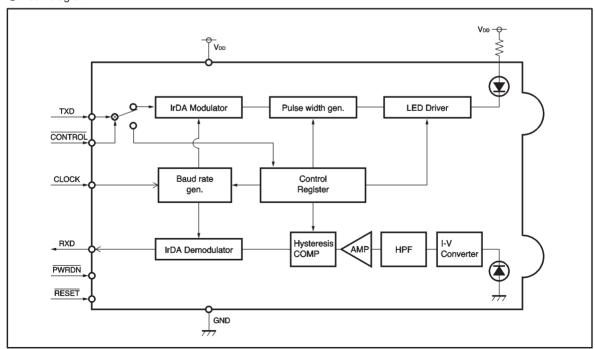
# IrDA infrared communication IC (SIR compatible) RPM-801CB Series

The RPM-801CB Series is an infrared communication IC that is compatible with the IrDA (1.0). The infrared LED, PIN photodiode and modulator / demodulator circuit have been combined on to a single package. LED current can be controlled using external resistor, and an internal register is provided for setting the baud rate and pulse width of the transmitted light. Connection to a UART requires just three lines (transmit, receive, and control) and a clock.

#### Applications


Cellular telephones, pagers, PDA, PHS, notebook PCs, and printers.

#### Features

- 1) Low power consumption.
- Infrared emitting, receiver, and modulator / demodulator on the chip.
- 3) Compatible with the IrDA (1.0).
- 4) Built-in powerdown mode.

- 5) Power supply voltage input range 2.7V to 5.5V.
- 6) External clock input.
- 7) Light emitting pulse width can be varied.

#### Block diagram



#### Pin descriptions

| Pin No. | Pin name | Function                                                                                                     |
|---------|----------|--------------------------------------------------------------------------------------------------------------|
| 1       | LED      | LED anode                                                                                                    |
| 2       | VDD      | Power supply                                                                                                 |
| 3       | CONTROL  | Register write control pin When Low, the TXD input becomes the data setting input for the internal register. |
| 4       | TXD      | Transmit/control write data input pin Transmit data (light emitting output) or register data setting input p |
| 5       | RXD      | Receive data output pin Data output pin for the received data (light input).                                 |
| 6       | CLOCK    | Clock input pin External clock input pin.                                                                    |
| 7       | PWRDN    | Power down control input pin The IC is in the power down state when this is Low.                             |
| 8       | RESET    | Internal register reset input pin When on, the internal registers are reset.                                 |
| 9       | GND      | Ground                                                                                                       |

# ●Absolute maximum ratings (Ta = 25°C)

| Parameter             | Symbol          | Limits               | Unit |
|-----------------------|-----------------|----------------------|------|
| Power supply voltage  | V <sub>DD</sub> | <b>−0.3∼+7.0</b>     | V    |
| Operating temperature | Topr            | <b>−10~</b> +60      | ొ    |
| Storage temperature   | Tstg            | -20~ <del>+</del> 85 | င    |

# ● Recommended operating conditions (Ta = 25°C)

| Parameter            | Symbol          | Min. | Тур. | Max. | Unit |
|----------------------|-----------------|------|------|------|------|
| Power supply voltage | V <sub>DD</sub> | 2.7  | 3.0  | 5.5  | V    |

# ●Input / output circuits

| Pin No. | Pin name        | Function                                                            | Equivalent circuit   |
|---------|-----------------|---------------------------------------------------------------------|----------------------|
| 1       | LED             | LED anode Connect a resistor to limit the LED current.              | V <sub>SAT</sub> LED |
| 2       | V <sub>DD</sub> | Power supply                                                        |                      |
| 3       | CONTROL         | Register write control pin<br>Transmit : High, Register set : Low   | CONTROL              |
| 4       | TXD             | Transmit / register write data input<br>Data 1 : High, Data 0 : Low |                      |
| 5       | RXD             | Receive data output Data 1 : High, Data 0 : Low                     | RXD                  |
| 6       | CLOCK           | Clock input                                                         | CLOCK PWRDN          |
| 7       | PWRDN           | Power down control<br>Power down : Low                              | RESET                |
| 8       | RESET           | Internal register reset<br>Reset : Low                              |                      |
| 9       | GND             | Ground                                                              |                      |

