

UCCx808A Low-Power Current-Mode Push-Pull PWM

1 Features

- Dual-output drive stages in push-pull configuration
- Current-sense discharge transistor to improve dynamic response
- 130 μ A typical starting current
- 1mA typical run current
- Operation to 1MHz
- Internal soft start
- On-chip error amplifier with 2MHz gain bandwidth product
- On-chip VDD clamping
- Output drive stages capable of 500mA peak source current, 1A peak sink current

2 Applications

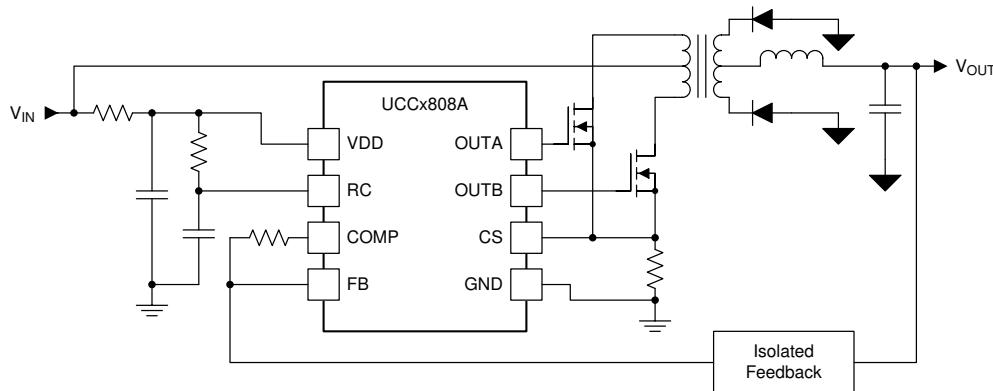
- High-efficiency switch-mode power supplies
- Telecom DC/DC converters
- Point-of-load power modules
- Low-cost push-pull and half-bridge applications

3 Description

The UCCx808A devices are a family of BiCMOS push-pull, high-speed, low-power, pulse-width modulators. The UCCx808A contain all of the control and drive circuitry required for off-line or DC-to-DC fixed frequency current-mode switching power supplies with minimal external parts count.

The UCCx808A dual-output drive stages are arranged in a push-pull configuration. Both outputs switch at half the oscillator frequency using a toggle flip-flop. The dead time between the two outputs is typically 60ns to 200ns depending on the values of the timing capacitor and resistors, thus limiting each output stage duty cycle to less than 50%.

The UCCx808A family offers a variety of package options, temperature range options, and choice of undervoltage lockout levels. The family has UVLO thresholds and hysteresis options for offline and battery-powered systems.


The UCCx808A are an enhanced version of the UCC3808 family. The significant difference is that the A versions feature an internal discharge transistor from the CS pin to ground, which is activated each clock cycle during the oscillator dead time. The feature discharges any filter capacitance on the CS pin during each cycle, and helps minimize filter capacitor values and current sense delay.

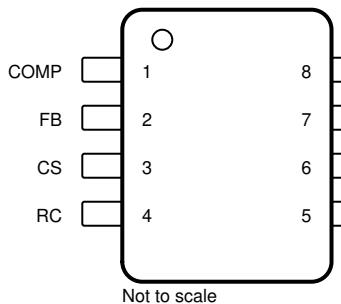
Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
UCC2808A-1, UCC2808A-2, UCC3808A-2	D (SOIC, 8)	4.9mm × 6mm
UCC3808A-1	PW (TSSOP, 8)	3mm × 6.4mm
	D (SOIC, 8)	4.9mm × 6mm

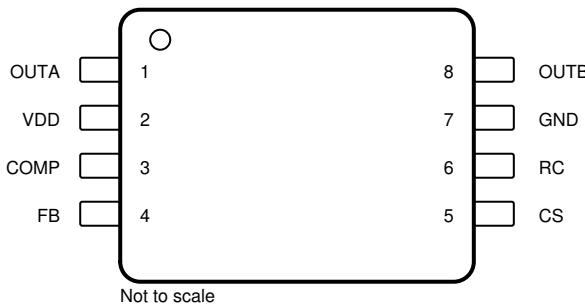
(1) For more information, see [Section 10](#).

(2) The package size (length × width) is a nominal value and includes pins, where applicable.

Simplified Application



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.


Table of Contents

1 Features	1	7 Application and Implementation	12
2 Applications	1	7.1 Application Information.....	12
3 Description	1	7.2 Typical Application.....	12
4 Pin Configuration and Functions	3	7.3 Power Supply Recommendations.....	14
5 Specifications	5	7.4 Layout.....	14
5.1 Absolute Maximum Ratings.....	5	8 Device and Documentation Support	15
5.2 ESD Ratings.....	5	8.1 Device Support.....	15
5.3 Recommended Operating Conditions.....	5	8.2 Documentation Support.....	15
5.4 Thermal Information.....	5	8.3 Receiving Notification of Documentation Updates.....	15
5.5 Electrical Characteristics.....	6	8.4 Support Resources.....	15
5.6 Typical Characteristics.....	7	8.5 Trademarks.....	15
6 Detailed Description	9	8.6 Electrostatic Discharge Caution.....	15
6.1 Overview.....	9	8.7 Glossary.....	15
6.2 Functional Block Diagrams.....	9	9 Revision History	15
6.3 Feature Description.....	10	10 Mechanical, Packaging, and Orderable Information	16
6.4 Device Functional Modes.....	11		

4 Pin Configuration and Functions

**Figure 4-1. UCCx808A:
D Package, 8-Pin SOIC (Top View)**

**Figure 4-2. UCC2808A-x, UCC3808A-2:
PW Package, 8-Pin TSSOP (Top View)**

Table 4-1. Pin Functions

NAME	PIN		TYPE ⁽¹⁾	DESCRIPTION
	NO. D (SOIC)	NO. PW (TSSOP)		
COMP	1	3	O	COMP is the output of the error amplifier and the input of the PWM comparator. The error amplifier in the UCCx808A is a true low-output impedance, 2-MHz operational amplifier. As such, the COMP pin both sources and sinks current. However, the error amplifier is internally current limited, so that zero duty cycle can be externally forced by pulling COMP to GND. The UCCx808A family features built-in full-cycle soft start. Soft start is implemented as a clamp on the maximum COMP voltage.
CS	3	5	I	The input to the PWM, peak current, and overcurrent comparators. The overcurrent comparator is only intended for fault sensing. Exceeding the overcurrent threshold causes a soft-start cycle. An internal MOSFET discharges the current sense filter capacitor to improve dynamic performance of the power converter.
FB	2	4	I	The inverting input to the error amplifier. For best stability, keep FB lead length as short as possible and FB stray capacitance as small as possible.
GND	5	7	G	Reference ground and power ground for all functions. Because of high currents, and high-frequency operation of the UCC3808A, a low-impedance circuit board ground plane is highly recommended.
OUTA	7	1	O	Alternating high current output stages. Both stages are capable of driving the gate of a power MOSFET. Each stage is capable of 500-mA peak-source current, and 1-A peak-sink current. The output stages switch at half the oscillator frequency, in a push-pull configuration. When the voltage on the RC pin is rising, one of the two outputs is high, but during fall time, both outputs are off. This <i>dead time</i> between the two outputs, along with a slower output rise time than fall time, prevents the two outputs from simultaneous activity. This dead time is typically 60 ns to 200 ns and depends upon the values of the timing capacitor and resistor. The high-current-output drivers consist of MOSFET output devices, which switch from VDD to GND. Each output stage also provides a very low impedance to overshoot and undershoot. This configuration means that in many cases, external Schottky-clamp diodes are not required.
OUTB	6	8	O	Alternating high current output stages. Both stages are capable of driving the gate of a power MOSFET. Each stage is capable of 500-mA peak-source current, and 1-A peak-sink current. The output stages switch at half the oscillator frequency, in a push-pull configuration. When the voltage on the RC pin is rising, one of the two outputs is high, but during fall time, both outputs are off. This <i>dead time</i> between the two outputs, along with a slower output rise time than fall time, prevents the two outputs from simultaneous activity. This dead time is typically 60 ns to 200 ns and depends upon the values of the timing capacitor and resistor. The high-current-output drivers consist of MOSFET output devices, which switch from VDD to GND. Each output stage also provides a very low impedance to overshoot and undershoot. This configuration means that in many cases, external Schottky-clamp diodes are not required.

