74LVC06A

FEATURES

- 5 V tolerant inputs and outputs (open drain) for interfacing with 5 V logic
- Wide supply voltage range from 1.65 to 5.5 V
- · CMOS low power consumption
- · Direct interface with TTL levels
- . Inputs accept voltages up to 5 V
- Complies with JEDEC standard no. 8-1A.

DESCRIPTION

The 74LVC06A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 to 5 V environment.

The 74LVC06A provides six inverting buffers.

The outputs of the 74LVC06A devices are open drain and can be connected to other open-drain outputs to implement active-LOW wired-OR or active-HIGH wired-AND functions.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; $t_r = t_f \le 2.5$ ns.

SYMBOL	PARAMETER	CONDITIONS	TYP.	UNIT
t _{PLZ} /t _{PZL}	propagation delay nA to nY	C _L = 50 pF; V _{CC} = 3.3 V	2.3	ns
Cı	input capacitance		5.0	pF
C _{PD}	power dissipation capacitance per gate	V _I = GND to V _{CC} ; note 1	8.0	pF

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

fo = output frequency in MHz;

C_i = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

FUNCTION TABLE

See note 1.

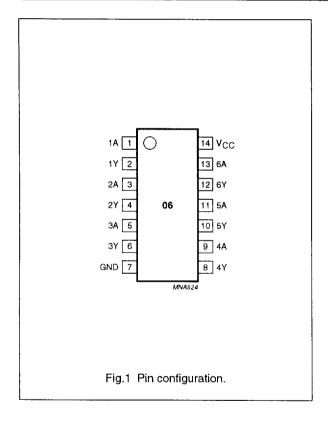
INPUT	ОИТРИТ
nA	nY
L	Z
Н	L

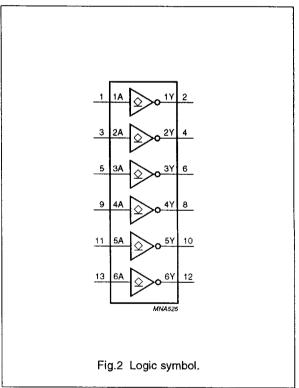
Note

1. H = HIGH voltage level;

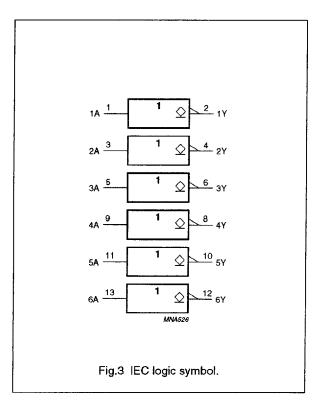
L = LOW voltage level;

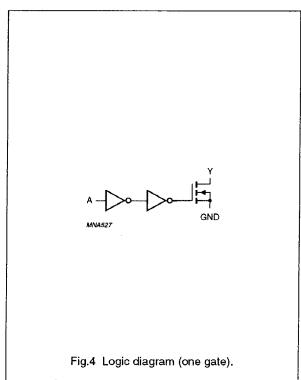
Z = high impedance OFF-state.


74LVC06A


ORDERING INFORMATION

TYPE NUMBER	PACKAGES									
TIPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE					
74LVC06AD	-40 to +85 °C	14	so	plastic	SOT108-1					
74LVC06APW	7	14	TSSOP	plastic	SOT402-1					


PINNING


PIN	SYMBOL	DESCRIPTION
1, 3, 5, 9, 11 and 13	1A to 6A	data inputs
2, 4, 6, 8, 10 and 12	1Y to 6Y	data outputs
7	GND	ground (0 V)
14	V _{cc}	DC supply voltage

74LVC06A

74LVC06A

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LI	LIMITS		
STINDUL	PARAMETER	CONDITIONS	MIN.	MAX.	דואט 🚽	
Vcc	DC supply voltage		1.65	5.5	ν	
VI	DC input voltage	***	0	5.5	٧	
Vo	DC output voltage	active mode	0	Vcc	ν	
		high-impedance mode	0	5.5	V	
T _{amb}	operating ambient temperature		-40	+85	°C	
t _r ,t _f	input rise and fall ratios	$V_{CC} = 1.65 \text{ to } 2.7 \text{ V}$	0	20	ns/V	
		$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	0	10	ns/V	