●Electrical characteristics (unless otherwise noted, Ta = 25°C, V<sub>DD</sub> = 3V)

| Parameter                     | Symbol           | Min.                 | Тур. | Max. | Unit | Conditions                  |
|-------------------------------|------------------|----------------------|------|------|------|-----------------------------|
| Power supply current 1        | I <sub>DD1</sub> | _                    | _    | 3.5  | mA   | Stand-by for receiving      |
| Power supply current 2        | IDD2             | _                    | _    | 10   | μΑ   | Power down,No ambient light |
| Power supply current 3        | IDD3             | _                    | _    | 300  | mA   | Max. LED current drive      |
| Control input high voltage    | Vıн              | V <sub>DD</sub> 0.5  | _    | _    | V    |                             |
| Control input low voltage     | VIL              | _                    | _    | 0.8  | ٧    |                             |
| Control input high current    | Ін               | _                    | _    | -2.0 | μΑ   |                             |
| Control input low current     | lı∟              | _                    | _    | 2.0  | μΑ   |                             |
| TXD input high voltage        | ViH              | V <sub>DD</sub> -0.5 | _    | _    | V    |                             |
| TXD input low voltage         | VIL              | _                    | _    | 0.8  | V    |                             |
| TXD input high current        | Ін               | _                    | _    | -2.0 | μΑ   |                             |
| TXD input low current         | lıL              | _                    | _    | 2.0  | μΑ   |                             |
| CLOCK input high voltage      | Vін              | V <sub>DD</sub> 0.5  | _    | _    | V    |                             |
| CLOCK input low voltage       | VIL              | _                    | _    | 0.8  | V    |                             |
| CLOCK input high current      | Ін               | _                    | _    | -2.0 | μΑ   |                             |
| CLOCK input low level current | lıL              | _                    | _    | 2.0  | μΑ   |                             |
| PWRDN input high voltage      | Vін              | V <sub>DD</sub> 0.5  | _    | _    | V    |                             |
| PWRDN input low voltage       | VIL              | _                    | _    | 0.8  | V    |                             |
| PWRDN input high current      | Ін               | _                    | _    | -2.0 | μΑ   |                             |
| PWRDN input low current       | lı∟              | _                    | _    | 2.0  | μΑ   |                             |
| RESET input high voltage      | Vін              | V <sub>DD</sub> 0.5  | _    | _    | V    |                             |
| RESET input low voltage       | VIL              | _                    | _    | 0.8  | V    |                             |
| RESET input high current      | lн               | _                    | _    | -2.0 | μΑ   |                             |
| RESET input low current       | lı∟              | _                    | _    | 2.0  | μΑ   |                             |
| RXD output high voltage       | Vон              | V <sub>DD</sub> 0.5  | _    | _    | V    | Iон=2.0mA                   |
| RXD output low voltage        | Vol              | _                    | _    | 0.5  | V    | loL=2.0mA                   |

#### Circuit operation

# (1) IrDA format

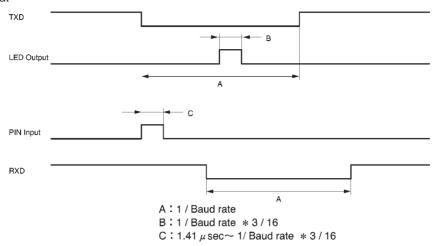



Fig.1

#### (2) Register function

Control character format

As shown in the Fig.2, the control character is made up of four address bits, four data bits, a start bit and a stop bit.

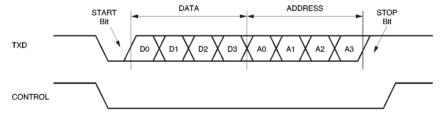



Fig.2

# (3) Explanation of the registers Register table

| No. | Address | Function                      |
|-----|---------|-------------------------------|
| 1   | 0000    | Control register 1            |
| 2   | 0001    | Control register 2            |
| 3   | 0010    | Clock divider register 1      |
| 4   | 0011    | Clock divider register 2      |
| 5   | 0100    | Output pulse width register 1 |
| 6   | 0101    | Output pulse width register 2 |

