

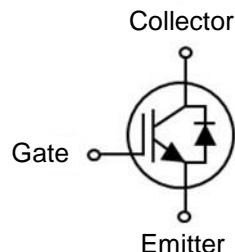
Description

The DGTD65T15H2TF is produced using advanced Field Stop Trench IGBT Technology, which provides high performance, excellent quality and high ruggedness.

Features

- High Ruggedness for Motor Control
- $V_{CE(sat)}$ Positive Temperature Coefficient
- Very Soft, Fast Recovery Anti-Parallel Diode
- Low EMI
- Maximum Junction Temperature +175°C
- Lead-Free Finish & RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications


- Motor Controls

Mechanical Data

- Case: ITO220AB (Type MC)
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Terminals: Finish – Matte Tin Plated Leads. Solderable per MIL-STD-202, Method 208 (E3)
- Weight: 1.9 grams (Approximate)

ITO220AB (Type MC)

Device Symbol

Ordering Information (Note 4)

Product	Marking	Quantity
DGTD65T15H2TF	DGTD65T15H2	1000 per Box in Tubes

Notes:

1. EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. All applicable RoHS exemptions applied.
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
4. For packaging details, go to our website at <https://www.diodes.com/design/support/packaging/diodes-packaging/>.

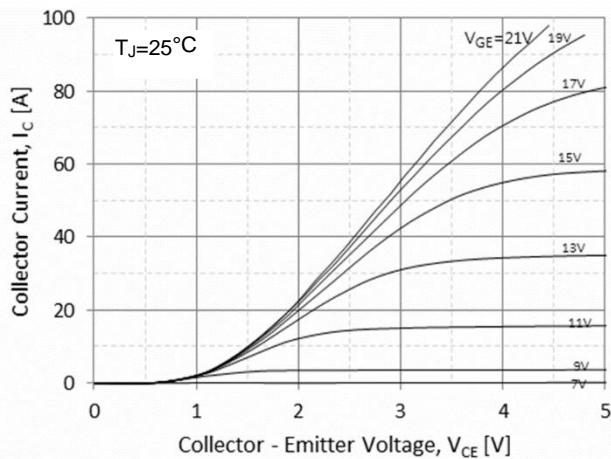
Marking Information

○○○ = Manufacturer's Marking
 DGTD65T15H2 = Product Type Marking Code
 YY = Year (ex: 17 = 2017)
 WW = Week (01 to 53)

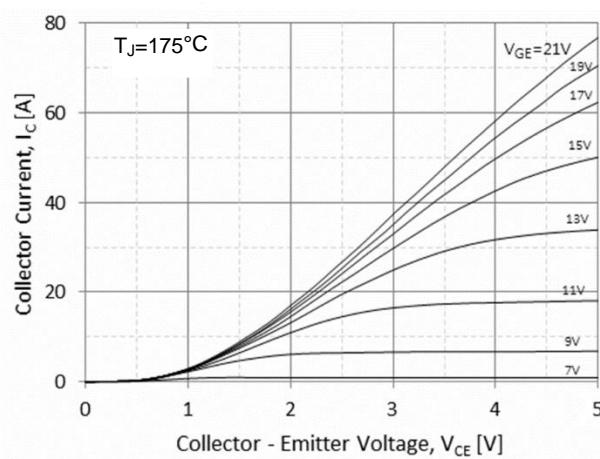
Absolute Maximum Ratings (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CE}	650	V
DC Collector Current, Limited by T_{vjmax}	$T_C = +25^\circ\text{C}$	30	A
		15	A
Pulsed Collector Current, t_p Limited by T_{vjmax}	I_{Cpuls}	60	A
Diode Forward Current Limited by T_{vjmax}	$T_C = +25^\circ\text{C}$	30	A
		15	A
Diode Pulsed Current, t_p Limited by T_{vjmax}	I_{Fpuls}	60	A
Gate-Emitter Voltage	V_{GE}	± 20	V
Short Circuit Withstand Time $V_{CC} \leq 360\text{V}$, $V_{GE} = 15\text{V}$, $T_{vj} = +150^\circ\text{C}$	t_{SC}	5	μs