Table 4-1. Pin Functions (continued)

NAME	PIN		TYPE ⁽¹⁾	DESCRIPTION
	NO. D (SOIC)	NO. PW (TSSOP)		
RC	4	6	O	<p>The oscillator programming pin. The UCC3808A oscillator tracks VDD and GND internally so that variations in power supply rails minimally affect frequency stability. Section 6.2 shows the oscillator block diagram. Only two components are required to program the oscillator: a resistor (tied to the VDD and RC), and a capacitor (tied to the RC and GND). The approximate oscillator frequency is determined by the simple formula in Equation 1.</p> <p>The recommended range of timing resistors is between 10 kΩ and 200 kΩ and range of timing capacitors is between 100 pF and 1000 pF. Avoid timing resistors less than 10 kΩ. For best performance, keep the timing capacitor lead to GND as short as possible, the timing resistor lead from VDD as short as possible, and the leads between timing components and RC as short as possible. Separate ground and VDD traces to the external timing network are encouraged.</p>
VDD	8	2	P	<p>The power input connection for this device. Although quiescent VDD current is very low, total supply current is higher, depending on OUTA and OUTB current and the programmed oscillator frequency. Total VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating frequency and the MOSFET gate charge (Qg), average OUT current is calculated from Equation 2. To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along with an electrolytic capacitor. A 1-µF decoupling capacitor is recommended.</p>

(1) P = Power, G = Ground, I = Input, O = Output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

		MIN	MAX	UNIT
	Supply voltage (IDD ≤ 10 mA)		15	V
	Supply current		20	mA
	OUTA/OUTB source current (peak)		-0.5	A
	OUTA/OUTB sink current (peak)		1	A
	Analog inputs (FB, CS)	-0.3	VDD + 0.3 (not to exceed 6)	V
	Power dissipation at TA = 25°C	P package	1	W
		D package	650	mW
		PW package	400	
T _J	Junction temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Currents are positive into, negative out of the specified terminal. Consult the packaging section of the *Power Supply Control Products Data Book* for thermal limitations and considerations of packages.

5.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{DD}	Supply voltage	UCCx808-1	13	14	V
		UCCx808-2	5	14	
T _J	Junction temperature	UCC2808-x	-40	85	°C
		UCC3808-x	0	70	

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾		D (SOIC)	PW (TSSOP)	UNIT
		8 PINS	8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	118.7	157.7	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	66	67.8	°C/W
R _{θJB}	Junction-to-board thermal resistance	63.5	97.4	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	14.7	9.1	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	62.5	95.9	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

- (1) For information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

5.5 Electrical Characteristics

$T_A = 0^\circ\text{C}$ to 70°C for the UCC3808A-x and -40°C to $+85^\circ\text{C}$ for the UCC2808A-x, $VDD = 10\text{ V}$ ⁽¹⁾, 1- μF capacitor from VDD to GND , $R = 22\text{ k}\Omega$, $C = 330\text{ pF}$, and $T_A = T_J$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OSCILLATOR					
Oscillator frequency		175	194	213	kHz
Oscillator amplitude/ VDD ⁽²⁾		0.44	0.5	0.56	V/V
ERROR AMPLIFIER					
Input voltage	$COMP = 2\text{ V}$	1.95	2	2.05	V
Input bias current		-1		1	μA
Open loop voltage gain		60	80		dB
COMP sink current	$FB = 2.2\text{ V}$, $COMP = 1\text{ V}$	0.3	2.5		mA
COMP source current	$FB = 1.3\text{ V}$, $COMP = 3.5\text{ V}$	-0.2	-0.5		mA
PWM					
Maximum duty cycle	Measured at OUTA or OUTB	48%	49%	50%	
Minimum duty cycle	$COMP = 0\text{ V}$			0%	
CURRENT SENSE					
Gain ⁽³⁾		1.9	2.2	2.5	V/V
Maximum input signal	$COMP = 5\text{ V}$ ⁽⁴⁾	0.45	0.5	0.55	V
CS to output delay	$COMP = 3.5\text{ V}$, CS from 0 mV to 600 mV		100	200	ns
CS source current		-200			nA
CS sink current	$CS = 0.5\text{ V}$, $RC = 5.5\text{ V}$ ⁽⁵⁾	5	10		mA
Over current threshold		0.7	0.75	0.8	V
COMP to CS offset	$CS = 0\text{ V}$	0.35	0.8	1.2	V
OUTPUT					
OUT low level	$I = 100\text{ mA}$		0.5	1	V
OUT high level	$I = -50\text{ mA}$, $VDD - OUT$		0.5	1	V
Rise time	$C_L = 1\text{ nF}$		25	60	ns
Fall time	$C_L = 1\text{ nF}$		25	60	ns
UNDERVOLTAGE LOCKOUT					
Start threshold	$UCCx808A-1$ ⁽¹⁾	11.5	12.5	13.5	V
	$UCCx808A-2$	4.1	4.3	4.5	
Minimum operating voltage after start	$UCCx808A-1$	7.6	8.3	9	V
	$UCCx808A-2$	3.9	4.1	4.3	
Hysteresis	$UCCx808A-1$	3.5	4.2	5.1	V
	$UCCx808A-2$	0.1	0.2	0.3	
SOFT START					
COMP rise time	$FB = 1.8\text{ V}$, rise from 0.5 V to 4 V		3.5	20	ms
OVERALL					
Start-up current	$VDD < \text{start threshold}$		130	260	μA
Operating supply current	$FB = 0\text{ V}$, $CS = 0\text{ V}$ ^{(1) (6)}		1	2	mA
VDD zener shunt voltage	$IDD = 10\text{ mA}$ ⁽⁷⁾	13	14	15	V

(1) For $UCCx808A-1$, set VDD above the start threshold before setting at 10 V .

(2) Measured at RC . Signal amplitude tracks VDD .

(3) Gain is defined by: $A = \Delta V_{COMP} / \Delta V_{CS}$, $0\text{ V} \leq V_{CS} \leq 0.4\text{ V}$.

(4) Parameter measured at trip point of latch with FB at 0 V .

(5) The internal current sink on the CS pin is designed to discharge an external filter capacitor, and is not intended to be a DC sink path.

(6) Does not include current in the external oscillator network.

(7) Start threshold and Zener shunt threshold track together.