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	DC supply voltage		-0.5	+6.5	٧
I _{IK}	DC input diode current	V ₁ < 0	1-	-50	mA
VI	DC input voltage	note 1	-0.5	+6.5	٧
lok	DC output clamping diode current	V _O < 0	-	-50	mA
Vo	DC output voltage	active mode; note 1	-0.5	V _{CC} + 0.5	٧
		high-impedance mode; note 1	-0.5	+6.5	٧
lo	DC output sink current	$V_O = 0$ to V_{CC}	_	50	mA
I _{CC} , I _{GND}	DC V _{CC} or GND current		_	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation per package				
	SO package	above 70 °C derate linearly with 8 mW/K	-	500	mW
	TSSOP package	above 60 °C derate linearly with 5.5 mW/K	-	500	mW

Note

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC06A

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

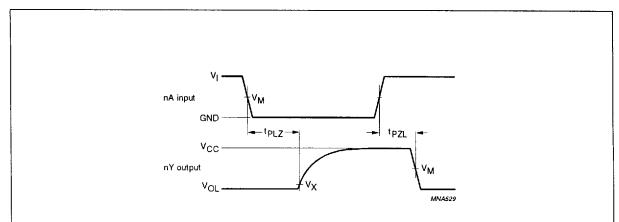
		TEST CONI	DITIONS		T _{amb} (°C	;)	
SYMBOL	PARAMETER		1		-40 to +8	35	UNIT
		OTHER	V _{CC} (V)	MIN.	TYP.(1)	MAX.	
V _{IH}	HIGH-level input voltage		1.65 to 1.95	V _{CC}	-	-	V
			2.3 to 2.7	1.7	_	_	٧
			2.7 to 3.6	2.0	_	_	V
			4.5 to 5.5	0.7 × V _{CC}	-	-	٧
V _{IL}	LOW-level input voltage		1.65 to 1.95	-	_	GND	V
			2.3 to 2.7	_	_	0.7	٧
			2.7 to 3.6	_	_	0.8	٧
			4.5 to 5.5	_	-	0.30 × V _{CC}	V
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	l _O = 100 μA	1.65 to 5.5	-	ļ —	0.20	V
		I _O = 4 mA	1.65	_	_	0.45	V
		I _O = 8 mA	2.3	-	-	0.3	V
		l _O = 12 mA	2.7	_	_	0.4	V
		I _O = 24 mA	3.0	_		0.55	V
		l _O = 32 mA	4.5	-	-	0.55	v
l _i	input leakage current	V _I = 5.5 V or GND	3.6	_	±0.1	±5	μА
loz	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	3.6	-	0.1	±10	μΑ
l _{off}	power-off leakage current	V_1 or $V_0 = 6.5 \text{ V}$	0.0	_	±0.1	±10	μΑ
lcc	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$	5.5	_	0.1	10	μА
ΔI _{CC}	additional quiescent supply current per input pin	$V_1 = V_{CC} - 0.6 \text{ V};$ $I_O = 0$	2.3 to 5.5	-	5	500	μА

Note

1. All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

74LVC06A

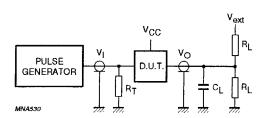
AC CHARACTERISTICS


GND = 0 V; $V_{CC} \le 2.7$ V and $t_r = t_f \le 2$ ns; $V_{CC} \ge 2.7$ V and $t_r = t_f \le 2.5$ ns.