#### 1) Control register 1

|       | D3   | D2   | D1   | D0   |
|-------|------|------|------|------|
|       | ECHO | ECAN | RXEN | TXEN |
| Reset | 0    | 0    | 0    | 0    |

ECHO 0 No control character echo back

ECHO1 Control character echo back

ECAN 0 Reception of transmitted (self emitted) data not cancelled

ECAN 1 Reception of transmitted (self emitted) data cancelled

RXEN 0 Receiver off

RXEN 1 Receiver on

TXEN 0 Transmitter off

TXEN 1 Transmitter on

#### 2) Control register 2

|       | D3 | D2 | D1 | D0   |
|-------|----|----|----|------|
|       | 0  | 0  | 0  | LOAD |
| Reset | 0  | 0  | 0  | 0    |

LOAD 0 Do not load the clock divider register value LOAD 1 Load the clock divider register value

\* The LOAD bit automatically becomes 0 after the clock divider register value is loaded.

#### 3) Clock divider register value 1

|       | D3   | D2   | D1   | D0   |
|-------|------|------|------|------|
|       | DIV3 | DIV2 | DIV1 | DIV0 |
| Reset | 0    | 0    | 0    | 1    |

#### 4) Clock divider register value 2

|       | D3 | D2 | D1 | D0   |
|-------|----|----|----|------|
|       | 0  | 0  | 0  | DIV4 |
| Reset |    | 0  | 0  | 0    |

| DIV4 | Value | DIV3 | DIV2 | Value | DIV1 | DIV0 | Value |
|------|-------|------|------|-------|------|------|-------|
| 0    | 1     | 0    | 0    | 1     | 0    | 0    | 1     |
| 1    | 1/3   | 0    | 1    | 1/2   | 0    | 1    | 1/2   |
| _    | _     | 1    | 0    | 1/4   | 1    | 0    | 1/4   |
| _    | _     | 1    | 1    | 1/8   | 1    | 1    | 1/8   |

Baud rate =  $M \times input clock frequency / 8$ 

 $M = (DIV4 \text{ select value}) \times (DIV3,2 \text{ select value}) \times (DIV1,0 \text{ select value})$ 

\* At reset, the value is set to 1 / 2.

The reset baud rate is therefore:  $1/2 \times \text{input clock frequency}/8$ .

#### 5) Output pulse width register 1

|       | D3  | D2  | D1  | D0  |
|-------|-----|-----|-----|-----|
|       | PW3 | PW2 | PW1 | PW0 |
| Reset | 0   | 0   | 0   | 0   |

#### 6) Output pulse width register 2

|   | D3 | D2 | D1 | D0  |  |
|---|----|----|----|-----|--|
|   | 0  | 0  | 0  | PW4 |  |
| ٠ |    | 0  | 0  | Λ   |  |

Reset

| PW4 | Value | PW3 | PW2 | Value | PW1 | PW0 | Value |
|-----|-------|-----|-----|-------|-----|-----|-------|
| 0   | 1     | 0   | 0   | 1     | 0   | 0   | 1     |
| 1   | 3     | 0   | 1   | 2     | 0   | 1   | 2     |
| _   | _     | 1   | 0   | 4     | 1   | 0   | 4     |
|     | _     | 1   | 1   | 8     | 1   | 1   | 8     |

Output pulse width =  $N \times \text{input clock period } / 2$ 

 $N = (PW4 \text{ value}) \times (PW3,2 \text{ value}) \times (PW1,0 \text{ value})$ 

Note) N  $\leq$  4 / M

 $M = (DIV4 \text{ multiplier}) \times (DIV3,2 \text{ multiplier}) \times (DIV1,0 \text{ multiplier})$ 

