2N918, JAN 2N918 (continued)

TABLE 1: GROUP A INSPECTION (T₄ = 25°C ± 3°C unless otherwise noted) (continued)

Examination or Test		Mil-Std-750	Symbol	Limits		Unit	*LTPD	
		Method		Min Max				
SUBGROUP 3								
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0,		3236	c_{ob}			pF]	
f ≥ 0.1 MHz & ≤ 1.0 MHz)	All Types			-	1.7			
$(V_{CB} = 0, I_{E} = 0, f \ge 0.1 \text{ MHz}$	All Types			-	3.0			
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0,		3240	c_{ib}			pF		
f ≥ 0.1 MHz & ≤ 1.0 MHz)	All Types	(Note 1)		-	2.0			
SUBGROUP 4								
Small-Signal Current Gain $(V_{CE} = 10 \text{ Vdc}, I_{C} = 4.0 \text{ mAdc},$		3306	$ \mathbf{h}_{\mathrm{fe}} $			-		
f = 100 MHz)	All Types			6.0	- 1			
Small-Signal Amplifier Gain $(V_{CC} = 12 \text{ Vdc}, I_{C} = 6.0 \text{ mAdc},$		(Figure 2)	G _{pe}			dΒ		
f = 200 MHz	All Types			15	-		10	
Collector-Base Time Constant $(V_{CB} = 10 \text{ Vdc}, I_{E} = -4.0 \text{ mAdc},$			r _b 'C _c			ps		
f = 79.8 MHz)	JA N2N918	(27-4- 0)		-	25			
Noise Figure $(V_{CE} = 6.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc},$ $R_{C} = 400 \text{ ohms}, f = 60 \text{ MHz})$	All Types	(Note 2)	NF	_	6.0	dΒ		
3	All Types			-	0.0			
Oscillator Power Output (V _{CB} = 15 Vdc, I _C = 8.0 mAdc,		(Note 3)	Pout			mW		
f = 500 MHz)	All Types			30	-	~		
Collector-Efficiency Test (V _{CB} = 15 Vdc, I _C = 8.0 mAdc,		(Note 3)	η	ļ		%		
f = 500 MHz)	All Types			25	-			
SUBGROUP 5 (Note 4)		(Note 4)						
High Temperature Operation								
Collector-Base Cutoff Current ($V_{CB} = 15 \text{ Vdc}, I_E = 0,$		3036	I _{CBO}			μAdc		
$T_{A} = 150^{\circ} C)$	All Types	Condition D		-	1.0			
Low Temperature Operation								
DC Current Gain $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 3.0 \text{ mAdc},$		3076	h _{FE}			-		
$T_A = -55^{\circ} C$	JA N2N918	(Note 4)		10	-		J	

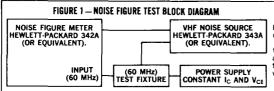
*Applies to Meg-A-Life II and Mil Units Only #Minimum value only applies to Standard Unit

NOTES

- This test shall be in accordance with Method 3240 of MIL-STD-750 except that the output capacitor is omitted.
- Noise Figure shall be measured using a HP 342A NF Meter in accordance with HP 342A pertinent test procedure or by use of a suitable equivalent test-equipment circuit and procedure.
- Sample units shall be allowed to return to and be stabilized at room ambient temperature prior to being subjected to the Low-Temperature Operation test.
- 4. Test Measurement shall be made after thermal equilibrium has been reached at the temperature specified.
- 5. All applicable end-point test measurements shall be made within four hours after the particular sample units have been subjected to the required physical-mechanical or environmental test(s). This requirement is not applicable to measurements specified to be made during (subjection of sample units) a physical-mechanical or environmental test, and shall not be applicable where otherwise specified for life test(s).
- There shall be no evidence of flaking, pitting, or other visible signs
 of corrosion on sample units, upon examination without magnifications, after subjection to test.
- 7. Per MIL-STD-202, Method 112, Test Condition C, Procedure 111a and Test Condition A for Gross Leaks.

2N918, JAN 2N918 (continued)

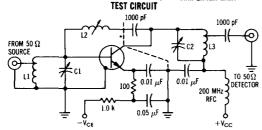
TABLE II: GROUP B INSPECTION


Examination or Test	Mil-Std-750	Symbol	Lin	nits	Unit	LTPD
Examination or lest	Method		Min Max		Uniii	LIFU
SUBGROUP 1						
Physical Dimensions	2066	_	-	-	-	20
SUBGROUP 2			<u> </u>			
Solderability	2026			ļ		
Temperature Cycling	1051	-	-	-	- 1)
	Condition C	-	-	- [- (l
Thermal Shock (Glass Strain)	1056 Condition A		_		1	
Seal (Leak Rate)	(Note 7)	-	-	\	- 1	1
	1021	_	- 1	-	-	10
Moisture Resistance (No Initial Conditioning)	1021]			[10
End-Point Tests: (Note 5) Collector-Base Cutoff Current	3036	I _{CBO}		1	nAdc	}
(V _{CB} = 15 Vdc, I _E = 0)	Condition D	СВО	-	10		
DC Current Gain	3076	h _{FE}) '	1 1	- 1]
$(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		P.E.	20	200		J
SUBGROUP 3		-	 			
	8016					1
Shock (1500 G. 0.5 ms. 5 blows each,	2016 Non-operating	-	-	-	-	1
(1500 G, 0.5 ms, 5 blows each, Orientations X_1 , Y_1 , Y_2 , Z_1 ; Total = 20 blows)						Į.
Vibration, Variable Frequency	2056	-	_	_	-	
Vibration Fatigue (20 G)	2046	-		{ - {	_	10
Tibliation Langue (LE S)	Non-operating					[10
Constant Acceleration (Centrifuge) (20,000 G, Orientations \mathbf{X}_1 , \mathbf{Y}_1 , \mathbf{Y}_2 , \mathbf{Z}_1)	2006	-	-	-	-	
End-Point Tests:				! !		
Same as Subgroup 2 (Note 5)					})
SUBGROUP 4						
Lead Fatigue	2036	-			_	3
nead x despace	Condition E					
End-Point Tests:			ľ) .	atm	15
Seal (Notes 5 and 7)			-	5x10 ⁻⁷	cm ³ /s	J
SUBGROUP 5						
Salt Atmosphere (Corrosion) (Note 6)	1041	-	-	-	-]	٦
End-Point Tests:	}		ļ	}	}	20
Same as Subgroup 2				[J
SUBGROUP 6						
High Tamasarahana Life (Non Operating)	1031	_			_	λ = 15
High Temperature Life (Non-Operating) (T _{stg} = +200°C, min)	Non-operating	_	_	-	-	A - 10
End-Point Tests: (Note 5) Collector-Base Cutoff Current	3036	1	Ì	1 1	nAde	
$(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$	Condition D	1 _{CBO}	-	20		
DC Current Gain	3076	h _{FE}	}	± 25%	-	
$(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$				of Group	ļ	
SUBGROUP 7			 			
Steady State Operation Life	1026	_	-	_	-	λ = 15
$(P_T = 200 \text{ mW}, I_C \approx 20 \text{ mAdc}, T_A \approx 25^{\circ}C \pm 3^{\circ}C)$]		l i	1	
End-Point Tests: (Note 5)			}	1	1	
Same as Subgroup 6			1			

2N918, JAN 2N918 (continued)

TABLE III: CONDITIONING and SCREENING

Procedure	Symbol	Mil-Std-750 Method	Conditions	Limits
BURN-IN at rated Power for 96 hours	96 hours – V _{CE} = 10 Vdc, T _A = 25°C		-	
ELECTRICAL SCREENS After Burn-In DC Current Gain Changes in h _{FE} before and after Burn-In, measured at stated conditions.	Δh _{FE}	3076	I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc, Pulsed*	+20% Within Group A Limits
Collector-Base Cutoff Current	1сво	3036 Condition D	V _{CB} = 15 Vdc	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	3071	I _C = 10 mA, I _B = 1.0 mA; Pulsed*	Group A Limits
Base-Emitter Saturation Voltage	V _{BE(sat)}	3066 Condition A	I _C = 10 mA, I _B = 1.0 mA; Pulsed*	J


^{*} Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

The test fixture shall consist of a 60 MHz tuned amplifier and suitable biasing circuits. It should be constructed utilizing good very-high-frequency design techniques.

The effective source susceptance should be tuned for each device being tested to obtain minimum noise figure. Note that because the HP 343A has a 50-ohm output resistance, a suitable impedance transformer must be used to obtain an effective source conductance of 2.5 mmho at the transistor with minimum losses.

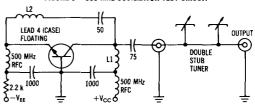
FIGURE 2 - NEUTRALIZED 200 MHz POWER AMPLIFIER GAIN

NEUTRALIZATION PROCEDURE:

- A -- Connect 200 MHz signal generator (with 50 ohm output impedance) to input terminals of amplifier, and connect 50 ohm RF voltmeter to output terminals of amplifier.
- B Apply V_{EE} and V_{CC} to obtain specified test conditions.
- C Adjust output of signal generator to approximately 10 millivolts and tune C1 and C2 for maximum output.
- $\mathsf{D} = \mathsf{Interchange}$ connections to signal generator and RF voltmeter and with sufficient signal applied at output terminals, tune L2 for minimum indi-cation on RF-voltmeter.
- E Repeat this sequence until optimum settings are obtained for all

CIRCUIT COMPONENT INFORMATION:

C1: 3-12 pF


C2: 1.5-7.5 pF

L1: 3 1/2 turns #16 AWG 5/16" ID, 7/16" length, turns ratio

L2: 0.4-0.65 μH Miller #4303 (or equal)

L3: 8 turns #16 AWG 1/8" ID, 7/8" length, turns ratio — 8 to 1

FIGURE 3 --- 500 MHz OSCILLATOR TEST CIRCUIT

OSCILLATOR ADJUSTMENT PROCEDURE:

Measurements of P_{out} shall be made in this circuit or a suitable equivalent. The circuit adjustment procedure is as follows:

- A Set V_{CC} and V_{EE} to obtain specified test conditions.
- B Adjust stub tuner to obtain maximum output at specified frequency of oscillation.
- C Check I_C and reset if necessary.
- D Read Pout.

Note: Collector efficiency (7), may be determined as follows:

$$_{\eta}$$
 in % = $\frac{P_{out}}{120}$ x 100

Where Pout is in milliwatts.

CIRCUIT COMPONENT INFORMATION:

L1: 2 turns #16 AWG, 3/8" OD, 1 1/4" length

L2: 9 turns #22 AWG, 3/16" OD, 1/2" length

Capacitance values are in pF. Double Stub Tuner consists of the following commercially available components.

2 GR Type 874 TEE 1 GR Type 874-D20 Adjustable Stub 1 GR Type 874-LA Adjustable Line
1 GR Type 874-WN3 Short-Circuit Termination

(or equivalents)

^{*}External interlead shield to isolate collector lead from emitter and base leads.