		TEST CON	TEST CONDITIONS					
SYMBOL PARA	PARAMETER	WAVEFORMS	V 00	-40 to +85		UNIT		
		WAVEFURINS	V _{CC} (V)	MIN.	TYP. (1)	MAX.		
t _{PLZ} /t _{PZL}	propagation delay nA to nY	see Figs 5 and 6	1.65 to 1.95	-	2.9	_	ns	
			2.3 to 2.7	0.5	1.8	3.1	ns	
			2.7	0.5	2.5	3.9	ns	
			3.0 to 3.6	0.5	2.3	3.7	ns	
			4.5 to 5.5	0.5	1.7	3.4	ns	

Note

1. All typical values are measured at T_{amb} = 25 °C and at V_{CC} respectively 1.8, 2.5, 2.7, 3.3 and 5.0 V.

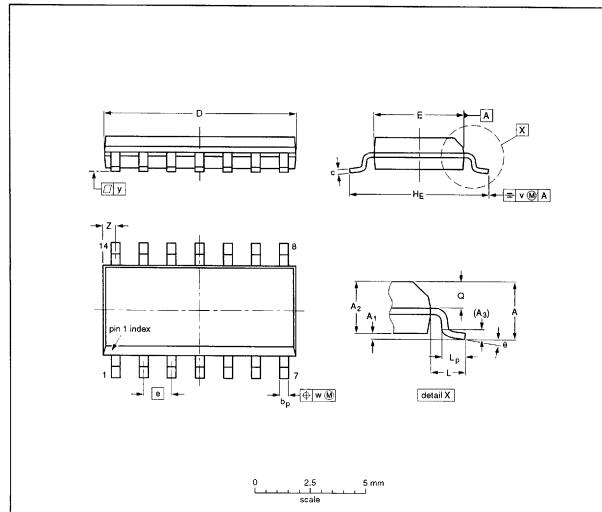

AC WAVEFORMS

V _{cc}	V _M	V _X
<2.7 V	$0.5 \times V_{CC}$	V _{OL} + 0.15 V
≥2.7 to 3.6 V	1.5 V	V _{OL} + 0.3 V
≥4.5 to 5.5 V	$0.5 \times V_{CC}$	V _{OL} + 0.3 V

Fig.5 The input nA to output nY propagation delays.

74LVC06A

V _{CC}	V _{ext}	VI	CL	RL
1.65 to 1.95 V	2×V _{CC}	V _{CC}	30 pF	1 kΩ
2.3 to 2.7 V	2×V _{CC}	V _{cc}	30 pF	500 Ω
2.7 V	6 V	2.7 V	50 pF	500 Ω
3.3 to 3.6 V	6 V	2.7 V	50 pF	500 Ω
4.5 to 5.5 V	2×V _{CC}	V _{CC}	50 pF	500 Ω


Fig.6 Load circuitry for switching times.

74LVC06A

PACKAGE OUTLINES

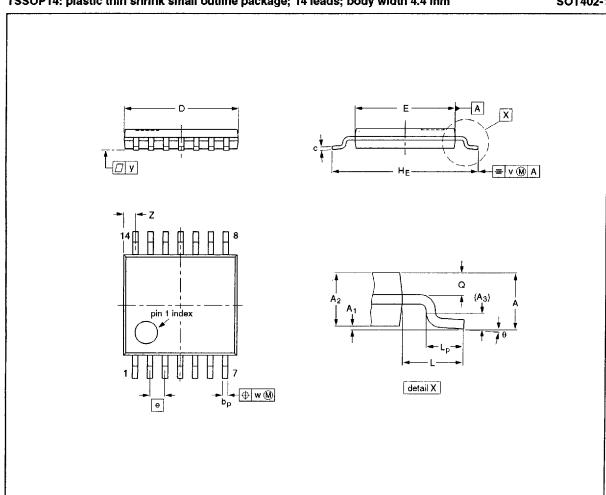
SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	80
inches	0.069	0.010 0.004	0.0 57 0.0 49	0.01		0.0100 0.00 75	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	o°

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	T	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012			97-05-22 99-12-27	

74LVC06A

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

5 mm

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	e	HE	L	Lp	Q	ν	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT402-1		MO-153		□ ●	-95-04-04 99-12-27

74LVC06A

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

74LVC06A

Sultability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD				
PACKAGE	WAVE	REFLOW ⁽¹⁾			
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable			
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ⁽²⁾	suitable			
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable			
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable			
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable			

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification This data sheet contains final product specifications.						
Limiting values						
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.					
Application information						
Where application informat	ion is given, it is advisory and does not form part of the specification.					

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.