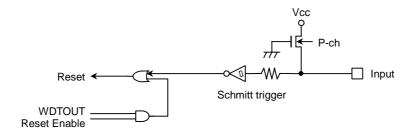

### ■ PA (AN0 to AN7)



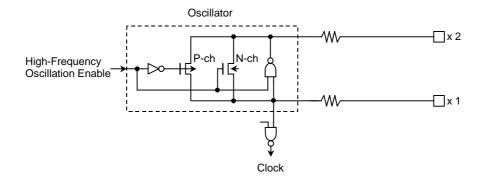
■ P56 (INT0), P70(INT1), P72(INT2),P73(INT3),P75(INT4),P90(INT5)



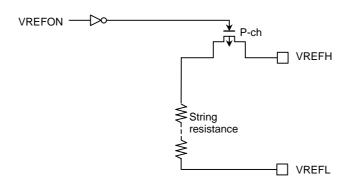
## ■ P80 (TXD0)




### ■ NMI







#### ■ RESET



### ■ X1 and X2



### ■ VREFH and VREFL



### 7. Points to Note and Restrictions

- (1) Notation
- a) The notation for built-in / I/O registers is as follows register symbol <br/> bit symbol>
  - e.g.) TA01RUN <TA0RUN> denotes bit TA0RUN of register TA01RUN.
- b) Read-modify-write instructions

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

```
Example 1) SET 3, (TA01RUN) ... Set bit 3 of TA01RUN. Example 2) INC 1, (100H) ... Increment the data at 100H.
```

• Examples of read-modify-write instructions on the TLCS-900

### Exchange instruction

```
EX (mem), R
```

### Arithmetic operations

```
ADD (mem), R/# ADC (mem), R/# SUB (mem), R/# SBC (mem), R/# INC #3, (mem) DEC #3, (mem)
```

### Logic operations

```
AND (mem), R/# OR (mem), R/# XOR (mem), R/#
```

### Bit manipulation operations

```
STCF #3/A, (mem) RES #3, (mem) SET #3, (mem) CHG #3, (mem) TSET #3, (mem)
```

#### Rotate and shift operations

| RLC | (mem) | RRC | (mem) |
|-----|-------|-----|-------|
| RL  | (mem) | RR  | (mem) |
| SLA | (mem) | SRA | (mem) |
| SLL | (mem) | SRL | (mem) |
| RLD | (mem) | RRD | (mem) |

### c) fc, fppH, fsys and one state

The clock frequency input on ins X1 and 2 is called f<sub>OSCH</sub>. The clock selected by DFMCR0 <ACT1~ACT0> is called fc.

The clock selected by SYSCR1 <SYSCK> is called f<sub>FPH</sub>. The clock frequency give by f<sub>FPH</sub> divided by 2 is called f<sub>SYS</sub>.

One cycle of fsys is referred to as one state.

#### (2) Points to note

a) AM0 and AM1 pins

Fix these pins to VCC unless changing voltage.

b) EMU0and EMU1

Open pins.

c) Reserved address areas

The TMP91C829 noes not have any reserved areas.

d) Halt mode (IDLE1)

When IDLE1 Mode is used (in which oscillator operation only occurs), set RTCCR <RTCRUN> to 0 stop the timer for the real-time clock before the HALT instructions is executed.

e) Warm-up counter

The warm-up counter operates when STOP Mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

f) Programmable pull-up resistance

The programmable pull-up resistor can be turned ON/OFF by a program when the ports are set for use as input ports. When the ports are set for use as output ports, they cannot be turned ON/OFF by a program.

The data registers (e.g. P3) are used to turn the pull-up/-down resistors ON/OFF. Consequently read-Modify-write instructions are prohibited.

g) Bus releasing function

Please refer to the Note about bus release in Section 3.5, Functions of Ports. The pin state is written when the bus is released.

h) Watchdog timer

The watchdog timer starts operation immediately after a Reset is released. When the watchdog timer is not to be used, disable it.

i) WatchDog timer

When the bus is released, neither internal memory nor internal I/O can be accessed. However, the internal I/O continues to operate. Hence the watchdog timer continues to run. Therefore be careful about the bus releasing time and set the detection timer of watchdog timer.

i) AD converter

The string resistor between the VREFH and VREFL pins can be cut by a program so as to reduce power consumption. When STOP Mode is used, disable the resistor using the program before the HALT instruction is executed.

k) CPU (micro DMA)

Only the LDC cr, r and LDC r, cr instructions can be used to access the control registers in the CPU (e.g. the Transfer Source Address Register (DMASn)).

I) Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

m) POP SR instruction

Please execute the POP SR instruction during DI condition.