5.6 Typical Characteristics

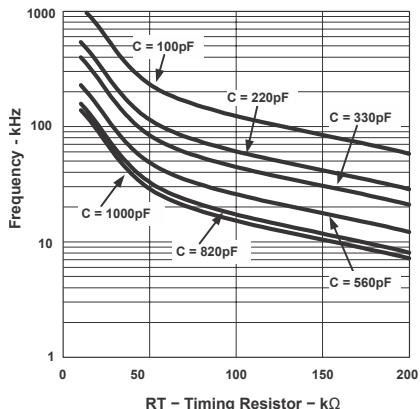


Figure 5-1. Oscillator Frequency vs External RC Values

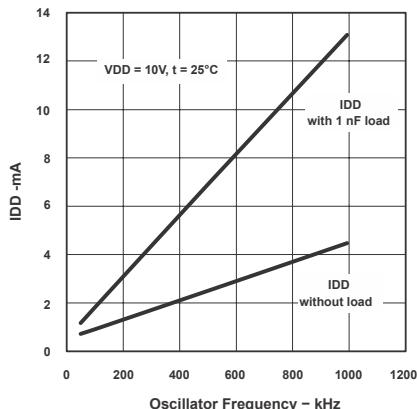


Figure 5-2. IDD vs Oscillator Frequency

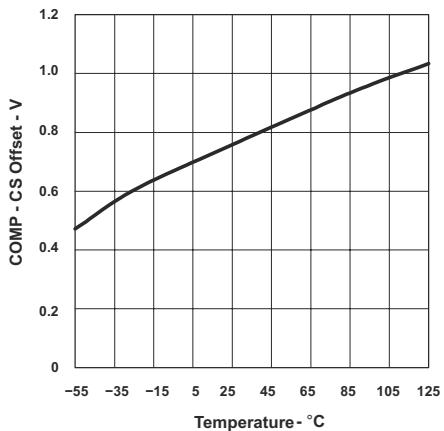


Figure 5-3. COMP to CS Offset vs Temperature

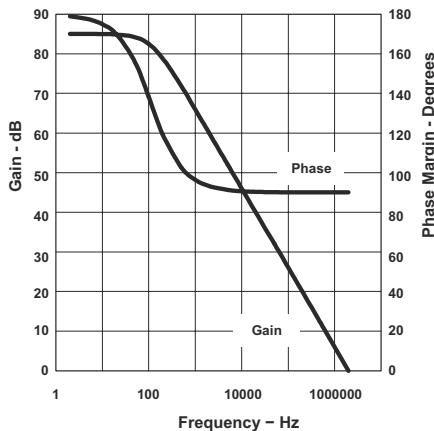


Figure 5-4. Error Amplifier Gain and Phase Response vs Frequency

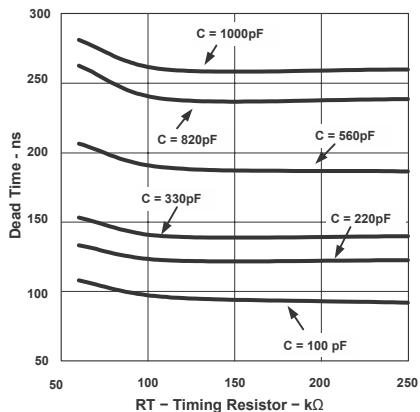


Figure 5-5. Output Dead Time vs External RC Values

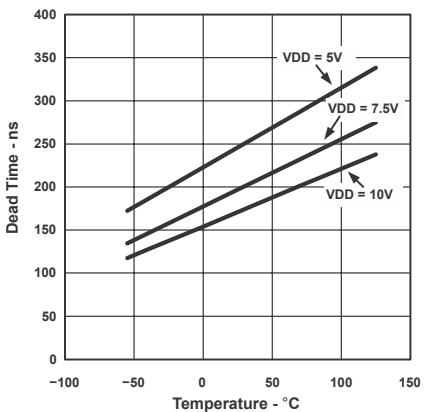


Figure 5-6. Dead Time vs Temperature

5.6 Typical Characteristics (continued)

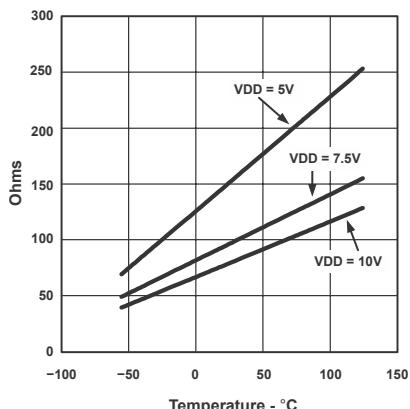


Figure 5-7. RC $R_{DS(on)}$ vs Temperature

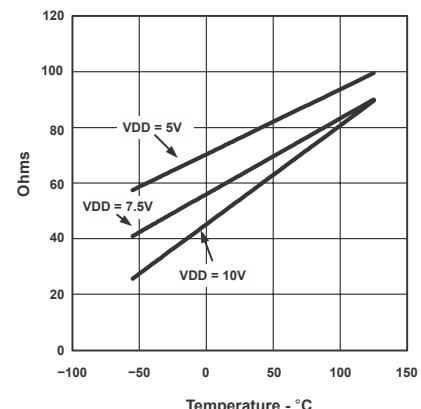
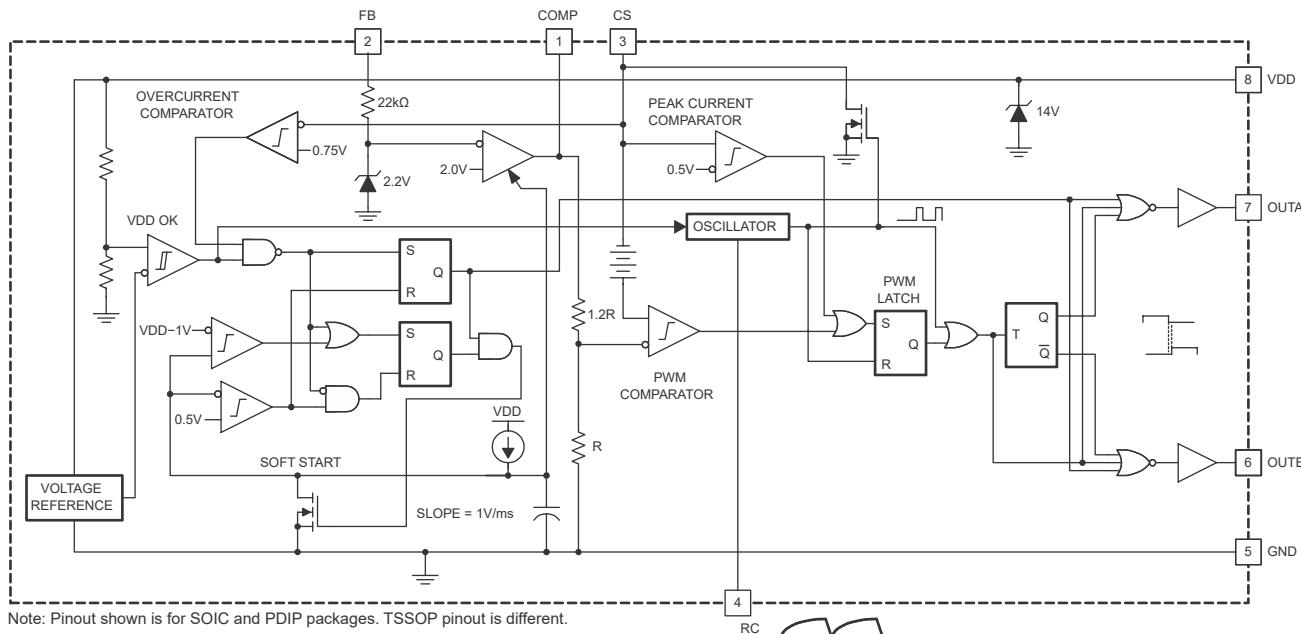


Figure 5-8. CS $R_{DS(on)}$ vs Temperature

6 Detailed Description


6.1 Overview

The UCCx808A-x device is a highly integrated, low-power current mode push-pull PWM controller. The controller employs low starting current and an internal control algorithm that offers accurate output voltage regulation in the presence of line and load variations. The UCCx808A-x family of parts has UVLO thresholds and hysteresis options for off-line and battery-powered systems.

Table 6-1. Undervoltage Lockout Levels

PART NUMBER	TURNON THRESHOLD	TURNOFF THRESHOLD
UCCx808A-1	12.5	8.3
UCCx808A-2	4.3	4.1

6.2 Functional Block Diagrams

Note: The oscillator generates a sawtooth waveform on RC. During the RC rise time, the output stages alternate on time, but both stages are off during the RC fall time. The output stages switch a 1/2 the oscillator frequency, with specified duty cycle of < 50% for both outputs.