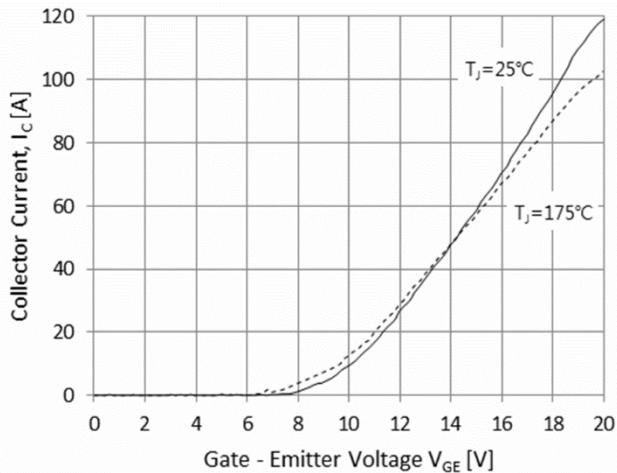
Thermal Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

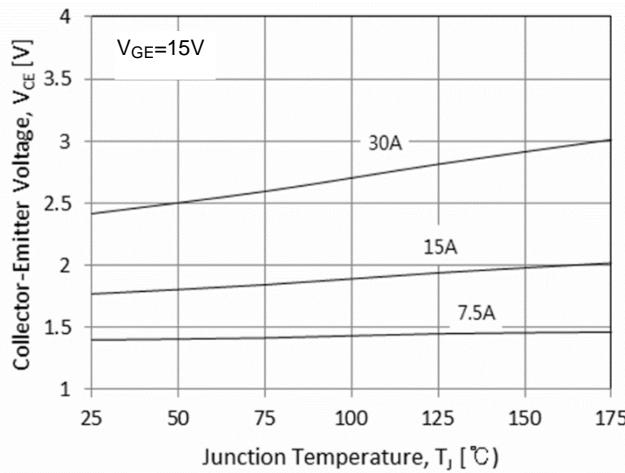

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	$T_C = +25^\circ\text{C}$	48	W
		24	
Thermal Resistance, Junction to Ambient (Note 5)	$R_{\theta JA}$	62	$^\circ\text{C/W}$
Thermal Resistance, Junction to Case for IGBT (Note 5)	$R_{\theta JC}$	3.0	
Thermal Resistance, Junction to Case for Diode (Note 5)	$R_{\theta JC}$	5.0	
Operating Temperature	T_{vj}	-40 to +175	$^\circ\text{C}$
Storage Temperature Range	T_{STG}	-55 to +150	

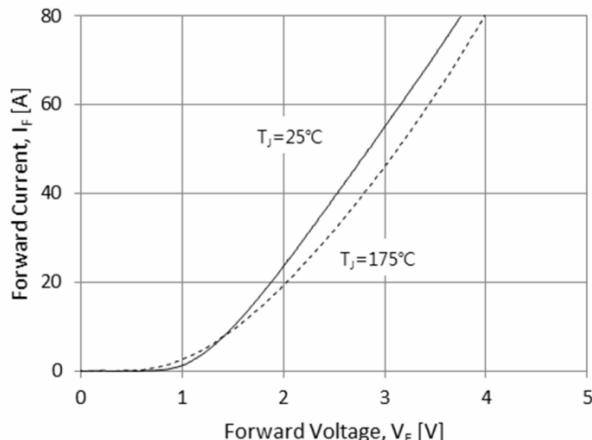
Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.


Electrical Characteristics (@ $T_{vj} = +25^\circ\text{C}$, unless otherwise specified.)