- (4) Timing chart
- 1) Reset operation

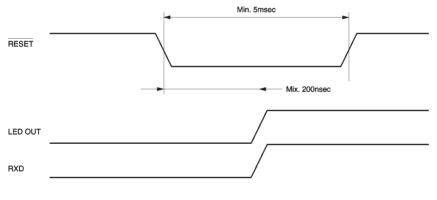



Fig.3

#### 2) Register write

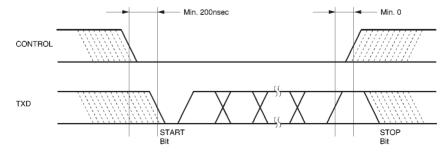
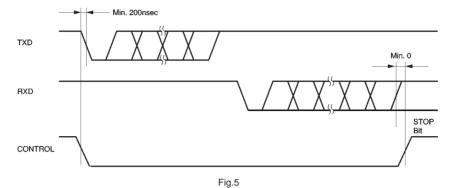
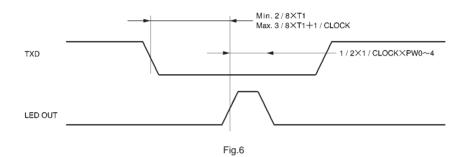
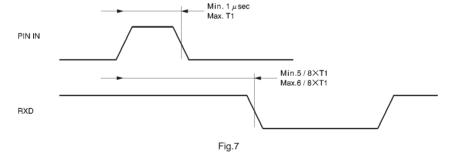





Fig.4


#### 3) Echo back



# 4) Transmit



#### 5) Receive



### 6) Echo cancel

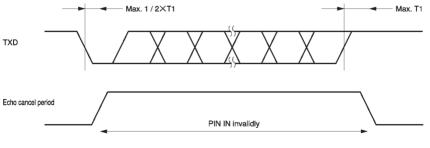



Fig.8

#### 7) Power down

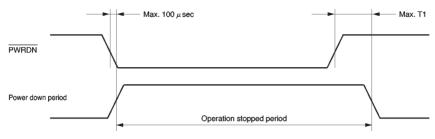



Fig.9

\* T1 is 1 / baud rate.

#### Application example

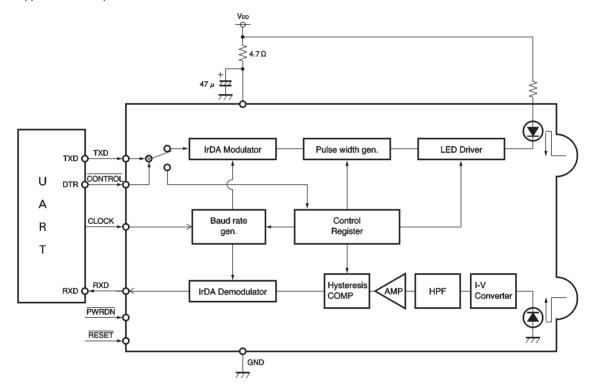
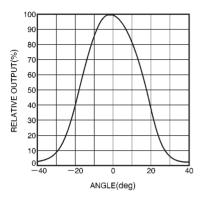



Fig.10

#### Operation notes

After the power is applied or after a reset via RESET, the baud rate generator is set to Clock / 16, so perform the control register setting operation at a communication rate of Clock / 16.


To perform infrared communication after the power is applied or after a reset via RESET, first set the value 3 into

control register 1 (both receiver and transmitter on).

Determine the clock frequency according to the content of the clock divider registers 1 and 2.

Set the pulse width in accordance with IrDA specifications.

#### Electrical characteristics curves



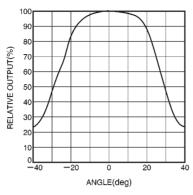
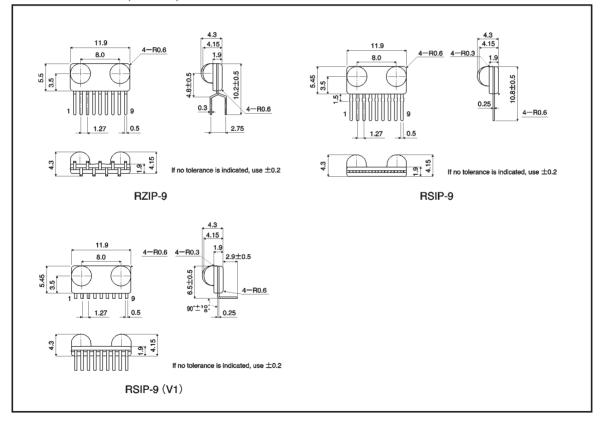




Fig.11 Light transmitter characteristics

Fig.12 Light receiver characteristics

#### External dimensions (Unit: mm)