Figure 6-1. Block Diagram

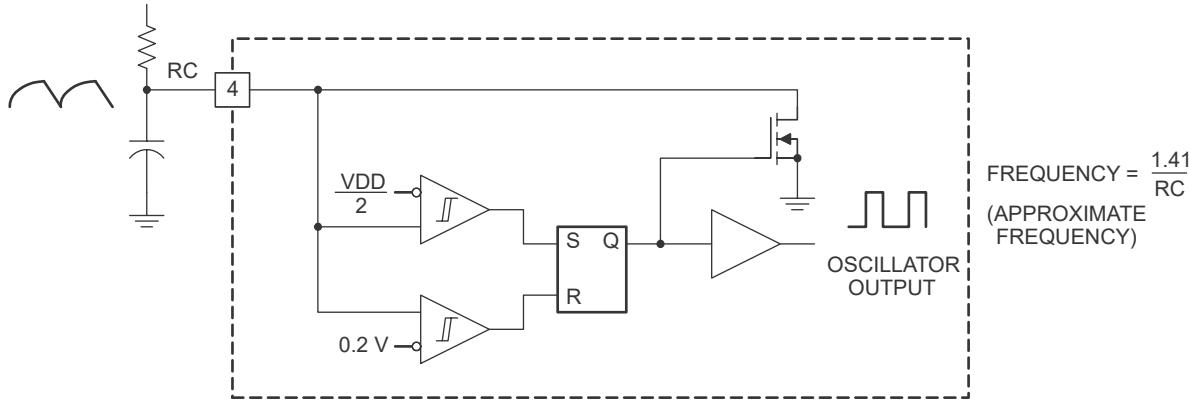


Figure 6-2. Block Diagram of Oscillator

6.3 Feature Description

6.3.1 Pin Descriptions

6.3.1.1 COMP

The COMP pin is the output of the error amplifier and the input of the PWM comparator. The error amplifier in the UCC3808 is a true low-output impedance, 2-MHz operational amplifier. As such, the COMP pin both sources and sinks current. However, the error amplifier is internally current limited, so the zero duty cycle is externally forced by pulling COMP to GND.

The UCC3808 family features built-in full cycle soft start. Soft start is implemented as a clamp on the maximum COMP voltage.

6.3.1.2 CS

The input to the PWM, peak current, and overcurrent comparators. The overcurrent comparator is only intended for fault sensing. Exceeding the overcurrent threshold causes a soft-start cycle.

6.3.1.3 FB

The inverting input to the error amplifier. For best stability, keep FB lead length as short as possible and FB stray capacitance as small as possible.

6.3.1.4 GND

Reference ground and power ground for all functions. Because of high currents, and high-frequency operation of the UCC3808, a low-impedance printed-circuit board ground plane is highly recommended.

6.3.1.5 OUTA and OUTB

Alternating high current output stages. Both stages are capable of driving the gate of a power MOSFET. Each stage is capable of 500-mA peak source current, and 1-A peak sink current.

The output stages switch at half the oscillator frequency, in a push-pull configuration. When the voltage on the RC pin is rising, one of the two outputs is high, but during fall time, both outputs are off. This dead time between the two outputs, along with a slower output rise time than fall time, insures that the two outputs can not be on at the same time. This dead time is typically 60 ns to 200 ns, and depends upon the values of the timing capacitor and resistor.

The high-current output drivers consist of MOSFET output devices, which switch from VDD to GND. Each output stage also provides a very low impedance to overshoot and undershoot. This provision means that in many cases, external Schottky clamp diodes are not required.

6.3.1.6 RC

The oscillator programming pin. The oscillator of the UCC3808-x tracks VDD and GND internally, so that variations in power supply rails minimally affect frequency stability. [Figure 6-2](#) shows the oscillator block diagram.

Only two components are required to program the oscillator: a resistor (tied to the VDD and RC), and a capacitor (tied to the RC and GND). [Equation 1](#) determines the approximate oscillator frequency.

$$f_{\text{OSCILLATOR}} = \frac{1.41}{RC} \quad (1)$$

where

- frequency is in Hz
- resistance in Ω
- capacitance in Farads

The recommended range of the timing resistors is between 10 k Ω and 200 k Ω , and range of the timing capacitors is between 100 pF and 1000 pF. Avoid timing resistors less than 10 k Ω .

For best performance, keep the timing capacitor lead to GND as short as possible, the timing resistor lead from VDD as short as possible, and the leads between timing components and RC as short as possible. Separate ground and VDD traces to the external timing network are encouraged.

6.3.1.7 VDD

The power input connection for this device. Although quiescent VDD current is very low, total supply current is higher, depending on OUTA and OUTB current, and the programmed oscillator frequency. Total VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating frequency and the MOSFET gate charge (Q_g), [Equation 2](#) calculates the average OUT current.

$$I_{\text{OUT}} = Q_g \times f \quad (2)$$

where

- f is frequency

To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along with an electrolytic capacitor. TI recommends a 1- μ F decoupling capacitor.

6.4 Device Functional Modes

6.4.1 VCC

When VCC rises above 12.5 V (for the UCCx808A-1) or above 4.3 V (for the UCCx808-2) the device is enabled. When any fault conditions are cleared, a soft-start condition is initiated and the gate driver outputs begin switching.

When VCC drops below 8.3 V (for the UCCx808-1) or 4.1 V (for the UCCx808-2) the device enters the UVLO protection mode and both gate drivers are actively pulled low.

6.4.2 Push-Pull or Half-Bridge Function

The UCCx808A provide alternate 180° out-of-phase gate drive signals (OUTA and OUTB); therefore, these devices are an excellent choice to use as a controller for push-pull or half-bridge topologies. For half-bridge topology, the UCCx808A-x require a an external high side gate driver or pulse transformer on one or both of the OUTA and OUTB signals.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

Figure 7-1 shows a 200-kHz push-pull application circuit with a full-wave rectifier. The output, V_O , provides 5 V at 50 W maximum and is electrically isolated from the input. Because the UCC3808A is a peak-current-mode controller, the 2N2907 emitter following amplifier (buffers the CT waveform) provides slope compensation that is necessary for duty ratios greater than 50%. Capacitor decoupling is very important with a single-ground IC controller; therefore, use a 1- μ F capacitor placed as close to the device as possible. The controller supply is a series RC for start-up, paralleled with a bias winding on the output inductor used in steady-state operation.

Isolation is provided by an optocoupler with regulation done on the secondary side using the TL431 adjustable precision shunt regulator. Small-signal compensation with tight voltage regulation is achieved using this part on the secondary side. Many choices exist for the output inductor depending on cost, volume, and mechanical strength. Several design options are iron powder, molypermalloy (MPP), or a ferrite core with an air gap; see also Figure 7-1. The main power transformer has a Magnetics Inc. ER28 size core made of P material for efficient operation at this frequency and temperature. The input voltage ranges from 36 Vdc to 72 Vdc.