Parameter	Symbol	Min	Typ	Max	Unit	Condition
STATIC CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	BV_{CES}	650	—	—	V	$I_C = 2\text{mA}$, $V_{GE} = 0\text{V}$
Collector-Emitter Saturation Voltage	$V_{CE(\text{sat})}$	—	1.65	2.00	V	$I_C = 15\text{A}$, $V_{GE} = 15\text{V}$
$T_{vj} = +175^\circ\text{C}$		—	1.90	—		
Diode Forward Voltage	V_F	—	1.85	2.30	V	$V_{GE} = 0\text{V}$, $I_F = 15\text{A}$
$T_{vj} = +25^\circ\text{C}$		—	1.95	—		
Gate-Emitter Threshold Voltage	$V_{GE(\text{th})}$	4.5	5.5	6.5	V	$V_{CE} = V_{GE}$, $I_C = 0.5\text{mA}$
Zero Gate Voltage Collector Current	I_{CES}	—	—	20	μA	$V_{CE} = 650\text{V}$, $V_{GE} = 0\text{V}$, $T_{vj} = +25^\circ\text{C}$
Gate-Emitter Leakage Current	I_{GES}	—	—	± 100	nA	$V_{GE} = 20\text{V}$, $V_{CE} = 0\text{V}$
DYNAMIC CHARACTERISTICS						
Total Gate Charge	Q_g	—	61	—	nC	$V_{CE} = 520\text{V}$, $I_C = 15\text{A}$, $V_{GE} = 15\text{V}$
Gate-Emitter Charge	Q_{ge}	—	11	—		
Gate-Collector Charge	Q_{gc}	—	35	—		
Input Capacitance	C_{ies}	—	1129	—	pF	$V_{CE} = 25\text{V}$, $V_{GE} = 0\text{V}$, $f = 1\text{MHz}$
Reverse Transfer Capacitance	C_{res}	—	57	—		
Output Capacitance	C_{oes}	—	31	—		
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	$t_{d(\text{on})}$	—	19	—	ns	$V_{GE} = 15\text{V}$, $V_{CC} = 400\text{V}$, $I_C = 15\text{A}$, $R_G = 10\Omega$, Inductive Load, $T_{vj} = +25^\circ\text{C}$
Rise Time	t_r	—	27	—		
Turn-Off Delay Time	$t_{d(\text{off})}$	—	128	—		
Fall Time	t_f	—	32	—		
Turn-On Switching Energy	E_{on}	—	270	—		
Turn-Off Switching Energy	E_{off}	—	86	—		
Total Switching Energy	E_{ts}	—	356	—	ns	$V_{GE} = 15\text{V}$, $V_{CC} = 400\text{V}$, $I_C = 15\text{A}$, $R_G = 10\Omega$, Inductive Load, $T_{vj} = +175^\circ\text{C}$
Turn-On Delay Time	$t_{d(\text{on})}$	—	17	—		
Rise Time	t_r	—	29	—		
Turn-Off Delay Time	$t_{d(\text{off})}$	—	150	—		
Fall Time	t_f	—	130	—		
Turn-On Switching Energy	E_{on}	—	342	—		
Turn-Off Switching Energy	E_{off}	—	288	—	ns	$I_F = 15\text{A}$, $dI_F/dt = 200\text{A}/\mu\text{s}$, $T_{vj} = +25^\circ\text{C}$
Total Switching Energy	E_{ts}	—	630	—		
Reverse Recovery Time	t_{rr}	—	150	—		
Reverse Recovery Current	I_{rr}	—	5.2	—	A	
Reverse Recovery Charge	Q_{rr}	—	390	—	nC	$I_F = 15\text{A}$, $dI_F/dt = 200\text{A}/\mu\text{s}$, $T_{vj} = +175^\circ\text{C}$
Reverse Recovery Time	t_{rr}	—	207	—	ns	
Reverse Recovery Current	I_{rr}	—	6.1	—	A	
Reverse Recovery Charge	Q_{rr}	—	631	—	nC	


Typical Performance Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)


Fig.1 Typical Output Characteristics($T_j=25^\circ\text{C}$)


Fig.2 Typical Output Characteristics($T_j=175^\circ\text{C}$)

