TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8254H

45W BTL×2CH AUDIO POWER AMPLIFIER

The TA8254H is BTL stereo audio power amplifier for car audio application, especially for 2Ω load impedance. It is built-in Stand-by Function, Muting Function, diagnosis circuit, output clipping detector and various kind of protections.

HZIP15-P-1.27E Weight: g (Typ.)

FEATURES

- High power
 - : POUT (1) = 45W (Typ.) / Channel $(V_{CC} = 14.4V, f = 1kHz, THD = 10\%, R_L = 2\Omega)$ POUT(2) = 35W (Typ.) / Channel $(V_{CC} = 13.2V, f = 1kHz, THD = 10\%, R_1 = 2\Omega)$

POUT(3) = 21W (Typ.) / Channel

 $(V_{CC} = 13.2V, f = 1kHz, THD = 10\%, R_L = 4\Omega)$

Low distortion ratio : THD = 0.02% (Typ.)

 $(V_{CC} = 13.2V, f = 1kHz, P_{OUT} = 10W, R_{L} = 4\Omega)$

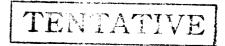
Low noise : $V_{NO} = 0.10 \text{mV}_{rms}$ (Typ.)

 $(V_{CC} = 13.2V, R_L = 4\Omega, R_Q = 0\Omega, BW = 20Hz\sim20kHz)$

- Built-in stand-by function
 - : (With pin set at LOW, Power is turned OFF.) $I_{SB} = 1\mu A$ (Typ.)
- Built-in output clipping detection and diagnosis circuit
 - : (Open Collector (Active Low))
- Built-in various protection circuits
 - : Thermal Shut Down, Over Voltage, Out → VCC Short, Out → GND Short and OUT-OUT Short.
- Operating supply voltage : $V_{CC(opr)} = 9 \sim 18V$

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws.

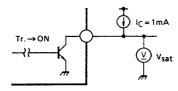

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

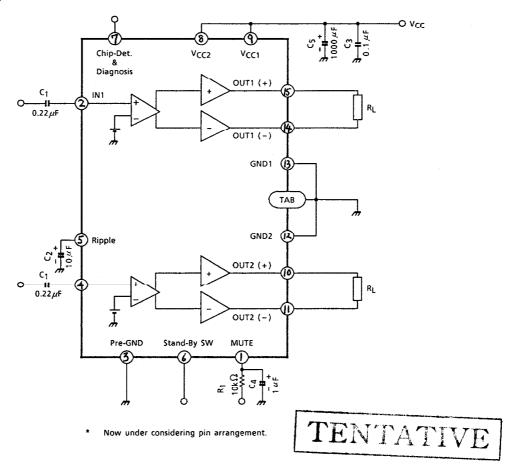
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Peak Supply Voltage (0.2s)	V _{CC} (surge)	50	V
DC Supply Voltage	VCC (DC)	25	V
Operating Supply Voltage	V _{CC} (opr)	18	V
Output Current (Peak)	IO (peak)	9	Α
Power Dissipation	P _D (*)		W
Operating Temperature	Topr	<i>-</i> 40∼85	°C
Storage Temperature	T _{stg}	- 55∼150	°C

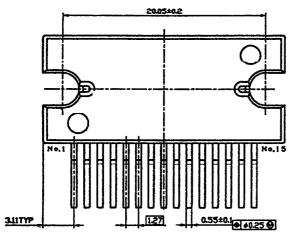
(*) Package terminal resistance $\theta_{j-T} = {^{\circ}C/w}$ (Typ.) (Ta = 25°C, with infinite heat sink)

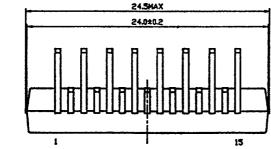

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 13.2V$, $R_L = 4\Omega$, f = 1kHz, $T_0 = 25$ °C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Quiescent Supply Current	lccQ		V _{IN} = 0	1-	120	250	mA	
Output Power	POUT (1)		$V_{CC} = 14.4V, R_{L} = 2\Omega$ THD = 10%		45		w	
	POUT (2)	-	$R_L = 2\Omega$, THD = 10%		35	_	1 W	
	POUT (3)		THD = 10%		21			
Total Harmonic Distortion Ratio	THD	_	POUT =IØW	_	0.02	0.2	%	
Voltage Gain	GV	_		24	26	28	dB	
Voltage Gain Ratio	∆GV	-		- 1.0	0	1.0	dB	
Output Noise Voltage	VNO	_	$R_g = 0\Omega$, BW = 20Hz~20kHz	_	0.10	0.35	mV _{rms}	
Ripple Rejection Ratio	R.R.		$f_{ripple} = 100Hz, R_g = 600\Omega$	40	55		dB	
Input Resistance	RIN	_	****	_	90		kΩ	
Output Offset Voltage	V_{offset}	_	V _{IN} = 0	- 150	0	150	mV	
Current at Stand-by State	I _{SB}		-	_	1	10	μΑ	
Cross Talk	C.T.	_	$R_g = 600\Omega$ $V_{OUT} = 0.775V_{rms}$ (0dBm)	—	75	_	dB	
Stand-by Control Voltage	V _{SB}	-	Stand-By → OFF (Power → ON)	3.¢ 2≓5		Vcc	٧	
CLIP DET & DIAGNOSIS OUT Saturation Voltage	V_{sat}		I _C = 1mA	_	100		mV	
Mute Control Voltage (*)	V _M H	_	Mute : off	OPEN			V	
	V _M L	_	Mute : on	0	_	1.5		
Mute Attenuation	ATT M	_	Mute : on, V _{OUT} = 7.75V _{rms} (20dBm) at Mute : off	_	85	_	dB	

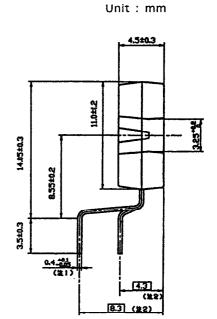

(*) Muting function must be controlled by open and Low Logic.

This means that the Mute control terminal: pin must not be pulled up.


Clip. Det. & Diagnosis Out Test Circuit



TEST CIRCUIT TA8254H (G_V = 26dB)



OUTLINE DRAWING HZIP15-P-1.27E

Weight: g (Typ.)

TENTATIVE