7.2 Typical Application

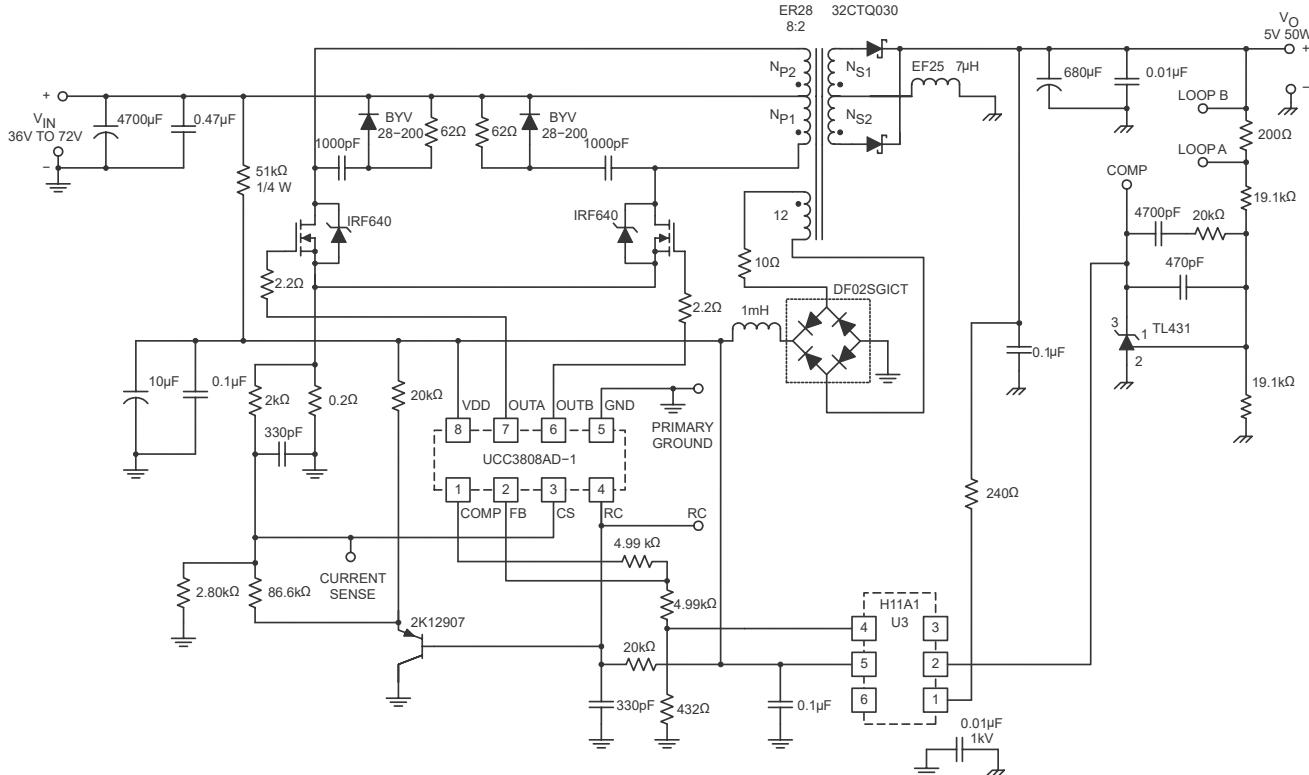


Figure 7-1. Typical Application Diagram: 48-Vin, 5-V, 50-W Output

7.2.1 Design Requirements

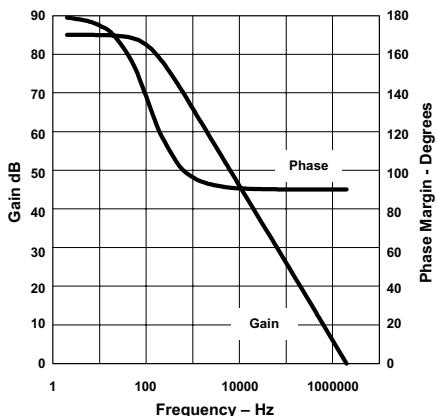
Table 7-1 lists the design parameters for the UCC3808A-x.

Table 7-1. Design Parameters

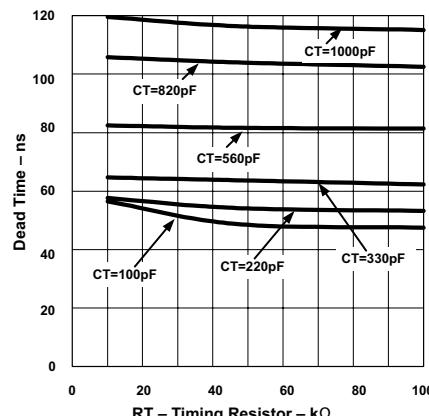
PARAMETER	VALUE
Output voltage	5 V
Rated output power	50 W
Input DC voltage range	36 V to 72 V
Switching frequency	210 kHz

7.2.2 Detailed Design Procedure

The output, V_O , provides 5 V at 50 W maximum and is electrically isolated from the input. Because the UCC3808A is a peak current mode controller, the 2N2907 emitter follower amplifier buffers the oscillator waveform (RC pin) and provides slope compensation to the current sense (CS) input. This compensation is necessary for duty cycle ratios greater than 50%.


Capacitor decoupling is provided on the VDD pin. TI recommends using a minimum decoupling capacitance of 10- μ F electrolytic and 0.1- μ F ceramic. Place the ceramic capacitor as close to the VDD pin as possible. The UCC3808A is initially powered up from the 36-V to 72-V input supply. After the power supply has started, the bias supply is provided by an auxiliary winding on the main power transformer.

Isolation is provided by an optocoupler with regulation done on the secondary side using the TL431 precision programmable reference. The internal error amplifier of the UCC3808A is set up as a unity gain amplifier and the compensation network is provided on the secondary side.


Many choices exist for the output inductor depending on cost and size constraints. Design options are powdered iron, molypermalloy, or the ferrite core option used in this design. The power transformer is a low profile design, EFD25 size, using the Magnetics Inc. P material. This material is a good choice for low power loss at high switching frequency.

The switching frequency is set at 210 kHz with the RC network on the RC pin.

7.2.3 Application Curves

Figure 7-2. Error Amplifier Gain and Phase Response vs Frequency

Figure 7-3. Dead Time vs Timing Resistor

7.3 Power Supply Recommendations

The VDD power pin for these devices requires the placement of electrolytic capacitor as energy storage capacitor because of the 1-A drive capability of the UCCx808A-x controller. A low-ESR noise decoupling capacitor is also required; place this capacitor as close as possible to the VDD and GND pins. Ceramic capacitors with stable dielectric characteristics over temperature are recommended. X7R is a good dielectric material for use here. TI recommends a 10- μ F, 25-V electrolytic capacitor.

7.4 Layout

7.4.1 Layout Guidelines

1. Place the VDD capacitor as close as possible between the VDD pin and GND of the UCCx808A-x, tracked directly to both pins.
2. A small, external filter capacitor is recommended on the CS pin. Track the filter capacitor as directly as possible from the CS to GND pins.
3. The tracking and layout of the FB pin and connecting components is critical to minimizing noise pickup and interference. Reduce the total surface area of traces on the FB net to a minimum.
4. The OUTA and OUTB pins have a high-current source and sink capability. An external gate resistor is recommended to damp oscillations. A value of around a few Ohms is recommended. A pulldown resistor on the gate to source is recommended to prevent the MOSFET gate from floating on if there is an open-circuit fault in the gate drive path.