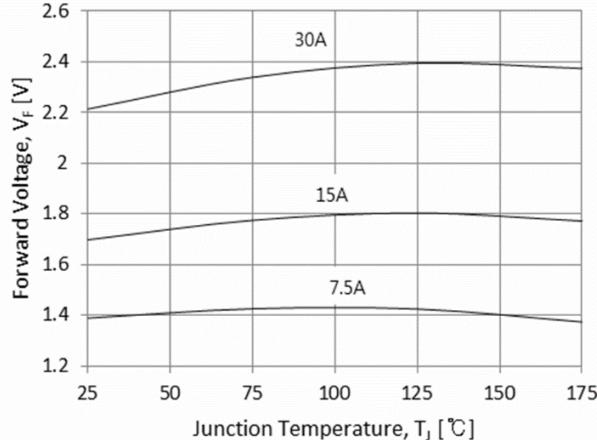

Fig.3 Typical Transfer Characteristics

Fig.4 Typical Collector-Emitter Saturation Voltage - Junction Temperature

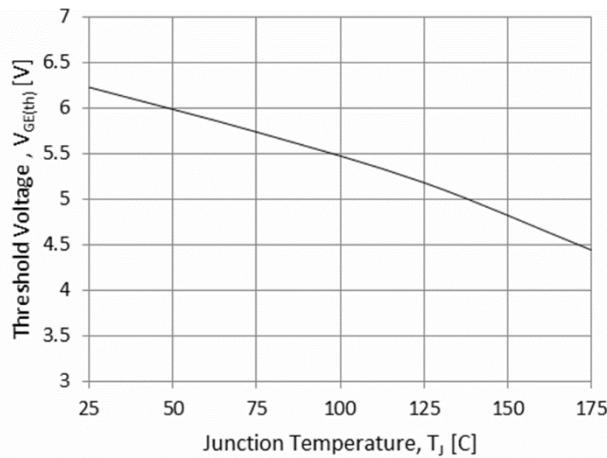


Fig.5 Diode Forward Characteristics

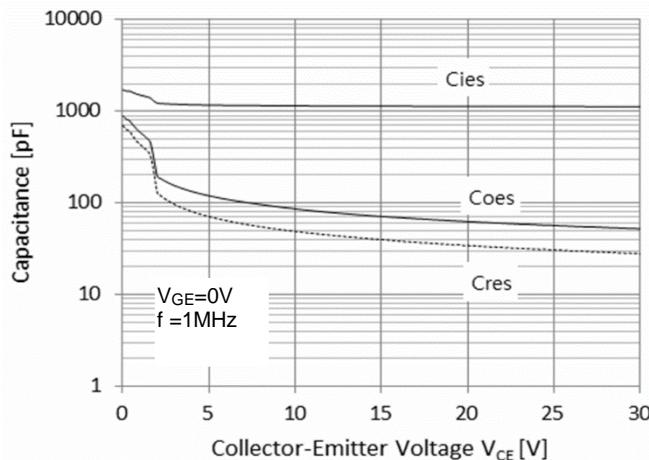


Fig.6 Diode Forward-Junction Temperature

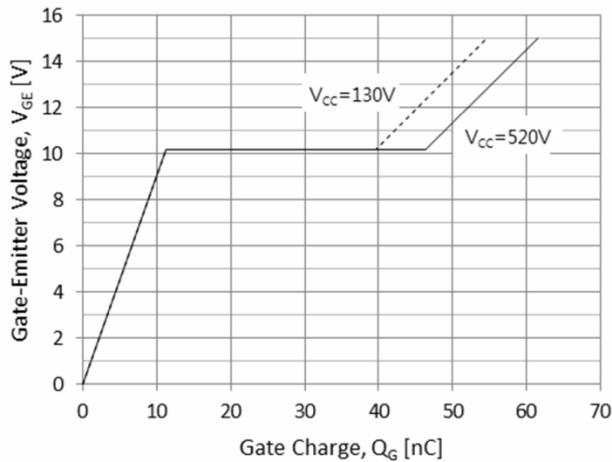

Typical Performance Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.) (Cont.)


Fig.7 Threshold Voltage-Junction Temperature

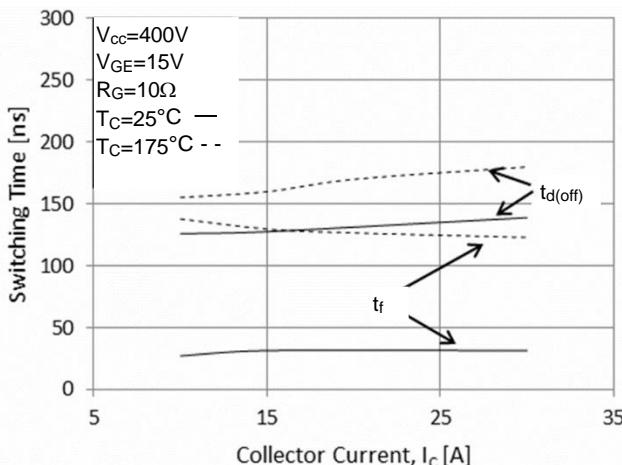

Fig.8 Typical Capacitance

Fig.9 Typical Gate Charge

Fig.10 Typical Turn on-Collector Current

Fig.11 Typical Turn off-Collector Current

Fig.12 Switching Loss-Collector Current

Typical Performance Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.) (Cont.)

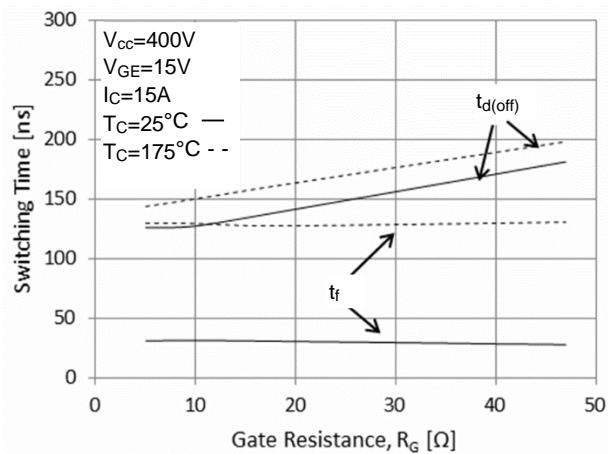
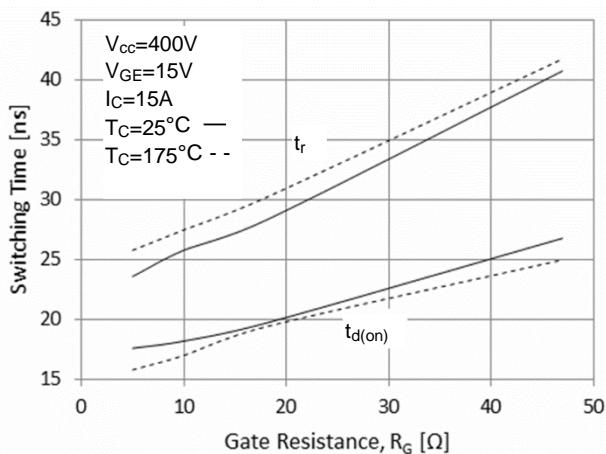



Fig.13 Turn on Characteristics-Gate Resistance

Fig.14 Turn off Characteristics-Gate Resistance

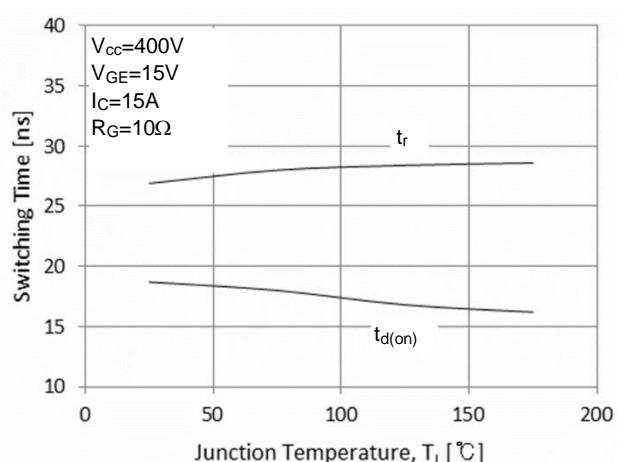
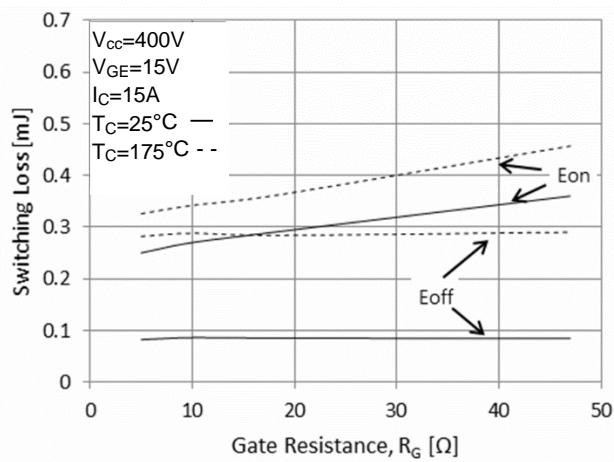
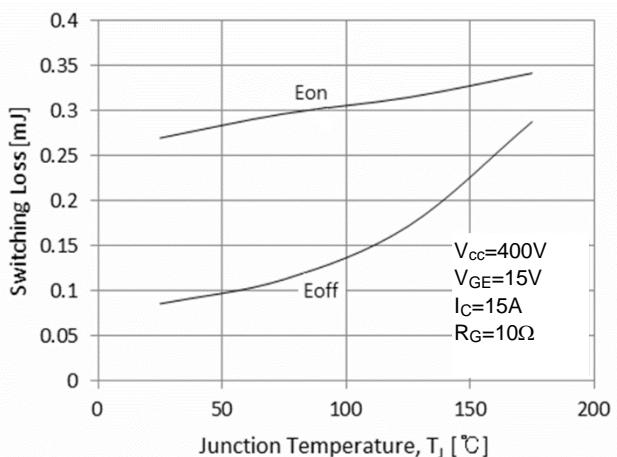
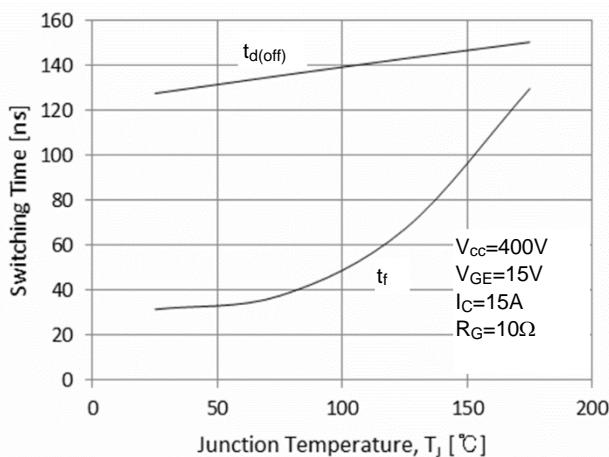
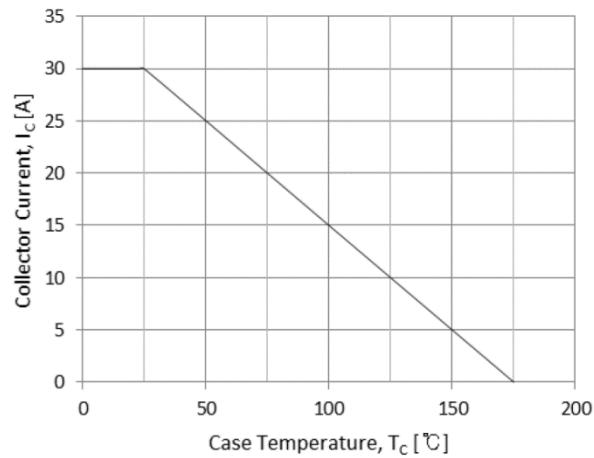