7.4.2 Layout Example

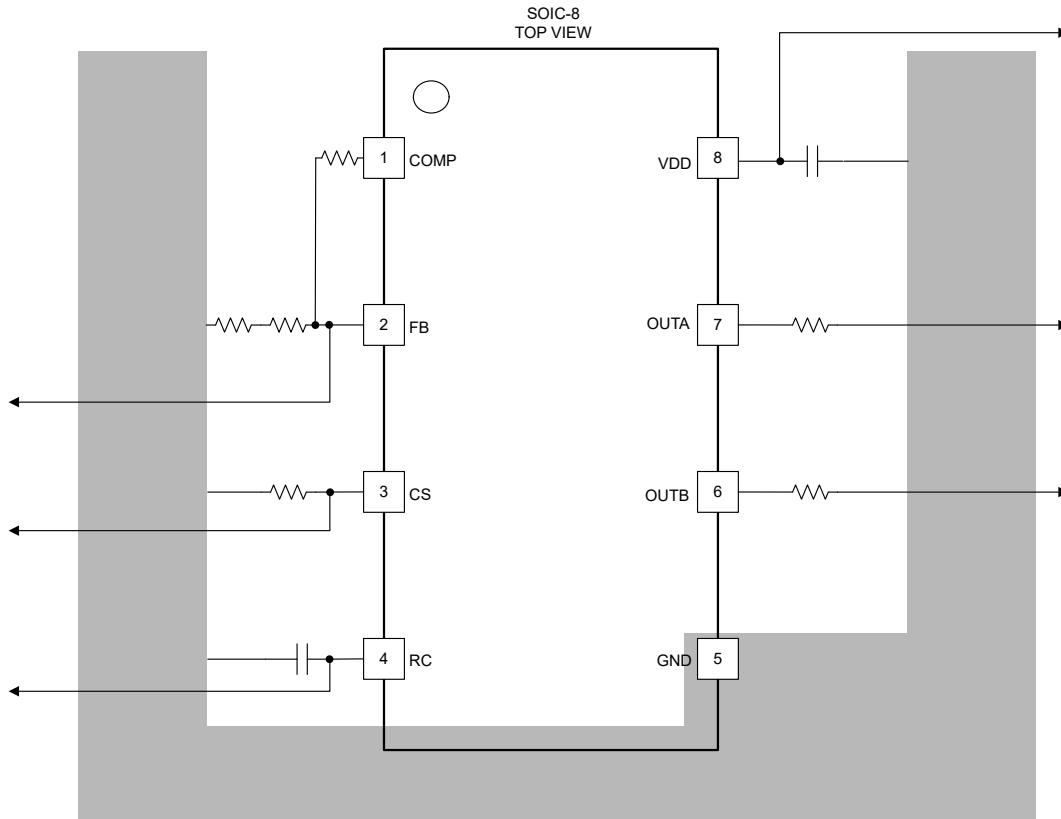


Figure 7-4. Recommended Layout

8 Device and Documentation Support

8.1 Device Support

8.1.1 *Third-Party Products Disclaimer*

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

8.2 Documentation Support

8.2.1 *Related Documentation*

For related documentation, see the following: [Power Supply Control Products Data Book](#)

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (July 2018) to Revision G (July 2025)	Page
• Deleted PDIP-related information.....	1
• Updated <i>ESD Ratings</i> to new limits.....	5
• Updated <i>Thermal Information</i>	5

Changes from Revision E (December 2016) to Revision F (July 2018)	Page
• Changed the <i>Simplified Application</i>	1
• Changed references of N package to P package (PDIP)	5

Changes from Revision D (August 2002) to Revision E (October 2016)	Page
• Added <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section.....	1
• Deleted Lead temperature, soldering (10 s): 300°C maximum.....	5

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

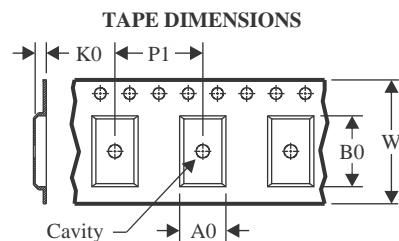
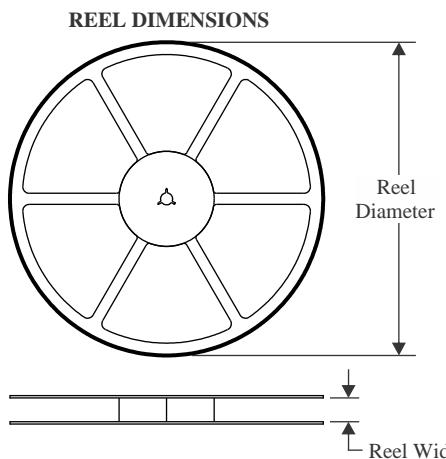
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
UCC2808AD-1	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	2808A-1
UCC2808AD-2	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	2808A-2
UCC2808ADTR-1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-1
UCC2808ADTR-1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-1
UCC2808ADTR-1G4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-1
UCC2808ADTR-2	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-2
UCC2808ADTR-2.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-2
UCC2808ADTR-2G4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2808A-2
UCC2808APW-1	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 85	2808A1
UCC2808APW-2	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 85	2808A2
UCC2808APWTR-2	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	Call TI Nipdau	Level-2-260C-1 YEAR	-40 to 85	2808A2
UCC2808APWTR-2.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	2808A2
UCC3808AD-1	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	3808A-1
UCC3808AD-2	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	3808A-2
UCC3808ADTR-1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3808A-1
UCC3808ADTR-1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3808A-1
UCC3808ADTR-1G4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3808A-1
UCC3808ADTR-2	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3808A-2
UCC3808ADTR-2.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	3808A-2
UCC3808APW-2	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	0 to 70	3808A2
UCC3808APWTR-2	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	Call TI Nipdau	Level-2-260C-1 YEAR	0 to 70	3808A2
UCC3808APWTR-2.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	0 to 70	3808A2
UCC3808APWTR-2G4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	0 to 70	3808A2

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

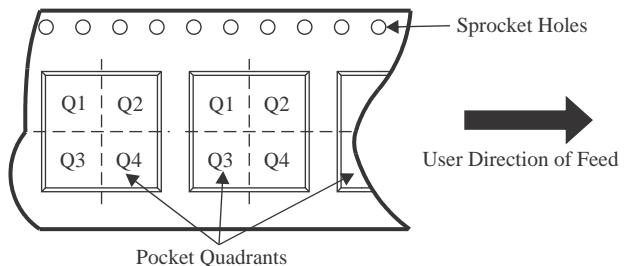
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