Fig.15 Switching Loss-Gate Resistance


Fig.16 Turn on Characteristics-Junction Temperature

Typical Performance Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.) (Cont.)

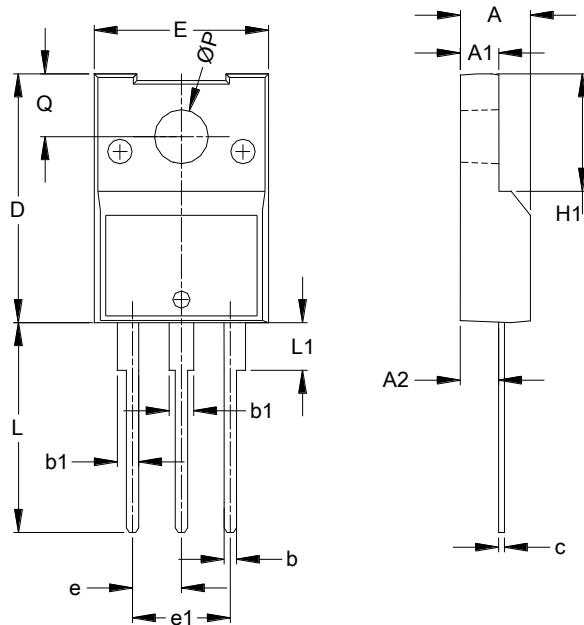


Fig.19 Case Temperature-Collector Current

Package Outline Dimensions

Please see <http://www.diodes.com/package-outlines.html> for the latest version.

ITO220AB (Type MC)

ITO220AB (Type MC)			
Dim	Min	Max	Typ
A	4.30	4.80	--
A1	2.50	3.10	--
A2	2.30	2.90	--
b	0.50	1.00	--
b1	0.95	1.70	--
c	0.40	0.80	--
D	14.50	16.40	--
H1	6.20	7.20	--
E	9.60	10.40	--
e	--	--	2.54
e1	--	--	5.08
L	12.20	14.20	--
L1	2.90	4.70	--
P	3.00	3.40	--
Q	2.40	3.50	--

All Dimensions in mm

Note : For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com