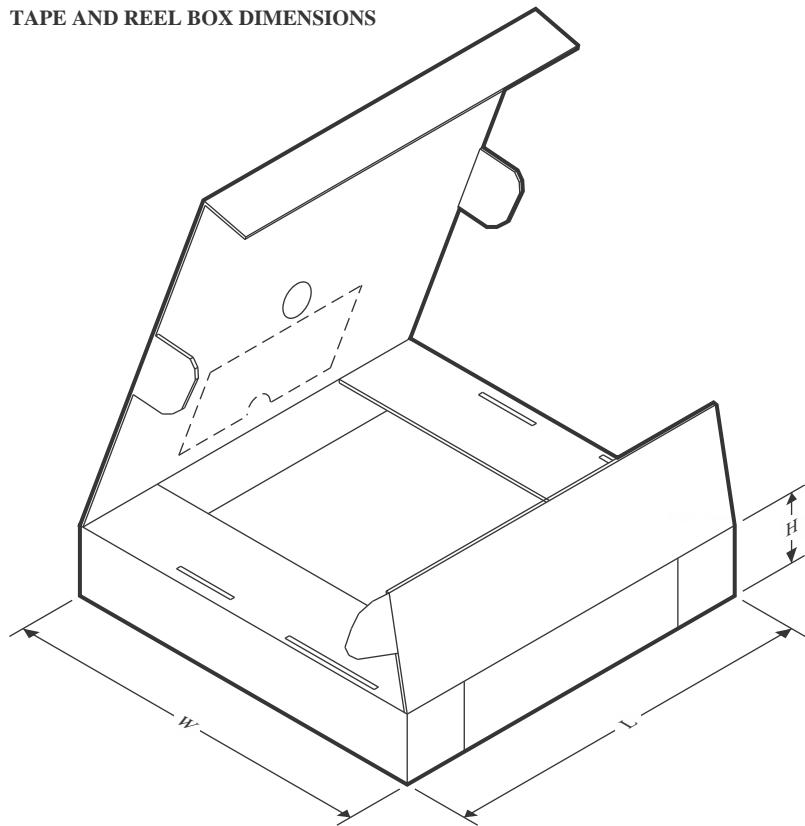


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

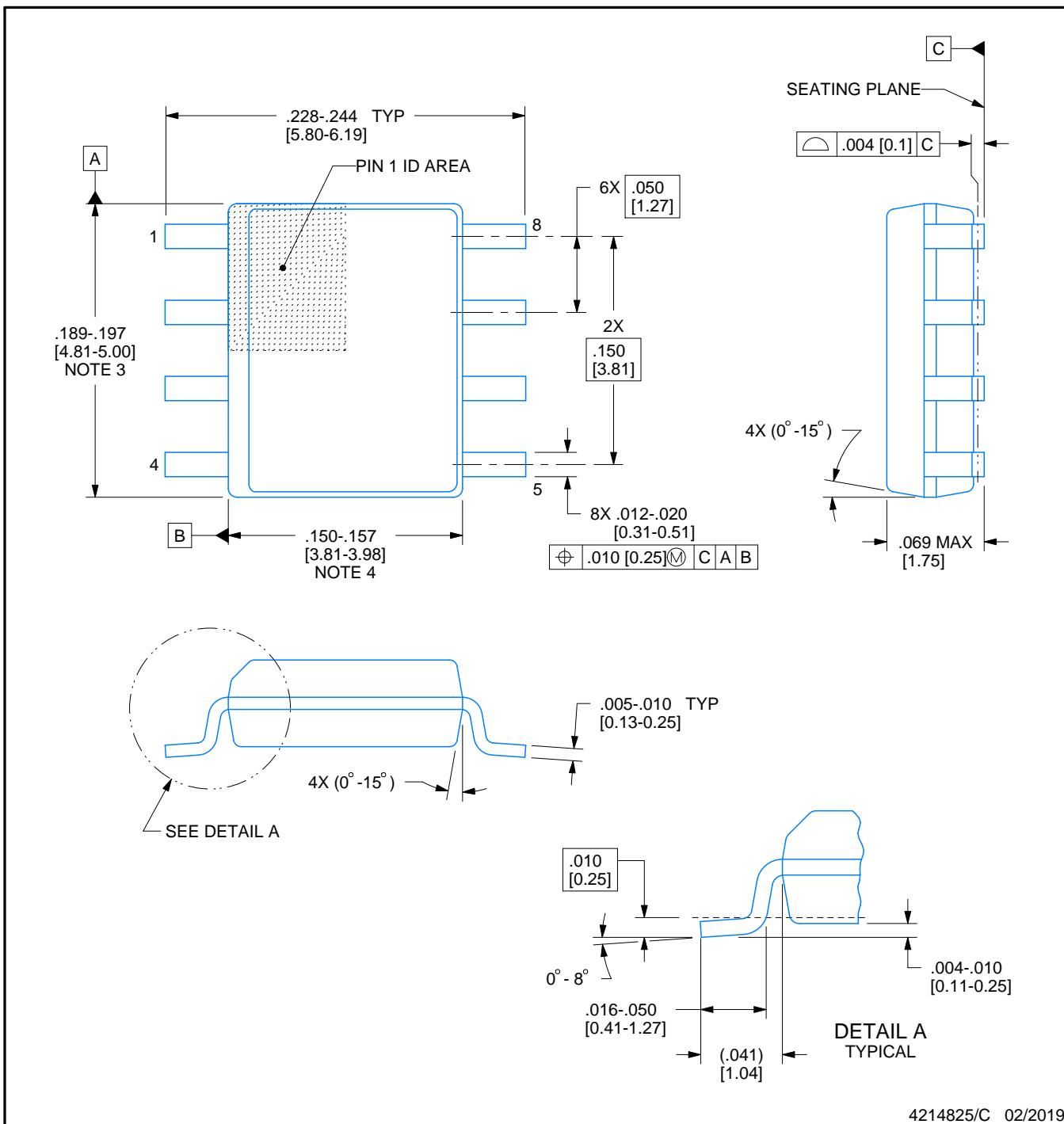
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC2808ADTR-1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC2808ADTR-2	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC2808APWTR-2	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
UCC3808ADTR-1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC3808ADTR-2	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC3808APWTR-2	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

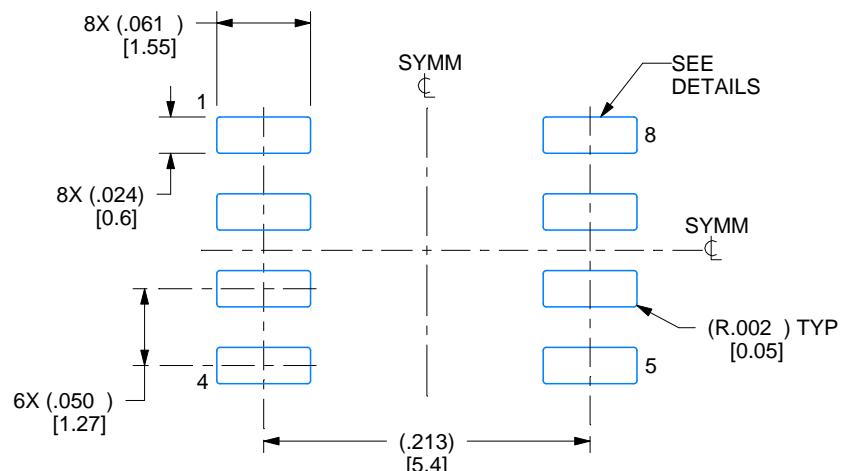
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UCC2808ADTR-1	SOIC	D	8	2500	353.0	353.0	32.0
UCC2808ADTR-2	SOIC	D	8	2500	340.5	338.1	20.6
UCC2808APWTR-2	TSSOP	PW	8	2000	353.0	353.0	32.0
UCC3808ADTR-1	SOIC	D	8	2500	353.0	353.0	32.0
UCC3808ADTR-2	SOIC	D	8	2500	340.5	338.1	20.6
UCC3808APWTR-2	TSSOP	PW	8	2000	353.0	353.0	32.0

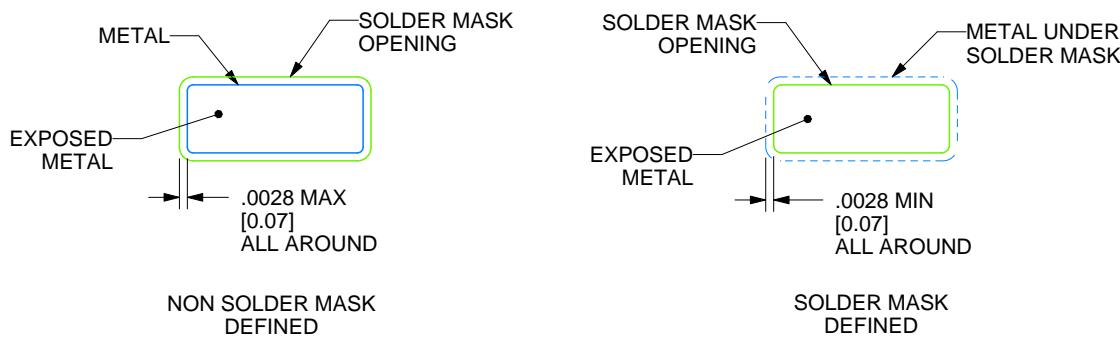
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



EXAMPLE BOARD LAYOUT


D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

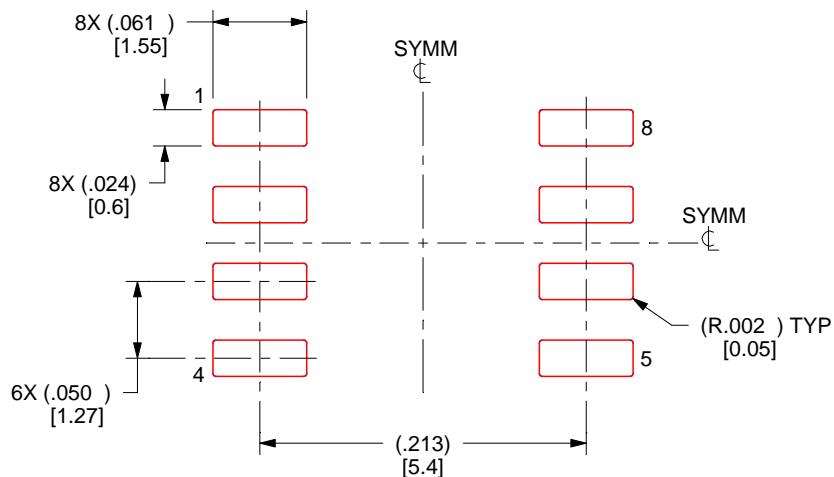
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X

SOLDER MASK DETAILS

4214825/C 02/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0008A

SOIC - 1.75 mm max height

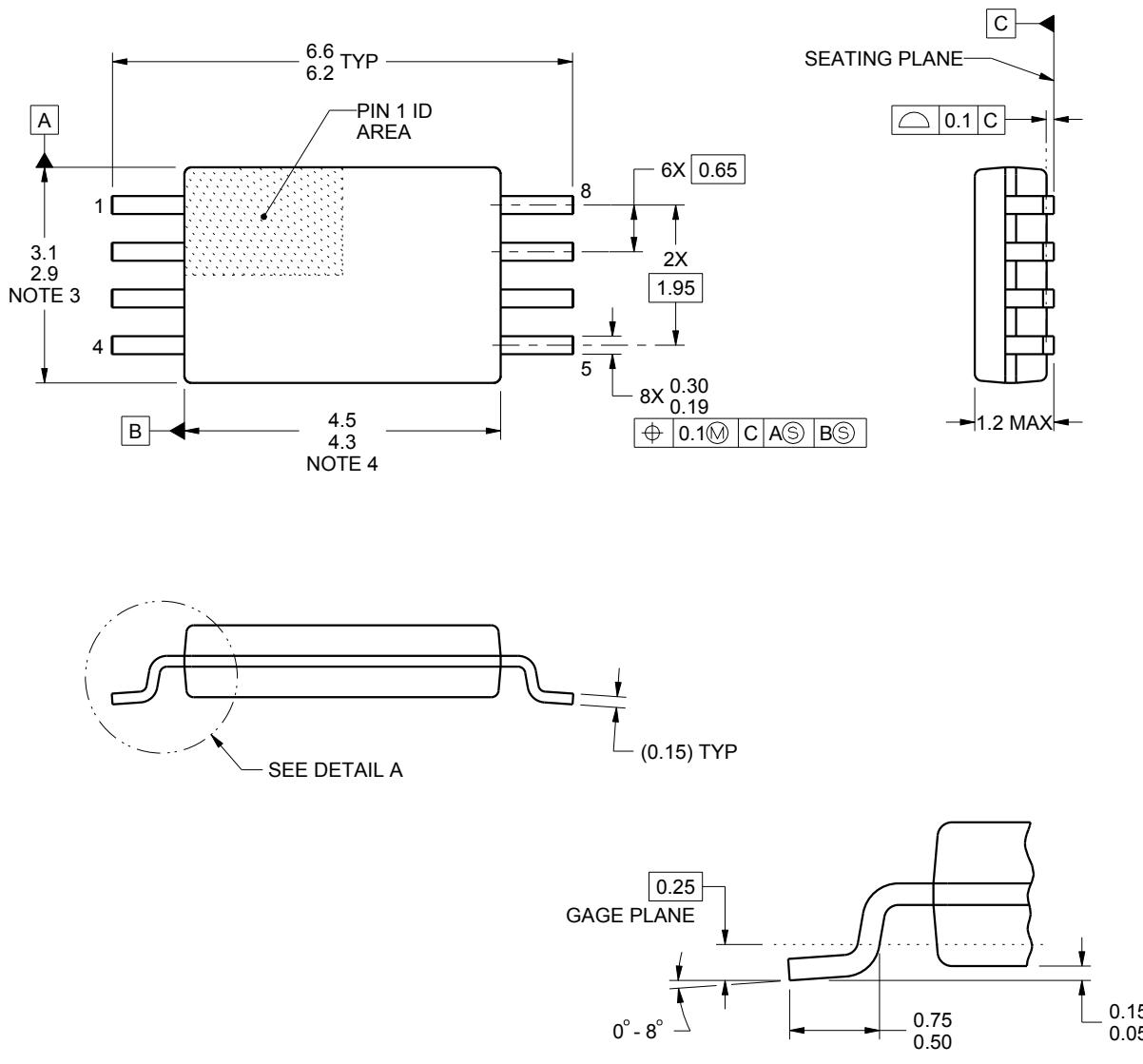
SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X

4214825/C 02/2019

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.


PACKAGE OUTLINE

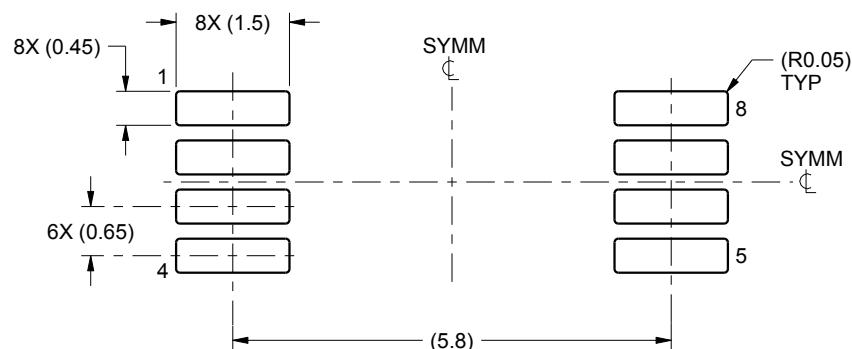
PW0008A

TSSOP - 1.2 mm max height

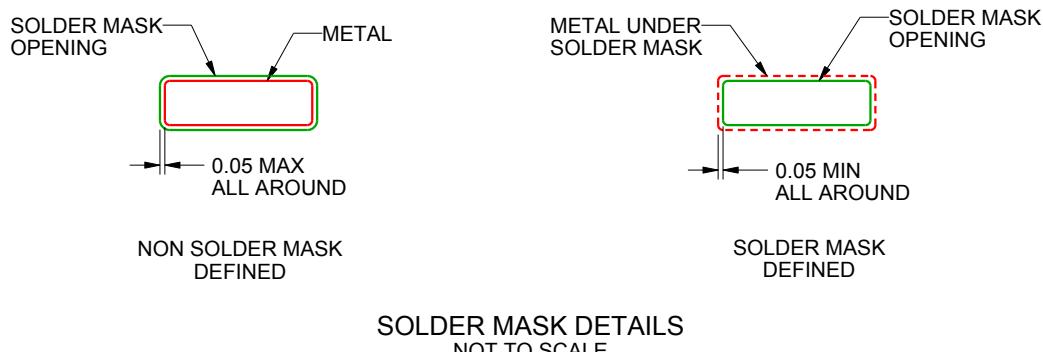
SMALL OUTLINE PACKAGE

4221848/A 02/2015

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.

EXAMPLE BOARD LAYOUT


PW0008A

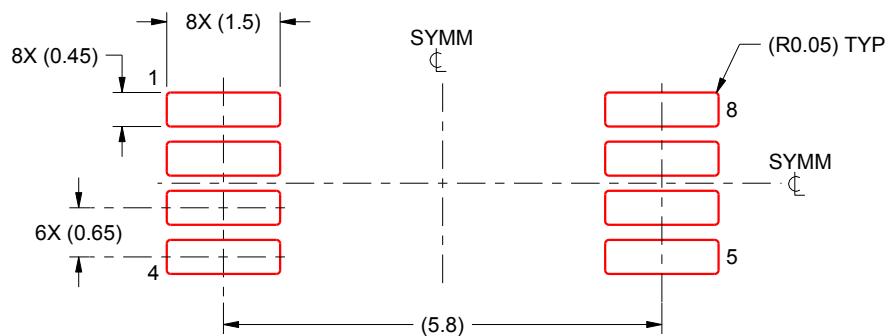
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
SCALE:10X

4221848/A 02/2015

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X

4221848/A 02/2015

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated