Spansion® Analog and Microcontroller Products

The following document contains information on Spansion analog and microcontroller products. Although the document is marked with the name "Fujitsu", the company that originally developed the specification, Spansion will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal document improvements and are noted in the document revision summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

Spansion continues to support existing part numbers beginning with "MB". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Spansion memory, analog, and microcontroller products and solutions.

8-bit Microcontrollers

New 8FX MB95650L Series

MB95F652E/F652L/F653E/F653L/F654E/F654L/F656E/F656L

■ DESCRIPTION

The MB95650L Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral functions.

■ FEATURES

• F2MC-8FX CPU core

Instruction set optimized for controllers

- · Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instructions
- Bit manipulation instructions, etc.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

- Clock
 - · Selectable main clock source
 - Main oscillation clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz)
 - External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)
 - Main CR clock (4 MHz ±2%)
 - Main CR PLL clock
 - The main CR PLL clock frequency becomes 8 MHz $\pm 2\%$ when the PLL multiplication rate is 2.
 - The main CR PLL clock frequency becomes 10 MHz ±2% when the PLL multiplication rate is 2.5.
 - The main CR PLL clock frequency becomes 12 MHz ±2% when the PLL multiplication rate is 3.
 - The main CR PLL clock frequency becomes 16 MHz $\pm 2\%$ when the PLL multiplication rate is 4.
 - Main PLL clock (maximum machine clock frequency: 16 MHz)
 - Selectable subclock source
 - Suboscillation clock (32.768 kHz)
 - External clock (32.768 kHz)
 - Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz)
- Timer
 - 8/16-bit composite timer × 2 channels
 - Time-base timer × 1 channel
 - Watch prescaler × 1 channel

(Continued)

For the information for microcontroller supports, see the following website.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

- UART/SIO × 1 channel (The channel can be used either as a UART/SIO channel or as an I²C bus interface channel.)
 - The function of this channel can be switched between UART/SIO and I2C bus interface.
 - Full duplex double buffer
 - Capable of clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer
- I²C bus interface × 2 channels (One of the two channels can be used either as an I²C bus interface channel or as a UART/SIO channel.)
 - Supports Standard-mode and Fast-mode (400 kHz).
 - Built-in wake-up function
- LIN-UART
 - Full duplex double buffer
 - Capable of clock asynchronous serial data transfer and clock synchronous serial data transfer
- External interrupt × 6 channels
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
 - Can be used to wake up the device from different low power consumption (standby) modes
- 8/12-bit A/D converter × 6 channels

8-bit or 12-bit resolution can be selected.

• Low power consumption (standby) modes

There are four standby modes as follows:

- Stop mode
- Sleep mode
- · Watch mode
- Time-base timer mode
- I/O port
 - MB95F652E/F653E/F654E/F656E (number of I/O ports: 21)
 - General-purpose I/O ports (CMOS I/O) : 17
 - General-purpose I/O ports (N-ch open drain) : 4
 - MB95F652L/F653L/F654L/F656L (number of I/O ports: 20)
 - General-purpose I/O ports (CMOS I/O) : 17
 - General-purpose I/O ports (N-ch open drain) : 3
- · On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
 - Built-in hardware watchdog timer
 - · Built-in software watchdog timer
- Power-on reset

A power-on reset is generated when the power is switched on.

 Low-voltage detection reset circuit and low-voltage detection interrupt circuit (only available on MB95F652E/ F653E/F654E/F656E)

Built-in low-voltage detection function

Clock supervisor counter

Built-in clock supervisor counter

· Dual operation Flash memory

The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.

· Flash memory security function

Protects the content of the Flash memory.

■ PRODUCT LINE-UP

Part number									
	MB95F652E	MB95F653E	MB95F654E	MB95F656E	MB95F652L	MB95F653L	MB95F654L	MB95F656L	
Parameter									
Туре				Flash mem	ory product				
Clock supervisor counter	It supervise	es the main	clock oscilla	ation and the	e subclock c	oscillation.			
Flash memory capacity	8 Kbyte	12 Kbyte	20 Kbyte	36 Kbyte	8 Kbyte	rte 12 Kbyte 20 Kbyte 36 Kbyte			
RAM capacity	256 bytes	512 bytes	1024 bytes	1024 bytes	256 bytes	512 bytes	1024 bytes	1024 bytes	
Power-on reset				Ye	es				
Low-voltage detection reset		Ye	es			N	lo		
Reset input	S	elected thro	ugh softwa	re	V	Vith dedicate	ed reset inp	ut	
CPU functions	InstructioInstructioData bit loMinimum	Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8 and 16 bits Minimum instruction execution time : 61.5 ns (machine clock frequency = 16.25 MHz) Interrupt processing time : 0.6 µs (machine clock frequency = 16.25 MHz)							
Durnose I/O	I/O portCMOS I/ON-ch ope		: 21 : 17 : 4		I/O portCMOS I/ON-ch ope		: 20 : 17 : 3		
Time-base timer	Interval tim	e: 0.256 ms	to 8.3 s (ex	ternal clock	frequency	= 4 MHz)			
Hardware/ software watchdog timer	Main os		k at 10 MH	z: 105 ms (I as the sourc	,	ne software	watchdog ti	mer.	
Wild register	It can be us	sed to replac	ce 3 bytes o	f data.					
	It has a full bodyBoth cloc enabled.	ull duplex do k synchrond	ouble buffer. ous serial da		and clock as	ynchronous	ted reload t s serial data	imer. transfer are	
0/ 12 Bit	6 channels								
A/D converter	8-bit or 12-l	bit resolution	n can be se	lected.					
	2 channels								
8/16-bit composite timer	It has the capture for Count close	The timer can be configured as an "8-bit timer × 2 channels" or a "16-bit timer × 1 channel". It has the following functions: interval timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.							
External	6 channels								
				rising edge, vice from di				e selected.)	
	1-wire seIt support		ing (asynch	ronous mod	le).				

(Continued)

3

(Continued)

4

Part number									
	MB95F652E	MB95F653E	MB95F654E	MB95F656E	MB95F652L	MB95F653L	MB95F654L	MB95F656L	
Parameter									
	1 channel (channel.)	The channe	l can be use	ed either as a	a UART/SIC	channel or	as an I ² C b	us interface	
UART/SIO									
		2 channels (One of the two channels can be used either as an I^2C bus interface channel or as a UART/SIO channel.)							
I ² C bus interface	 It has the 	following fu function, w		s error funct				on direction ng repeated	
Watch prescaler	Eight differe	ent time inte	ervals can b	e selected.					
	suspend/ • It has a fl	erase-resur ag indicatin	ne comman g the compl	ds. etion of the	operation o	orithm), and of Embeddeo Flash memo	d Algorithm.		
			n/erase cycl				100000		
	Data re	tention time)	20 y	ears 10) years	5 years		
Standby mode	There are four standby modes as follows: • Stop mode • Sleep mode • Watch mode • Time-base timer mode								
Package				FPT-24	P-M10 P-M34				
Package					2P-M19				

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package		MB95F653E	MB95F654E	MB95F656E	MB95F652L	MB95F653L	MB95F654L	MB95F656L
FPT-24P-M10	О	О	O	О	O	О	О	О
FPT-24P-M34	О	О	0	О	О	О	О	О
LCC-32P-M19	О	О	O	О	О	О	О	О

O: Available

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

• Current consumption

When using the on-chip debug function, take account of the current consumption of Flash memory program/erase.

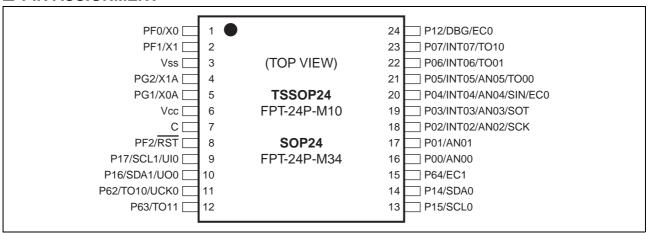
For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

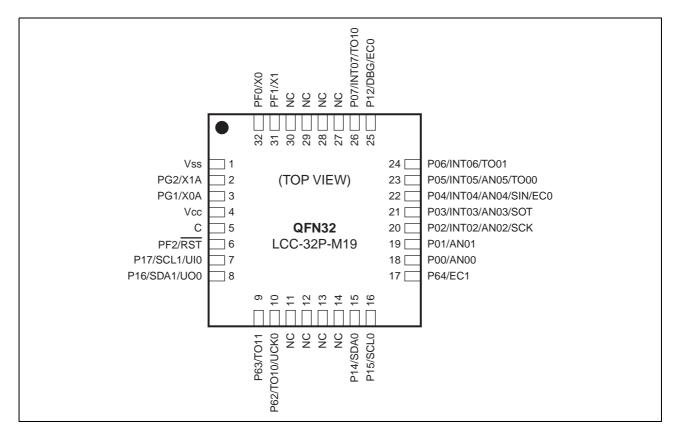
Package

6

For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSION".

· Operating voltage


The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of operating voltage, see "


ELECTRICAL CHARACTERISTICS".

• On-chip debug function

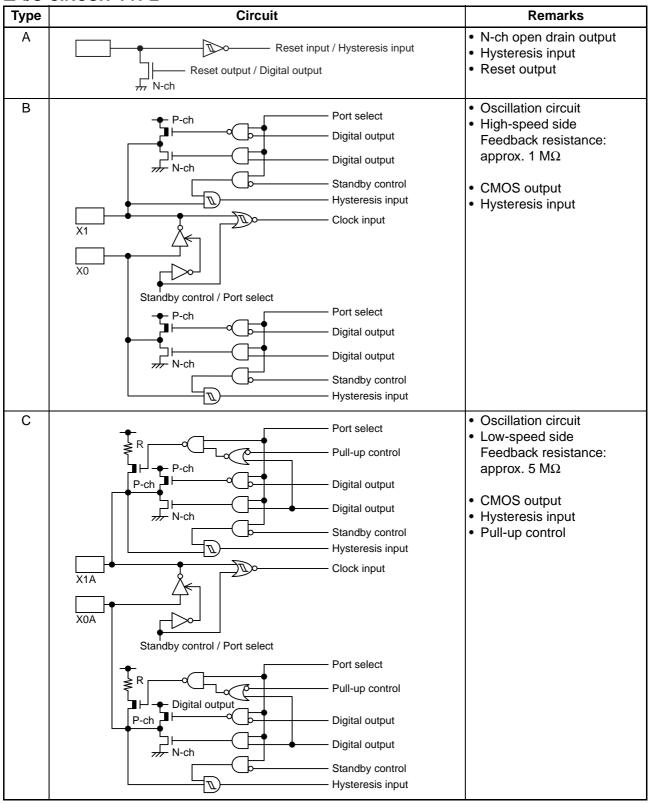
The on-chip debug function requires that Vcc, Vss and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 20 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in "New 8FX MB95650L Series Hardware Manual".

■ PIN ASSIGNMENT

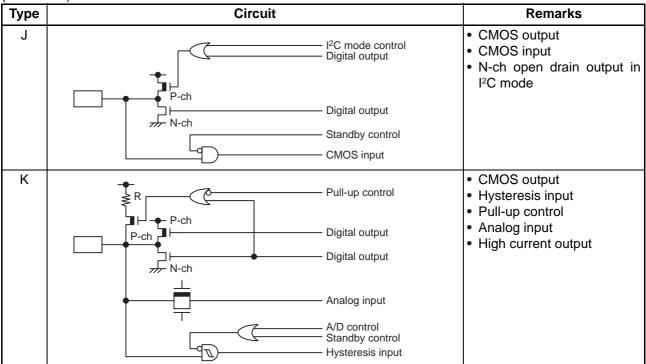
■ PIN FUNCTIONS

Pin r	10.	<u> </u>	I/O			I/O type	<u> </u>		
SOP24*1, TSSOP24*2	QFN32*3	Pin name		Function	Input	Output	OD*5	PU*6	
1	32	PF0	В	General-purpose I/O port	Hysteresis	CMOS			
'	52	X0	נ	Main clock input oscillation pin	Tiyoteresis	CIVIOS			
2	31	PF1	В	General-purpose I/O port	Hysteresis	CMOS			
	5	X1	ם	Main clock I/O oscillation pin	Tiyoteresis	CIVIOS			
3	1	Vss	_	Power supply pin (GND)	_	_	_	_	
4	2	PG2	С	General-purpose I/O port	Hysteresis	CMOS	_	О	
		X1A		Subclock I/O oscillation pin	Tiyotoroolo	OWICO		O	
5	3	PG1	С	General-purpose I/O port	Hysteresis	CMOS	_	О	
3	,	X0A)	Subclock input oscillation pin	TIYSICICSIS	CIVIOS		U	
6	4	Vcc		Power supply pin		_	_	_	
7	5	С	_	Decoupling capacitor connection pin			_	_	
		PF2		General-purpose I/O port					
8	6	RST	А	Reset pin Dedicated reset pin on MB95F652L/F653L/F654L/ F656L	Hysteresis	CMOS	O	_	
		P17		General-purpose I/O port					
9	7	SCL1	SCL1 J	J	I ² C bus interface ch. 1 clock I/O pin	CMOS	CMOS	—/O* ⁷	_
		UI0		UART/SIO ch. 0 data input pin					
		P16		General-purpose I/O port					
10	8	SDA1	J	I ² C bus interface ch. 1 data I/O pin	CMOS	CMOS	—/O* ⁷	_	
		UO0		UART/SIO ch. 0 data output pin					
		P62		General-purpose I/O port High-current pin					
11	10	TO10	D	8/16-bit composite timer ch. 1 output pin	Hysteresis	CMOS	_	О	
		UCK0		UART/SIO ch. 0 clock I/O pin					
12	9	P63	D	General-purpose I/O port High-current output	Hysteresis	CMOS		О	
12	9	TO11	D	8/16-bit composite timer ch. 1 output pin	riysteresis	CIVIOS	_	U	
		P15		General-purpose I/O port					
13	16	SCL0	I	I ² C bus interface ch. 0 clock I/O pin	CMOS	CMOS	О	_	
14	15	P14	ı	General-purpose I/O port	CMOS	CMOS	О		
14	10 	SDA0	_ '	I ² C bus interface ch. 0 data I/O pin	CIVIOS	CIVIOS			
		P64		General-purpose I/O port					
15	17	EC1	D	8/16-bit composite timer ch. 1 clock input pin	Hysteresis	CMOS	_	О	

Pin n	10.		I/O			I/O type	.			
SOP24*1, TSSOP24*2	QFN32*3	Pin name	circuit type*4	Function	Input	Output	OD*5	PU*6		
		P00		General-purpose I/O port	Hysteresis/					
16	18	AN00	Ш	8/12-bit A/D converter analog input pin	analog	CMOS	_	О		
		P01		General-purpose I/O port	Hysteresis/					
17	18	AN01	Е	8/12-bit A/D converter analog input pin	analog	CMOS	_	О		
		P02		General-purpose I/O port						
		INT02		External interrupt input pin	Hysteresis/					
18	20	AN02	E	8/12-bit A/D converter analog input pin	analog	CMOS	_	О		
		SCK		LIN-UART clock I/O pin						
		P03		General-purpose I/O port						
		INT03		External interrupt input pin	Hysteresis/					
19	21	AN03	E	8/12-bit A/D converter analog input pin	analog	CMOS	_	О		
		SOT		LIN-UART data output pin						
		P04		General-purpose I/O port						
		INT04		External interrupt input pin						
20	22	22	22	AN04	F	8/12-bit A/D converter analog input pin	CMOS/ analog	CMOS	_	О
		SIN		LIN-UART data input pin	arialog					
		EC0		8/16-bit composite timer ch. 0 clock input pin						
		P05		General-purpose I/O port High-current pin						
		INT05		External interrupt input pin	Hysteresis/					
21	23	AN05	K	8/12-bit A/D converter analog input pin	analog	CMOS	_	О		
		TO00		8/16-bit composite timer ch. 0 output pin						
		P06		General-purpose I/O port High-current pin						
22	24	INT06	D	External interrupt input pin	Hysteresis	CMOS	_	О		
		TO01		8/16-bit composite timer ch. 0 output pin						
		P07		General-purpose I/O port High-current pin						
23	26	INT07	K	External interrupt input pin	Hysteresis	CMOS	_	О		
		TO10		8/16-bit composite timer ch. 1 output pin						


(Continued)

Pin n	10.		I/O			I/O type)	
SOP24*1, TSSOP24*2	QFN32*3	Pin name	circuit type*4	Function	Input	Output	OD*5	PU*6
		P12		General-purpose I/O port			О	
24	25	DBG	Н	DBG input pin	Hysteresis	CMOS		
	25	EC0		8/16-bit composite timer ch. 0 clock input pin		OWIGG		
	11							
	12				_			_
	13							
	14	NC		It is an internally connected pin.				
_	27	INC		Always leave it unconnected.				
	28							
	29							
	30							


O: Available

- *1: FPT-24P-M34
- *2: FPT-24P-M10
- *3: LCC-32P-M19
- *4: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".
- *5: N-ch open drain
- *6: Pull-up
- *7: In I²C mode, the pin becomes an N-ch open drain pin.

■ I/O CIRCUIT TYPE

Туре	Circuit		Remarks
D	₹R C	— Pull-up control	CMOS output Hysteresis input Pull-up control
	P-ch P-ch	— Digital output	High current output
	N-ch	— Digital output	
	<i>"</i>	 Standby control 	
		— Hysteresis input	21122
E	₹R C	— Pull-up control	CMOS outputHysteresis inputPull-up control
	P-ch	— Digital output	Analog input
		— Digital output	
		— Analog input	
		A/D control Standby control Hysteresis input	
F	₹R C	— Pull-up control	CMOS output CMOS input Pull-up control
	P-ch	— Digital output	Analog input
		— Digital output	
		— Analog input	
		A/D control Standby control CMOS input	
Н		—— Standby control —— Hysteresis input	N-ch open drain output Hysteresis input
	Digital output		
I	N-ch	— Digital output	N-ch open drain output CMOS input
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	— Standby control	
		— CMOS input	

■ HANDLING PRECAUTIONS

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU SEMICONDUCTOR semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

• Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

• Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Code: DS00-00004-2E

• Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

• Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

• Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

• Precautions Related to Usage of Devices

FUJITSU SEMICONDUCTOR semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under FUJITSU SEMICONDUCTOR's recommended conditions. For detailed information about mount conditions, contact your sales representative.

• Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to FUJITSU SEMICONDUCTOR recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. FUJITSU SEMICONDUCTOR recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with FUJITSU SEMICONDUCTOR ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

• Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 °C and 30 °C.

 When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- (3) When necessary, FUJITSU SEMICONDUCTOR packages semiconductor devices in highly moistureresistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

16

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU SEMICONDUCTOR recommended conditions for baking.

Condition: 125 °C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of FUJITSU SEMICONDUCTOR products in other special environmental conditions should consult with sales representatives.

Please check the latest handling precautions at the following URL. http://edevice.fujitsu.com/fj/handling-e.pdf

■ NOTES ON DEVICE HANDLING

· Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than Vcc or a voltage lower than Vss is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "ELECTRICAL CHARAC-TERISTICS" is applied to the Vcc pin or the Vss pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

· Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard Vcc value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

■ PIN CONNECTION

Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

· Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 1.0 μ F as a bypass capacitor between the Vcc pin and the Vss pin at a location close to this device.

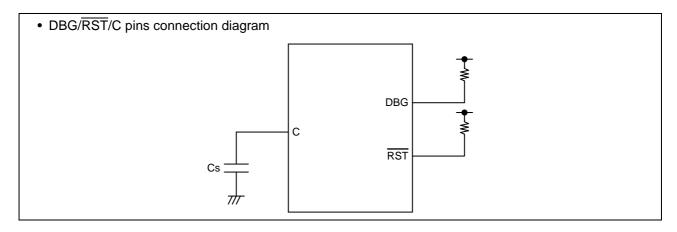
• DBG pin

Connect the DBG pin to an external pull-up resistor of 2 $k\Omega$ or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

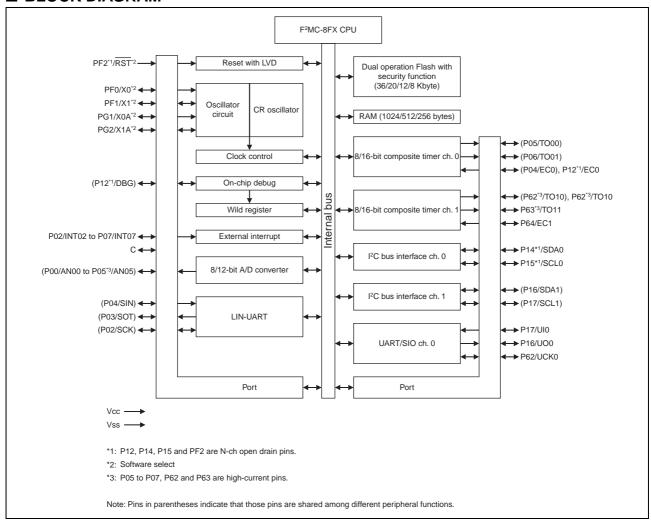
• RST pin


Connect the \overline{RST} pin to an external pull-up resistor of 2 k Ω or above.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the \overline{RST} pin and that between a pull-up resistor and the Vcc pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

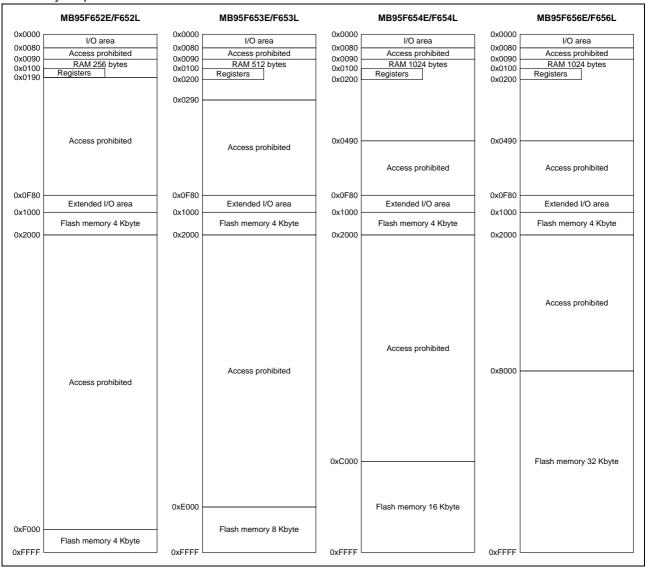
• C pin


Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the Vcc pin must have a capacitance equal to or larger than the capacitance of Cs. For the connection to a decoupling capacitor Cs, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.

Note on serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end of data in order to detect errors. If an error is detected, retransmit the data.

■ BLOCK DIAGRAM



■ CPU CORE

· Memory space

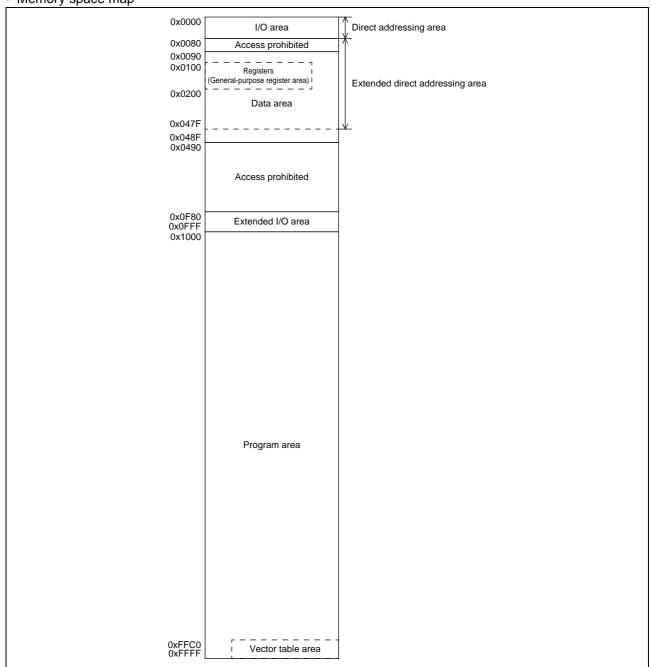
The memory space of the MB95650L Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95650L Series are shown below.

· Memory maps

■ MEMORY SPACE

The memory space of the MB95650L Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas for specific applications such as general-purpose registers and a vector table.

- I/O area (addresses: 0x0000 to 0x007F)
 - This area contains the control registers and data registers for built-in peripheral functions.
 - As the I/O area forms part of the memory space, it can be accessed in the same way as the memory. It can also be accessed at high-speed by using direct addressing instructions.
- Extended I/O area (addresses: 0x0F80 to 0x0FFF)
 - This area contains the control registers and data registers for built-in peripheral functions.
 - As the extended I/O area forms part of the memory space, it can be accessed in the same way as the memory.


· Data area

- Static RAM is incorporated in the data area as the internal data area.
- The internal RAM size varies according to product.
- The RAM area from 0x0090 to 0x00FF can be accessed at high-speed by using direct addressing instructions.
- In MB95F656E/F656L, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- In MB95F654E/F654L, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- In MB95F653E/F653L, the area from 0x0090 to 0x028F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- In MB95F652E/F652L, the area from 0x0090 to 0x018F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- In MB95F653E/F653L/F654E/F654L/F656E/F656L, the area from 0x0100 to 0x01FF can be used as a general-purpose register area.
- In MB95F652E/F652L, the area from 0x0100 to 0x018F can be used as a general-purpose register area.

· Program area

- The Flash memory is incorporated in the program area as the internal program area.
- The Flash memory size varies according to product.
- The area from 0xFFC0 to 0xFFFF is used as the vector table.
- The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register.

· Memory space map

■ AREAS FOR SPECIFIC APPLICATIONS

The general-purpose register area and vector table area are used for the specific applications.

- General-purpose register area (Addresses: 0x0100 to 0x01FF*1)
 - This area contains the auxiliary registers used for 8-bit arithmetic operations, transfer, etc.
 - As this area forms part of the RAM area, it can also be used as conventional RAM.
 - When the area is used as general-purpose registers, general-purpose register addressing enables highspeed access with short instructions.
- Non-volatile register data area (Addresses: 0xFFBB to 0xFFBF)
 - The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. For details, refer to "CHAPTER 23 NON-VOLATILE REGISTER (NVR) INTERFACE" in "New 8FX MB95650L Series Hardware Manual".
- Vector table area (Addresses: 0xFFC0 to 0xFFFF)
 - This area is used as the vector table for vector call instructions (CALLV), interrupts, and resets.
 - The top of the Flash memory area is allocated to the vector table area. The start address of a service routine is set to an address in the vector table in the form of data.
 - "■ INTERRUPT SOURCE TABLE" lists the vector table addresses corresponding to vector call instructions, interrupts, and resets.

For details, refer to "CHAPTER 4 RESET", "CHAPTER 5 INTERRUPTS" and "A.2 Special Instruction

■ Special Instruction ● CALLV #vct" in "New 8FX MB95650L Series Hardware Manual".

· Direct bank pointer and access area

Direct bank pointer (DP[2:0])	Operand-specified dir	Access area
0bXXX (It does not affect mapping.)	0x0000 to 0x007F	0x0000 to 0x007F
0b000 (Initial value)	0x0090 to 0x00FF	0x0090 to 0x00FF
0b001		0x0100 to 0x017F
0b010		0x0180 to 0x01FF*1
0b011		0x0200 to 0x027F
0b100	0x0080 to 0x00FF	0x0280 to 0x02FF*2
0b101		0x0300 to 0x037F
0b110		0x0380 to 0x03FF
0b111		0x0400 to 0x047F

^{*1:} Due to the memory size limit, the available access area is up to "0x018F" in MB95F652E/F652L.

^{*2:} Due to the memory size limit, the available access area is up to "0x028F" in MB95F653E/F653L.

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0x0000	PDR0	Port 0 data register	R/W	0b00000000
0x0001	DDR0	Port 0 direction register	R/W	0b00000000
0x0002	PDR1	Port 1 data register	R/W	0b00000000
0x0003	DDR1	Port 1 direction register	R/W	0b00000000
0x0004	_	(Disabled)	_	_
0x0005	WATR	Oscillation stabilization wait time setting register	R/W	0b11111111
0x0006	PLLC	PLL control register	R/W	0b000X0000
0x0007	SYCC	System clock control register	R/W	0bXXX11011
8000x0	STBC	Standby control register	R/W	0b00000000
0x0009	RSRR	Reset source register	R/W	0b000XXXXX
0x000A	TBTC	Time-base timer control register	R/W	0b00000000
0x000B	WPCR	Watch prescaler control register	R/W	0b00000000
0x000C	WDTC	Watchdog timer control register	R/W	0b00XX0000
0x000D	SYCC2	System clock control register 2	R/W	0bXXXX0011
0x000E to 0x0015	_	(Disabled)	_	
0x0016	PDR6	Port 6 data register	R/W	0b00000000
0x0017	DDR6	Port 6 direction register	R/W	0b00000000
0x0018 to 0x0027	_	(Disabled)	_	_
0x0028	PDRF	Port F data register	R/W	0b00000000
0x0029	DDRF	Port F direction register	R/W	0b00000000
0x002A	PDRG	Port G data register	R/W	0b00000000
0x002B	DDRG	Port G direction register	R/W	0b00000000
0x002C	PUL0	Port 0 pull-up register	R/W	0b00000000
0x002D to 0x0032	_	(Disabled)	_	_
0x0033	PUL6	Port 6 pull-up register	R/W	0b00000000
0x0034	_	(Disabled)	_	_
0x0035	PULG	Port G pull-up register	R/W	0b00000000
0x0036	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	0b00000000
0x0037	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	0b00000000
0x0038	T11CR1	8/16-bit composite timer 11 status control register 1	R/W	0b00000000
0x0039	T10CR1	8/16-bit composite timer 10 status control register 1	R/W	0b00000000
0x003A to 0x0048	_	(Disabled)	_	_

Address	Register abbreviation	Register name	R/W	Initial value
0x0049	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0b00000000
0x004A	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	0b00000000
0x004B	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	0b00000000
0x004C				
to 0x004E	_	(Disabled)	-	_
0x004F	LVDC	LVD control register	R/W	0b00000100
0x0050	SCR	LIN-UART serial control register	R/W	0b00000000
0x0051	SMR	LIN-UART serial mode register	R/W	0b00000000
0x0052	SSR	LIN-UART serial status register	R/W	0b00001000
	RDR	LIN-UART receive data register		
0x0053	TDR	LIN-UART transmit data register	R/W	0b00000000
0x0054	ESCR	LIN-UART extended status control register	R/W	0b00000100
0x0055	ECCR	LIN-UART extended communication control register	R/W	0b000000XX
0x0056	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0b00000000
0x0057	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0b00100000
0x0058	SSR0	UART/SIO serial status and data register ch. 0	R/W	0b00000001
0x0059	TDR0	UART/SIO serial output data register ch. 0	R/W	0b00000000
0x005A	RDR0	UART/SIO serial input data register ch. 0	R	0b00000000
0x005B		·		
to	_	(Disabled)	_	_
0x005F				
0x0060	IBCR00	I ² C bus control register 0 ch. 0	R/W	0b00000000
0x0061	IBCR10	I ² C bus control register 1 ch. 0	R/W	0b00000000
0x0062	IBSR0	I ² C bus status register ch. 0	R/W	0b00000000
0x0063	IDDR0	I ² C data register ch. 0	R/W	0b00000000
0x0064	IAAR0	I ² C address register ch. 0	R/W	0b00000000
0x0065	ICCR0	I ² C clock control register ch. 0	R/W	0b00000000
0x0066	IBCR01	I ² C bus control register 0 ch. 1	R/W	0b00000000
0x0067	IBCR11	I ² C bus control register 1 ch. 1	R/W	0b00000000
0x0068	IBSR1	I ² C bus status register ch. 1	R/W	0b00000000
0x0069	IDDR1	I ² C data register ch. 1	R/W	0b00000000
0x006A	IAAR1	I ² C address register ch. 1	R/W	0b00000000
0x006B	ICCR1	I ² C clock control register ch. 1	R/W	0b00000000
0x006C	ADC1	8/12-bit A/D converter control register 1	R/W	0b00000000
0x006D	ADC2	8/12-bit A/D converter control register 2	R/W	0b00000000
0x006E	ADDH	8/12-bit A/D converter data register (upper)	R/W	0b00000000
0x006F	ADDL	8/12-bit A/D converter data register (lower)	R/W	0b00000000
0x0070	ADC3	8/12-bit A/D converter control register 3	R/W	0b01111100

Address	Register abbreviation	Register name	R/W	Initial value
0x0071	FSR2	Flash memory status register 2	R/W	0b00000000
0x0072	FSR	Flash memory status register	R/W	0b000X0000
0x0073	SWRE0	Flash memory sector write control register 0	R/W	0b00000000
0x0074	FSR3	Flash memory status register 3	R	0b000XXXXX
0x0075	FSR4	Flash memory status register 4	R/W	0b00000000
0x0076	WREN	Wild register address compare enable register	R/W	0b00000000
0x0077	WROR	Wild register data test setting register	R/W	0b00000000
0x0078	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	_
0x0079	ILR0	Interrupt level setting register 0	R/W	0b11111111
0x007A	ILR1	Interrupt level setting register 1	R/W	0b11111111
0x007B	ILR2	Interrupt level setting register 2	R/W	0b11111111
0x007C	ILR3	Interrupt level setting register 3	R/W	0b11111111
0x007D	ILR4	Interrupt level setting register 4	R/W	0b11111111
0x007E	ILR5	Interrupt level setting register 5	R/W	0b11111111
0x007F	_	(Disabled)	_	_
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b00000000
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b00000000
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b00000000
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b00000000
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b00000000
0x0F85	WRDR1	Wild register data setting register ch. 1	R/W	0b00000000
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0b00000000
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0b00000000
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b00000000
0x0F89 to 0x0F91	_	(Disabled)	_	_
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b00000000
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	0b00000000
0x0F94	T01DR	8/16-bit composite timer 01 data register	R/W	0b00000000
0x0F95	T00DR	8/16-bit composite timer 00 data register	R/W	0b00000000
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	0b00000000
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	0b00000000
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b00000000
0x0F99	T11DR	8/16-bit composite timer 11 data register	R/W	0b00000000
0x0F9A	T10DR	8/16-bit composite timer 10 data register	R/W	0b00000000
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	0b00000000

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0x0F9C to 0x0FBB	_	(Disabled)	_	_
0x0FBC	BGR1	LIN-UART baud rate generator register 1	R/W	0b00000000
0x0FBD	BGR0	LIN-UART baud rate generator register 0	R/W	0b00000000
0x0FBE	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	0b00000000
0x0FBF	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	0b00000000
0x0FC0 to 0x0FC2	_	(Disabled)	_	_
0x0FC3	AIDRL	A/D input disable register (lower)	R/W	0b00000000
0x0FC4 to 0x0FE3	_	(Disabled)	_	_
0x0FE4	CRTH	Main CR clock trimming register (upper)	R/W	0b000XXXXX
0x0FE5	CRTL	Main CR clock trimming register (lower)	R/W	0b000XXXXX
0x0FE6	SYSC2	System configuration register 2	R/W	0b00000000
0x0FE7	CRTDA	Main CR clock temperature dependent adjustment register	R/W	0b000XXXXX
0x0FE8	SYSC	System configuration register	R/W	0b00111111
0x0FE9	CMCR	Clock monitoring control register	R/W	0b00000000
0x0FEA	CMDR	Clock monitoring data register	R	0b00000000
0x0FEB	WDTH	Watchdog timer selection ID register (upper)	R	0bXXXXXXXX
0x0FEC	WDTL	Watchdog timer selection ID register (lower)	R	0bXXXXXXXX
0x0FED to 0x0FFF	_	(Disabled)	_	_

• R/W access symbols

R/W : Readable/Writable

R : Read only
• Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

■ I/O PORTS

• List of port registers

Register name	Read/Write	Initial value		
Port 0 data register	PDR0	R, RM/W	0b00000000	
Port 0 direction register	DDR0	R/W	0b00000000	
Port 1 data register	PDR1	R, RM/W	0b0000000	
Port 1 direction register	DDR1	R/W	0b0000000	
Port 6 data register	PDR6	R, RM/W	0b00000000	
Port 6 direction register	DDR6	R/W	0b00000000	
Port F data register	PDRF	R, RM/W	0b00000000	
Port F direction register	DDRF	R/W	0b00000000	
Port G data register	PDRG	R, RM/W	0b00000000	
Port G direction register	DDRG	R/W	0b00000000	
Port 0 pull-up register	PUL0	R/W	0b0000000	
Port 6 pull-up register	PUL6	R/W	0b00000000	
Port G pull-up register	PULG	R/W	0b0000000	
A/D input disable register (lower)	AIDRL	R/W	0b0000000	

R/W : Readable/writable (The read value is the same as the write value.)

R, RM/W: Readable/writable (The read value is different from the write value. The write value is read by the read-modify-write (RMW) type of instruction.)

1. Port 0

Port 0 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95650L Series Hardware Manual".

(1) Port 0 configuration

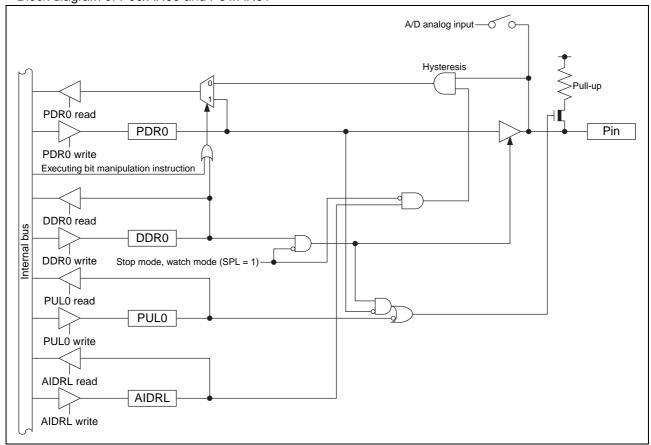
Port 0 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 0 data register (PDR0)
- Port 0 direction register (DDR0)
- Port 0 pull-up register (PUL0)
- A/D input disable register (lower) (AIDRL)

(2) Block diagrams of port 0

• P00/AN00 pin

This pin has the following peripheral function:


• 8/12-bit A/D converter analog input pin (AN00)

• P01/AN01 pin

This pin has the following peripheral function:

• 8/12-bit A/D converter analog input pin (AN01)

• Block diagram of P00/AN00 and P01/AN01

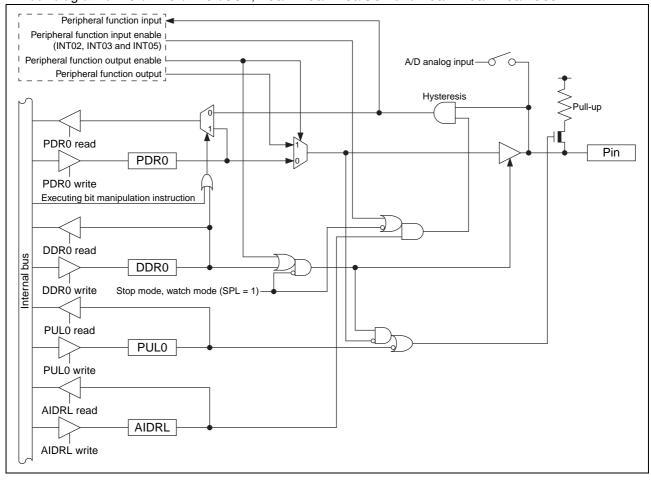
• P02/INT02/AN02/SCK pin

This pin has the following peripheral functions:

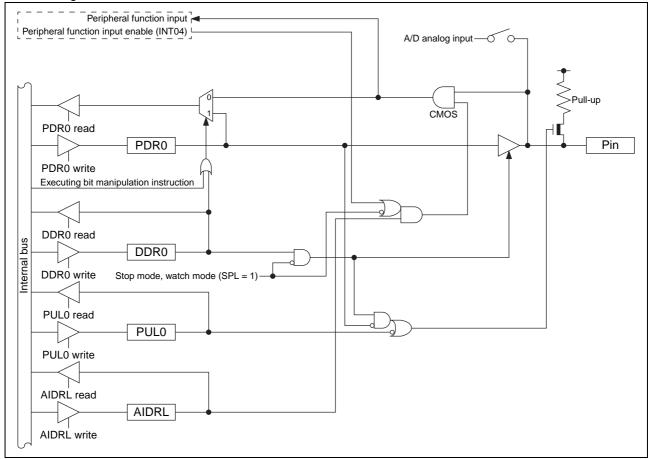
- External interrupt input pin (INT02)
- 8/12-bit A/D converter analog input pin (AN02)
- LIN-UART clock I/O pin (SCK)

• P03/INT03/AN03/SOT pin

This pin has the following peripheral functions:


- External interrupt input pin (INT03)
- 8/12-bit A/D converter analog input pin (AN03)
- LIN-UART data output pin (SOT)

• P05/INT05/AN05/TO00 pin


This pin has the following peripheral functions:

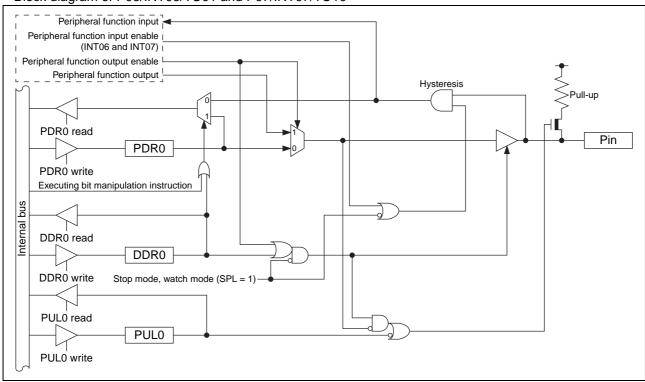
- External interrupt input pin (INT05)
- 8/12-bit A/D converter analog input pin (AN05)
- 8/16-bit composite timer ch. 0 output pin (TO00)

Block diagram of P02/INT02/AN02/SCK, P03/INT03/AN03/SOT and P05/INT05/AN05/TO00

- P04/INT04/AN04/SIN/EC0 pin
 - This pin has the following peripheral functions:
 - External interrupt input pin (INT04)
 - 8/12-bit A/D converter analog input pin (AN04)
 - LIN-UART data input pin (SIN)
 - 8/16-bit composite timer ch. 0 clock input pin (EC0)
- Block diagram of P04/INT04/AN04/SIN/EC0

• P06/INT06/TO01 pin

This pin has the following peripheral functions:


- External interrupt input pin (INT06)
- 8/16-bit composite timer ch. 0 output pin (TO01)

• P07/INT07/TO10 pin

This pin has the following peripheral functions:

- External interrupt input pin (INT07)
- 8/16-bit composite timer ch. 1 output pin (TO10)

• Block diagram of P06/INT06/TO01 and P07/INT07/TO10

(3) Port 0 registers

• Port 0 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDR0	0	Pin state is "L" level.	PDR0 value is "0".	As output port, outputs "L" level.		
	1	Pin state is "H" level.	PDR0 value is "1".	As output port, outputs "H" level.		
DDR0	0	Port input enabled				
	1	Port output enabled				
PUL0	0	Pull-up disabled				
POLO	1	Pull-up enabled				
AIDRL	0	Analog input enabled				
AIDKL	1	Port input enabled				

• Correspondence between registers and pins for port 0

	Correspondence between related register bits and pins								
Pin name	P07	P06	P05	P04	P03	P02	P01	P00	
PDR0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
DDR0									
PUL0									
AIDRL	-	-							

(4) Port 0 operations

- · Operation as an output port
 - A pin becomes an output port if the bit in the DDR0 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR0 register to external pins.
 - If data is written to the PDR0 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR0 register returns the PDR0 register value.

• Operation as an input port

- A pin becomes an input port if the bit in the DDR0 register corresponding to that pin is set to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (lower) (AIDRL) to "1".
- If data is written to the PDR0 register, the value is stored in the output latch but is not output to the pin set as an input port.
- Reading the PDR0 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.

• Operation as a peripheral function output pin

- A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- The pin value can be read from the PDR0 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR0 register.
 However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.

• Operation as a peripheral function input pin

- To set a pin as an input port, set the bit in the DDR0 register corresponding to the input pin of a peripheral function to "0".
- When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRL register corresponding to that pin to "1".
- Reading the PDR0 register returns the pin value, regardless of whether the peripheral function uses that
 pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0
 register, the PDR0 register value is returned.

Operation at reset

If the CPU is reset, all bits in the DDR0 register are initialized to "0" and port input is enabled. As for a pin shared with analog input, its port input is disabled because the AIDRL register is initialized to "0".

· Operation in stop mode and watch mode

- If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR0 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT02 to INT07), the input is enabled and not blocked.
- If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

· Operation as an analog input pin

- Set the bit in the DDR0 register bit corresponding to the analog input pin to "0" and the bit corresponding to that pin in the AIDRL register to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the corresponding bit in the PUL0 register to "0".

• Operation as an external interrupt input pin

36

- Set the bit in the DDR0 register corresponding to the external interrupt input pin to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin.
- Operation of the pull-up register

 Setting the bit in the PUL0 register to "1" makes the pull-up resistor be internally connected to the pin. When
 the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL0 register.

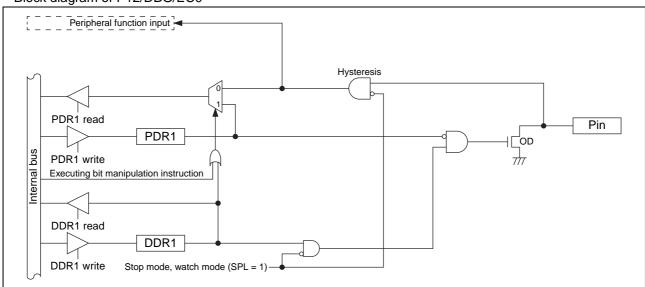
2. Port 1

Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95650L Series Hardware Manual".

(1) Port 1 configuration

Port 1 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 1 data register (PDR1)
- Port 1 direction register (DDR1)


(2) Block diagrams of port 1

• P12/DBG/EC0 pin

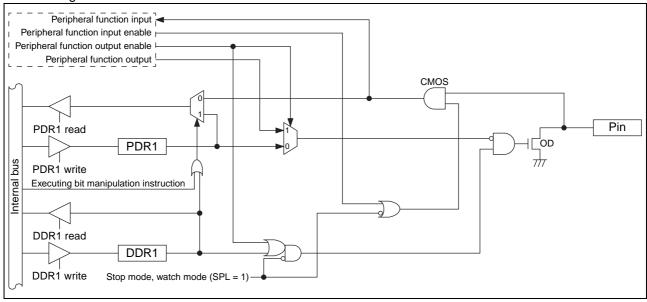
This pin has the following peripheral functions:

- DBG input pin (DBG)
- 8/16-bit composite timer ch. 0 clock input pin (EC0)

• Block diagram of P12/DBG/EC0

• P14/SDA0 pin

This pin has the following peripheral function:

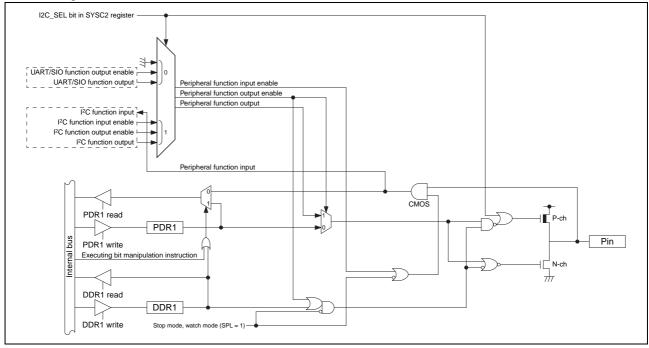

• I²C bus interface ch. 0 data I/O pin (SDA0)

• P15/SCL0 pin

This pin has the following peripheral function:

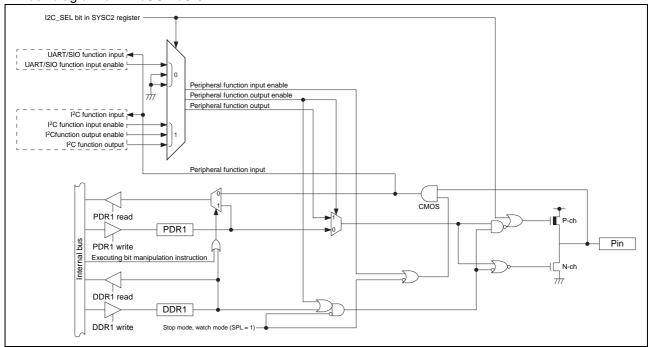
• I2C bus interface ch. 0 clock I/O pin (SCL0)

• Block diagram of P14/SDA0 and P15/SCL0



• P16/SDA1/UO0 pin

This pin has the following peripheral functions:


- I²C bus interface ch. 1 data I/O pin (SDA1)
- UART/SIO ch. 0 data output pin (UO0)

• Block diagram of P16/SDA1/UO0

- P17/SCL1/UI0 pin
 - This pin has the following peripheral functions:
 - I²C bus interface ch. 1 clock I/O pin (SCL1)
 - UART/SIO ch. 0 data input pin (UI0)

• Block diagram of P17/SCL1/UI0

(3) Port 1 registers

• Port 1 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDR1	0	Pin state is "L" level.	PDR1 value is "0".	As output port, outputs "L" level.					
FDICT	1	Pin state is "H" level.	PDR1 value is "1".	As output port, outputs "H" level.*					
DDR1	0		Port input enabled						
1 Port output enabled									

^{*:} If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port 1

		Correspondence between related register bits and pins								
Pin name	P17	P16	P15	P14	-	P12	-	-		
PDR1	bit7	bit6	bit5	bit4		bit2				
DDR1	DILI	DILO	טונט	DIL4	-	DILZ	-	-		

(4) Port 1 operations

- · Operation as an output port
 - A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR1 register to external pins.
 - If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR1 register returns the PDR1 register value.

· Operation as an input port

- A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port.
- Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

• Operation as a peripheral function output pin

- A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR1 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

• Operation as a peripheral function input pin

- To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to "0".
- Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that
 pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1
 register, the PDR1 register value is returned.

· Operation at reset

If the CPU is reset, all bits in the DDR1 register are initialized to "0" and port input is enabled.

Operation in stop mode and watch mode

- If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
- If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

3. Port 6

Port 6 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95650L Series Hardware Manual".

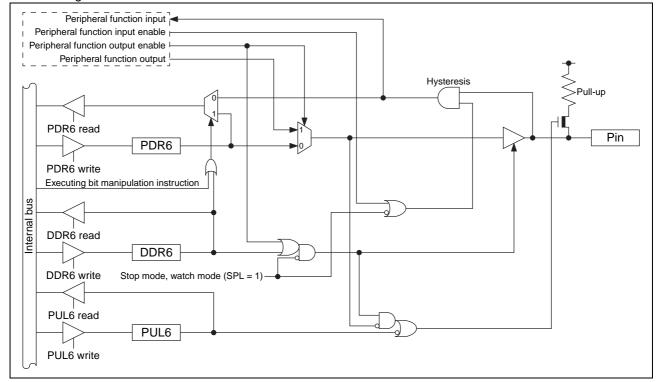
(1) Port 6 configuration

Port 6 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 6 data register (PDR6)
- Port 6 direction register (DDR6)
- Port 6 pull-up register (PUL6)

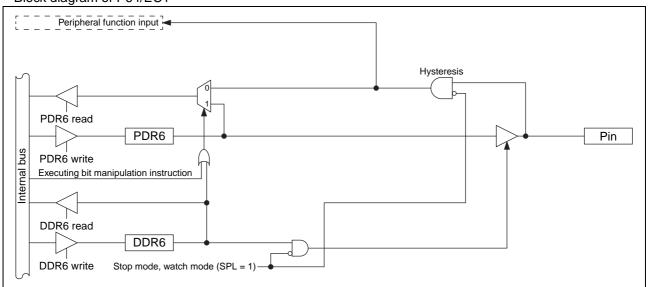
(2) Block diagrams of port 6

• P62/TO10/UCK0 pin


This pin has the following peripheral functions:

- 8/16-bit composite timer ch. 1 output pin (TO10)
- UART/SIO ch. 0 clock I/O pin (UCK0)
- P63/TO11 pin

This pin has the following peripheral function:


• 8/16-bit composite timer ch. 1 output pin (TO11)

• Block diagram of P62/TO10/UCK0 and P63/TO11

- P64/EC1 pin
 - This pin has the following peripheral function:
 - 8/16-bit composite timer ch. 1 clock input pin (EC1)

• Block diagram of P64/EC1

(3) Port 6 registers

• Port 6 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDR6	0	Pin state is "L" level.	PDR6 value is "0".	As output port, outputs "L" level.					
1		Pin state is "H" level.	PDR6 value is "1".	As output port, outputs "H" level.*					
DDR6	0		Port input enabled						
DDRO	1	Port output enabled							
PUL6	0		Pull-up disabled						
FOLO	1	Pull-up enabled							

^{*:} If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port 6

		Correspondence between related register bits and pins								
Pin name	-	-	-	P64	P63	P62	-	-		
PDR6										
DDR6	-	-	-	bit4	bit3	bit2	-	-		
PUL6										

(4) Port 6 operations

- · Operation as an output port
 - A pin becomes an output port if the bit in the DDR6 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR6 register to external pins.
 - If data is written to the PDR6 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR6 register returns the PDR6 register value.

· Operation as an input port

- A pin becomes an input port if the bit in the DDR6 register corresponding to that pin is set to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- If data is written to the PDR6 register, the value is stored in the output latch but is not output to the pin set as an input port.
- Reading the PDR6 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.

• Operation as a peripheral function output pin

- A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- The pin value can be read from the PDR6 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR6 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.

• Operation as a peripheral function input pin

- To set a pin as an input port, set the bit in the DDR6 register corresponding to the input pin of a peripheral function to "0".
- Reading the PDR6 register returns the pin value, regardless of whether the peripheral function uses that
 pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6
 register, the PDR6 register value is returned.

· Operation at reset

If the CPU is reset, all bits in the DDR6 register are initialized to "0" and port input is enabled.

• Operation in stop mode and watch mode

- If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR6 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
- If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

• Operation of the pull-up register

Setting the bit in the PUL6 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL6 register.

4. Port F

Port F is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95650L Series Hardware Manual".

(1) Port F configuration

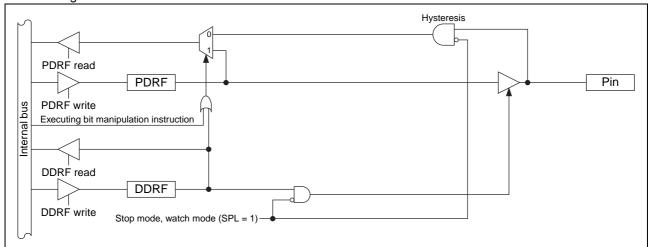
Port F is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port F data register (PDRF)
- Port F direction register (DDRF)

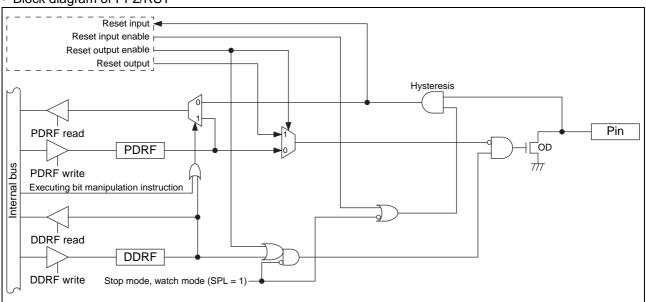
(2) Block diagrams of port F

• PF0/X0 pin

This pin has the following peripheral function:


• Main clock input oscillation pin (X0)

• PF1/X1 pin


This pin has the following peripheral function:

• Main clock I/O oscillation pin (X1)

Block diagram of PF0/X0 and PF1/X1

- PF2/RST pin
 - This pin has the following peripheral function:
 - Reset pin (RST)
- Block diagram of PF2/RST

(3) Port F registers

48

• Port F register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDRF	0	Pin state is "L" level.	PDRF value is "0".	As output port, outputs "L" level.					
FDIXI	1	Pin state is "H" level.	PDRF value is "1".	As output port, outputs "H" level.*					
DDRF	0		Port input enabled						
1 Port output enabled									

^{*:} If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port F

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	-	PF2*	PF1	PF0		
PDRF			_	_		bit2	bit1	bit0		
DDRF	-	-	-	-	-	DILZ	DILI	bito		

^{*:} PF2/RST is the dedicated reset pin on MB95F652L/F653L/F654L/F656L.

(4) Port F operations

- · Operation as an output port
 - A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRF register to external pins.
 - If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDRF register returns the PDRF register value.

· Operation as an input port

- A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.
- Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned.

Operation at reset

If the CPU is reset, all bits in the DDRF register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

5. Port G

Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95650L Series Hardware Manual".

(1) Port G configuration

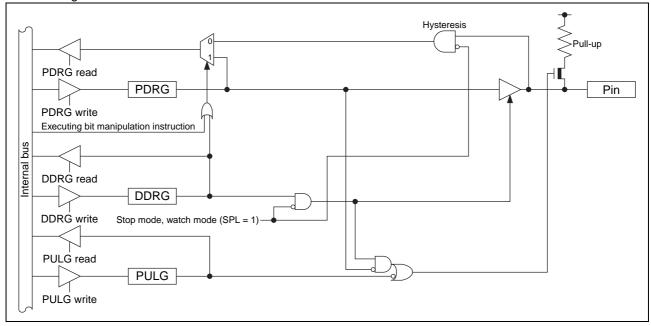
Port G is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port G data register (PDRG)
- Port G direction register (DDRG)
- Port G pull-up register (PULG)

(2) Block diagram of port G

• PG1/X0A pin

This pin has the following peripheral function:


• Subclock input oscillation pin (X0A)

• PG2/X1A pin

This pin has the following peripheral function:

• Subclock I/O oscillation pin (X1A)

• Block diagram of PG1/X0A and PG2/X1A

(3) Port G registersPort G register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDRG	0	Pin state is "L" level.	PDRG value is "0".	As output port, outputs "L" level.					
1		Pin state is "H" level.	PDRG value is "1".	As output port, outputs "H" level.					
DDRG	0		Port input enabled	d					
DDKG	1	Port output enabled							
PULG	0		Pull-up disabled						
FULG	1								

• Correspondence between registers and pins for port G

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	-	PG2	PG1	-		
PDRG										
DDRG	-	-	-	-	-	bit2	bit1	-		
PULG										

(4) Port G operations

- · Operation as an output port
 - A pin becomes an output port if the bit in the DDRG register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRG register to external pins.
 - If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDRG register returns the PDRG register value.

· Operation as an input port

- A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to "0".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an input port.
- Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.

· Operation at reset

If the CPU is reset, all bits in the DDRG register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

• Operation of the pull-up register

Setting the bit in the PULG register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PULG register.

■ INTERRUPT SOURCE TABLE

1	Interrupt		r table ress		pt level register	Priority order of interrupt sources
Interrupt source	request number	Upper	Lower	Register	Bit	of the same level (occurring simultaneously)
External interrupt ch. 4	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High
External interrupt ch. 5	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]	Ă
External interrupt ch. 2	IDOOO	OVEEE	0xFFF7	ILR0	1.02 [4.0]	Ī
External interrupt ch. 6	IRQ02	0xFFF6	UXFFF1	ILKU	L02 [1:0]	
External interrupt ch. 3	IDOOS	0.45554	0 5555	U D0	1.03 [1.0]	
External interrupt ch. 7	IRQ03	0xFFF4	0xFFF5	ILR0	L03 [1:0]	
Low-voltage detection interrupt circuit	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]	
UART/SIO ch. 0						
8/16-bit composite timer ch. 0 (lower)	IRQ05	0xFFF0	0xFFF1	ILR1	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	0xFFEE	0xFFEF	ILR1	L06 [1:0]	
LIN-UART (reception)	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]	
LIN-UART (transmission)	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]	
_	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]	
I ² C bus interface ch. 1	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]	
_	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]	
_	IRQ12	0xFFE2	0xFFE3	ILR3	L12 [1:0]	
_	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]	
8/16-bit composite timer ch. 1 (upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]	
_	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]	
I ² C bus interface ch. 0	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]	
_	IRQ17	0xFFD8	0xFFD9	ILR4	L17 [1:0]	
8/12-bit A/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]	
Time-base timer	IRQ19	0xFFD4	0xFFD5	ILR4	L19 [1:0]	
Watch prescaler	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]	
_	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]	
8/16-bit composite timer ch. 1 (lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]	
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	Low

■ PIN STATES IN EACH MODE

54

D:	Normal	01	Stop	mode	Watch	mode	0
Pin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	- On reset
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PF0/X0	I/O port*1	I/O port*1	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1, *2	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1,*2	- Hi-Z - Input enabled* ³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PF1/X1	I/O port*1	I/O port*1	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1, *2	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1,*2	- Hi-Z - Input enabled* ³ (However, it does not function.)
	Reset input	Reset input	Reset input	Reset input	Reset input	Reset input	Reset input*4
PF2/ RST	I/O port*1	I/O port*1	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1, *2	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1,*2	- Hi-Z - Input enabled* ³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PG1/X0A	I/O port*1	I/O port*1	 Previous state kept Input blocked*1, *2 	- Hi-Z - Input blocked*1, *2	 Previous state kept Input blocked*1, *2 	- Hi-Z - Input blocked*1, *2	- Hi-Z - Input enabled*3 (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PG2/X1A	I/O port*1	I/O port*1	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1,*2	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked*1,*2	- Hi-Z - Input enabled* ³ (However, it does not function.)
P00/AN00							
P01/AN01 P02/INT02/ AN02/SCK							
P03/INT03/ AN03/SOT	I/O port/ peripheral function I/O/	I/O port/ peripheral function I/O/	Previous state keptInput	- Hi-Z* ⁶ - Input	Previous state keptInput	- Hi-Z* ⁶ - Input	- Hi-Z - Input
	analog input	analog input	blocked* ^{2, *5}	blocked*2, *5	blocked*2, *5	blocked* ^{2, *5}	blocked*2
P05/INT05/ AN05/TO00							
1001	I/O port/ peripheral	I/O port/ peripheral	- Previous state kept	- Hi-Z* ⁶ - Input	- Previous state kept	- Hi-Z* ⁶ - Input	- Hi-Z - Input
P07/INT07/ TO10	function I/O	function I/O	- Input blocked*2, *5	blocked*2, *5	- Input blocked*2, *5	blocked*2, *5	blocked*2

(Continued)

Pin name	Normal	Sleep mode	Stop	mode	Watch	mode	On reset
Fill Hallie	operation	Sieep illoue	SPL=0	SPL=1	SPL=0	SPL=1	Onreset
P14/SDA0							- Hi-Z
P15/SCL0	I/O port/	I/O port/	- Previous state	- Hi-Z	- Previous state	- Hi-Z	- Input
P16/SDA1/	peripheral func-	peripheral func- tion I/O	kept - Input blocked*2, *7	- Input blocked*2,*7	kept - Input	- Input blocked*2,*7	enabled*3 (However, it
P17/SCL1/ UI0		blocked 2.47			blocked*2,*7		does not function.)
P12/DBG/ EC0							- Hi-Z - Input
UCK0	peripheral	I/O port/ peripheral function I/O	 Previous state kept Input blocked*2 	- Hi-Z - Input blocked*2	 Previous state kept Input blocked*2 	 Hi-Z Input blocked*² 	enabled*3 (However, it
P63/TO11	iunction i/O	iunction i/O	- iriput biocked -	Diocked -	- Input blocked -	Diocked -	does not
P64/EC1							function.)

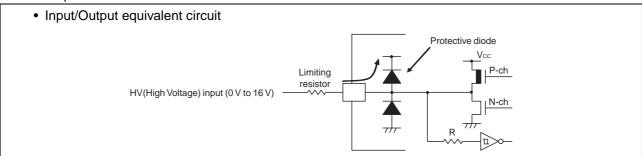
SPL: Pin state setting bit in the standby control register (STBC:SPL)

Hi-Z: High impedance

- *1: The pin stays at the state shown when configured as a general-purpose I/O port.
- *2: "Input blocked" means direct input gate operation from the pin is disabled.
- *3: "Input enabled" means that the input function is enabled. While the input function is enabled, perform a pullup or pull-down operation in order to prevent leaks due to external input. If a pin is used as an output port, its pin state is the same as that of other ports.
- *4: The PF2/RST pin stays at the state shown when configured as a reset pin.
- *5: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled.
- *6: The pull-up control setting is still effective.
- *7: The I²C bus interface can wake up the MCU in stop mode or watch mode when its MCU standby mode wakeup function is enabled. For details of the MCU standby mode wakeup function, refer to "CHAPTER 19 I²C BUS INTERFACE" in "New 8FX MB95650L Series Hardware Manual".

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings


Daramatar	Symbol	Rat	ing	Unit	Domarko
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6	V	
Input voltage*1	Vı	Vss - 0.3	Vss + 6	V	*2
Output voltage*1	Vo	Vss - 0.3	Vss + 6	V	*2
Maximum clamp current	ICLAMP	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	$\Sigma ICLAMP $	_	20	mA	Applicable to specific pins*3
"L" level maximum output current	lol	_	15	mA	
"I" lovel everage current	lolav1		4	mΛ	Other than P05 to P07, P62 and P63 Average output current = operating current × operating ratio (1 pin)
"L" level average current	lolav2		12	- mA	P05 to P07, P62 and P63 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	Σ lolav		37	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output current	Іон	_	-15	mA	
"H" level average current	lohav1		-4		Other than P05 to P07, P62 and P63 Average output current = operating current × operating ratio (1 pin)
Tr Tever average current	lohav2		-8	mA .	P05 to P07, P62 and P63 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current	ΣΙοнαν	_	-47	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	_	320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1:} These parameters are based on the condition that Vss is 0.0 V.

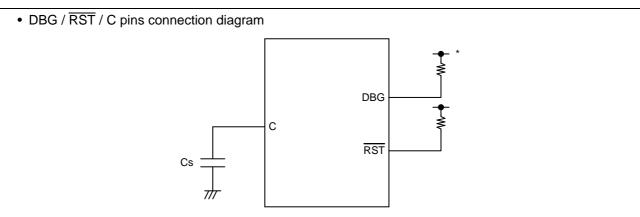
^{*2:} V_1 and V_0 must not exceed $V_{CC} + 0.3$ V. V_1 must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_1 rating.

(Continued)

- *3: Specific pins: P00 to P07, P14, P15, P62 to P64, PF0, PF1, PG1, PG2
 - Use under recommended operating conditions.
 - Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - Do not leave the HV (High Voltage) input pin unconnected.
 - Example of a recommended circuit:

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.

Do not exceed any of these ratings.


2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks	
raiailletei	Symbol	Min	Max	Offic	iveillai ka	
Power supply voltage	Vcc	1.8*1	5.5	V	In normal operation	
Decoupling capacitor	Cs	0.2	10	μF	A capacitor of about 1.0 μF is recommended. *2	
Operating temperature	TA	-40	+85	°C	Other than on-chip debug mode	
Operating temperature	IA	+5	+35		On-chip debug mode	

^{*1:} The minimum power supply voltage becomes 2.18 V when a product with the low-voltage detection reset is used or when the on-chip debug mode is used.

^{*2:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. For the connection to a decoupling capacitor Cs, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.

*: Connect the DBG pin to an external pull-up resistor of $2 \text{ k}\Omega$ or above. After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

3. DC Characteristics

 $(Vcc = 3.0 V\pm 10\%, Vss = 0.0 V, TA = -40 °C to +85 °C)$

			`		Value			
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	V _{IHI1}	P04, P16, P17	*1	0.7 Vcc	_	Vcc + 0.3	V	CMOS input level
	V _{IHI2}	P14, P15	*1	0.7 Vcc	_	Vcc + 5.5	V	CMOS input level
"H" level input voltage	Vihs	P00 to P03, P05 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	Vінм	PF2	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	VILI	P04, P14 to P17	*1	Vss - 0.3	_	0.3 Vcc	V	CMOS input level
"L" level input voltage	VILS	P00 to P03, P05 to P07, P12, P62 to P64, PF0, PF1, PG1, PG2	*1	Vss - 0.3	_	0.2 Vcc	V	Hysteresis input
	VILM	PF2	_	Vss - 0.3		0.2 Vcc	V	Hysteresis input
Open-drain	V _{D1}	P12, PF2	_	Vss - 0.3	_	Vss + 5.5	V	
output	V _{D2}	P14, P15	_	Vss - 0.3	_	Vss + 5.5	V	
application voltage	V _{D3}	P16, P17	_	Vss - 0.3	_	Vss + 5.5	V	In I ² C mode
"H" level	Voн1	Output pins other than P05 to P07, P12, P62, P63	Iон = −4 mA*²	Vcc – 0.5	_	_	V	
voltage	V _{OH2}	P05 to P07, P62, P63	Iон = -8 mA*3	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol1	Output pins other than P05 to P07, P62, P63	IoL = 4 mA*4	_	_	0.4	V	
Voltage	Vol2	P05 to P07, P62, P63	IoL = 12 mA*5	_		0.4	٧	
Input leak current (Hi-Z output leak current)	lы	All input pins	0.0 V < Vı < Vcc	-5	_	+5	μΑ	When the internal pull-up resistor is disabled
Internal pull-up resistor	Rpull	P00 to P07, P62 to P64, PG1, PG2	Vı = 0 V	75	100	150	kΩ	When the internal pull-up resistor is enabled
Input capacitance	Cin	Other than Vcc and Vss	f = 1 MHz	_	5	15	pF	

60

(Vcc = 3.0 V \pm 10%, Vss = 0.0 V, TA = -40 °C to +85 °C)

D	0	D'	0 1111		Value		11	Dament a
Parameter	Symbol	Pin name	Condition	Min	Typ*1	Max*6	Unit	Remarks
			Fcн = 32 МНz	_	4.2	6.8	mA	Except during Flash memory programming and erasing
	lcc		FMP = 16 MHz Main clock mode (divided by 2)	_	9.3	14.7	mA	During Flash memory programming and erasing
				_	6	10	mΑ	At A/D conversion
	Iccs	Vcc	FCH = 32 MHz FMP = 16 MHz Main sleep mode (divided by 2)	_	1.7	3	mA	
	IccL	(External clock operation)	FCL = 32 kHz FMPL = 16 kHz Subclock mode (divided by 2) TA = +25 °C	_	35	60	μΑ	
Power supply current*7	Iccis		Fcl = 32 kHz FMPl = 16 kHz Subsleep mode (divided by 2) TA = +25 °C	_	2	7	μA	
	Ісст		F _{CL} = 32 kHz Watch mode Main stop mode T _A = +25 °C	_	1	6	μΑ	
	ICCMCRPLL		FMCRPLL = 16 MHz FMP = 16 MHz Main CR PLL clock mode (multiplied by 4)	_	4.3	7.7	mA	
	ICCMPLL	M	FMPLL = 16 MHz FMP = 16 MHz Main PLL clock mode (multiplied by 4)	_	4.1	7	mA	
	Іссмск		FCRH = 4 MHz FMP = 4 MHz Main CR clock mode	_	1.5	3	mA	
	Iccscr		Sub-CR clock mode (divided by 2) T _A = +25 °C	_	50	100	μΑ	

 $(Vcc = 3.0 V\pm 10\%, Vss = 0.0 V, TA = -40 °C to +85 °C)$

Davamatar	Cumbal	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min	Typ*1	Max*6	Unit	Remarks
	Ісстѕ	Vcc (External clock operation)	Fch = 32 MHz Time-base timer mode TA = +25 °C	_	450	500	μΑ	
	Іссн	operation)	Substop mode T _A = +25 °C	_	0.7	5	μΑ	
	IPLVD		Current consumption of the low-voltage detection reset circuit in operation	_	6	26	μΑ	
Power	lilvd		Current consumption of the low-voltage detection interrupt circuit operating in normal mode	_	6	14	μΑ	
supply current* ⁷	lilvdl	Vcc	Current consumption of the low-voltage detection interrupt circuit operating in low power consumption mode	_	3	10	μΑ	
	Іспн		Current consumption of the main CR oscillator		270	320	μΑ	
	Icrl		Current consumption of the sub-CR oscillator oscillating at 100 kHz	_	5	20	μΑ	
	Isosc		Current consumption of the suboscillator	_	0.8	7	μΑ	

^{*1:} $Vcc = 3.0 \text{ V}, T_A = +25 \text{ }^{\circ}\text{C}$

^{*2:} When Vcc is smaller than 4.5 V, the condition becomes IoH = -2 mA.

^{*3:} When Vcc is smaller than 4.5 V, the condition becomes IOH = -4 mA.

^{*4:} When Vcc is smaller than 4.5 V, the condition becomes IoL = 2 mA.

^{*5:} When Vcc is smaller than 4.5 V, the condition becomes IoH = 6 mA.

^{*6:} Vcc = 3.3 V, $T_A = +85 \text{ °C}$ (unless otherwise specified)

(Continued)

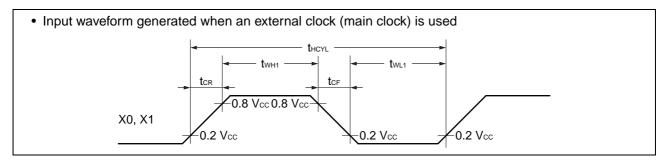
62

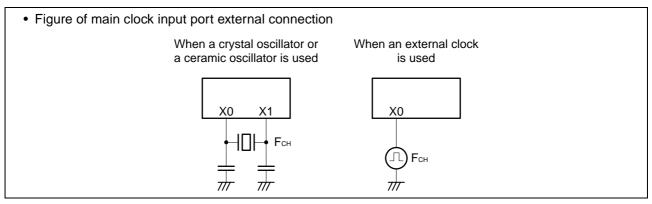
- *7: The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (IPLVD) to one of the values from Icc to Icch. In addition, when the low-voltage detection reset circuit and a CR oscillator are selected, the power supply current is the sum of adding up the current consumption of the low-voltage detection reset circuit (IPLVD), the current consumption of the CR oscillator (ICRH or ICRL) and one of the values from Icc to Icch. In on-chip debug mode, the main CR oscillator (ICRH) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases accordingly.
 - See "4. AC Characteristics (1) Clock Timing" for Fch, Fcl, Fcrh, Fmcrpll and Fmpll.
 - See "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.
 - The power supply current in subclock mode is determined by the external clock. In subclock mode, current
 consumption in using the crystal oscillator is higher than that in using the external clock. When the crystal
 oscillator is used, the power supply current is the sum of adding Isosc (current consumption of the suboscillator) to the power supply current in using the external clock. For details of controlling the subclock, refer
 to "CHAPTER 3 CLOCK CONTROLLER" and "CHAPTER 24 SYSTEM CONFIGURATION REGISTER"
 in "New 8FX MB95650L Series Hardware Manual".

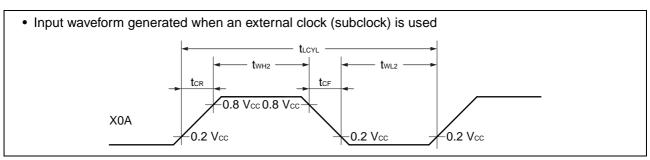
4. AC Characteristics

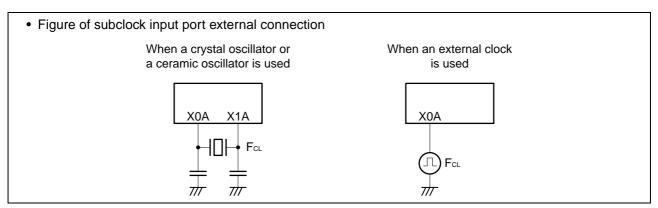
(1) Clock Timing

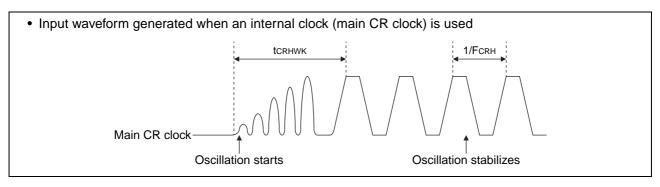
 $(Vcc = 1.8 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

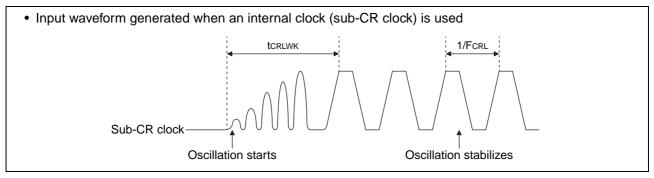

				,	Value			- 0.0 V, TA = -40 C to +03 C)
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
		X0, X1	_	1		16.25	MHz	When the main oscillation circuit is used
	Fсн	X0	_	1	_	32.5	MHz	When the main external clock is used
		X0, X1	_	_	4	_	MHz	When the main PLL clock is used
				3.92	4	4.08	MHz	 Operating conditions The main CR clock is used. 0 °C ≤ TA ≤ +70 °C
	Fcrh	_	_	3.8	4	4.2	MHz	Operating conditions • The main CR clock is used. • -40 °C ≤ T _A < 0 °C, +70 °C < T _A ≤ +85 °C
				7.84	8	8.16	MHz	Operating conditions • PLL multiplication rate: 2 • 0 °C ≤ T _A ≤ +70 °C
				7.6	8	8.4	MHz	Operating conditions • PLL multiplication rate: 2 • -40 °C ≤ TA < 0 °C, +70 °C < TA ≤ +85 °C
Clock frequency				9.8	10	10.2	MHz	Operating conditions • PLL multiplication rate: 2.5 • 0 °C ≤ T _A ≤ +70 °C
				9.5	10	10.5	MHz	Operating conditions • PLL multiplication rate: 2.5 • −40 °C ≤ T _A < 0 °C, +70 °C < T _A ≤ +85 °C
	FMCRPLL			11.76	12	12.24	MHz	Operating conditions • PLL multiplication rate: 3 • 0 °C ≤ TA ≤ +70 °C
				11.4	12	12.6	MHz	Operating conditions • PLL multiplication rate: 3 • −40 °C ≤ T _A < 0 °C, +70 °C < T _A ≤ +85 °C
				15.68	16	16.32	MHz	 Operating conditions PLL multiplication rate: 4 0 °C ≤ T_A ≤ +70 °C
				15.2	16	16.8	MHz	Operating conditions • PLL multiplication rate: 4 • −40 °C ≤ T _A < 0 °C, +70 °C < T _A ≤ +85 °C
	FMPLL	_	_	8	_	16	MHz	When the main PLL clock is used

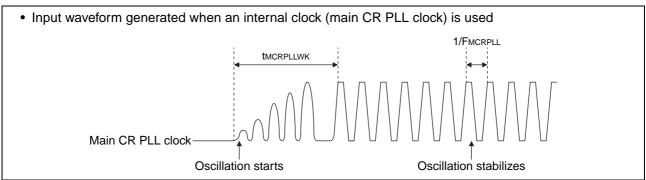

(Continued)


64


(Vcc = 1.8 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)


Parameter	Cumbal	Pin name	Candition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	FcL	X0A, X1A			32.768	_	kHz	When the suboscillation circuit is used
Clock frequency	FCL	AUA, ATA	_	_	32.768	_	kHz	When the sub-external clock is used
	FCRL	_	_	50	100	150	kHz	When the sub-CR clock is used
		X0, X1	_	61.5	_	1000	ns	When the main oscillation circuit is used
Clock cycle time	t HCYL	X0	_	30.8	_	1000	ns	When an external clock is used
unie		X0, X1	_	_	250		ns	When the main PLL clock is used
	tLCYL	X0A, X1A	_	_	30.5	_	μs	When the subclock is used
	twH1, twL1	X0		12.4				When an external clock is used, the duty ratio should range between 40% and 60%.
Input clock pulse width		X0, X1	_	_	125	_	ns	When the main PLL clock is used
	twH2, twL2	X0A	_	_	15.2	ı	μs	When an external clock is used, the duty ratio should range between 40% and 60%.
Input clock rising time and falling time	tcr, tcf	X0, X0A		_		5	ns	When an external clock is used
CR oscillation	t CRHWK	_	_	_	_	50	1110	When the main CR clock is used
start time	t CRLWK	_	_		_	30	μs	When the sub-CR clock is used
PLL oscillation start time	t MCRPLLWK	_	_	_	_	100	μs	When the main CR PLL clock is used





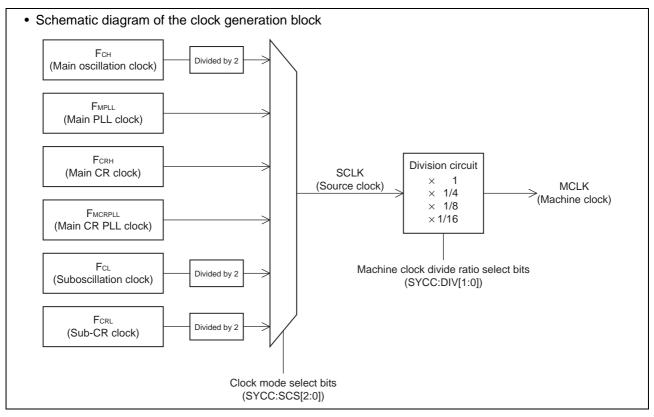
(2) Source Clock/Machine Clock

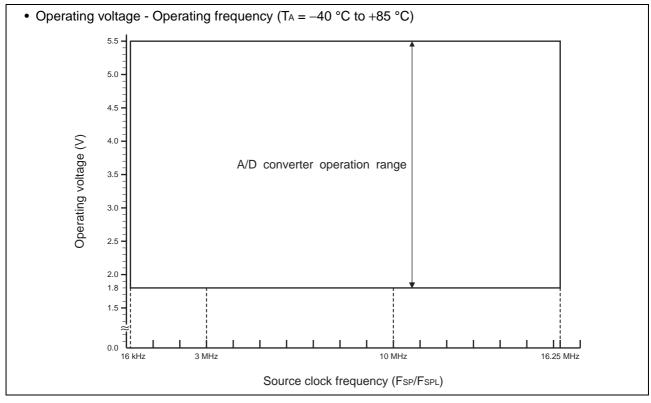
(Vcc = 1.8 V to 5.5 V, Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

_		Pin		Value	•		
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
			61.5	_	2000	ns	When the main external clock is used Min: FcH = 32.5 MHz, divided by 2 Max: FcH = 1 MHz, divided by 2
			_	250	_	ns	When the main CR clock is used
Source clock	tsclk	_	62.5	_	250	ns	When the main PLL clock is used Min: FcH = 4 MHz, multiplied by 4 Max: FcH = 4 MHz, no division
cycle time*1	ISCLK		62.5	_	250	ns	When the main CR PLL clock is used Min: Fcrh = 4 MHz, multiplied by 4 Max: Fcrh = 4 MHz, no division
				61		μs	When the suboscillation clock is used FcL = 32.768 kHz, divided by 2
			_	20	_	μs	When the sub-CR clock is used FCRL = 100 kHz, divided by 2
	Fsp		0.5	_	16.25	MHz	When the main oscillation clock is used
		_	_	4	_	MHz	When the main CR clock is used
Source clock			4		16	MHz	When the main PLL clock is used
frequency			4		16	MHz	When the main CR PLL clock is used
	Fspl			16.384	1	kHz	When the suboscillation clock is used
			1	50	1	kHz	When the sub-CR clock is used FCRL = 100 kHz, divided by 2
			61.5	_	32000	ns	When the main oscillation clock is used Min: Fsp = 16.25 MHz, no division Max: Fsp = 0.5 MHz, divided by 16
			250	_	4000	ns	When the main CR clock is used Min: Fsp = 4 MHz, no division Max: Fsp = 4 MHz, divided by 16
Machine clock cycle time*2	4		62.5	_	4000	ns	When the main PLL clock is used Min: Fsp = 4 MHz, multiplied by 4 Max: Fsp = 4 MHz, divided by 16
(minimum instruction execution time)	tмськ		62.5	_	4000	ns	When the main CR PLL clock is used Min: Fsp = 4 MHz, multiplied by 4 Max: Fsp = 4 MHz, divided by 16
			61	_	976.5	μs	When the suboscillation clock is used Min: Fspl = 16.384 kHz, no division Max: Fspl = 16.384 kHz, divided by 16
			20	_	320	μs	When the sub-CR clock is used Min: Fspl = 50 kHz, no division Max: Fspl = 50 kHz, divided by 16

(Continued)

 $(Vcc = 1.8 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

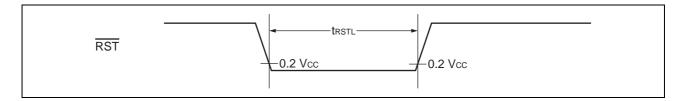

Parameter	Symbol	Pin	Value			Unit	Remarks
lalameter		name	Min	Тур	Max	Oilit	ixemarks
			0.031	_	16.25	MHz	When the main oscillation clock is used
	FмP		0.25	_	4	MHz	When the main CR clock is used
Machine clock			0.25	_	16	MHz	When the main PLL clock is used
frequency		_	0.25	_	16	MHz	When the main CR PLL clock is used
			1.024	_	16.384	kHz	When the suboscillation clock is used
	FMPL		3.125	_	50	I KH7	When the sub-CR clock is used FCRL = 100 kHz


^{*1:} This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- PLL multiplication of main clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Main CR clock
- PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Subclock divided by 2
- Sub-CR clock divided by 2

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

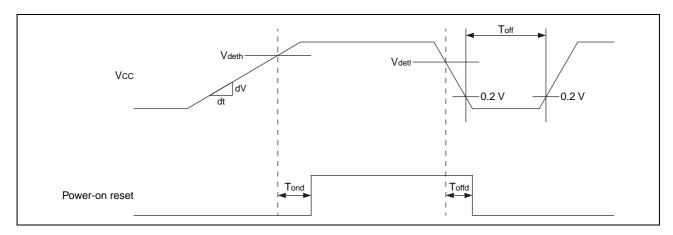
^{*2:} This is the operating clock of the microcontroller. A machine clock can be selected from the following.



(3) External Reset

(Vcc = 3.0 V to 5.5 V, Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

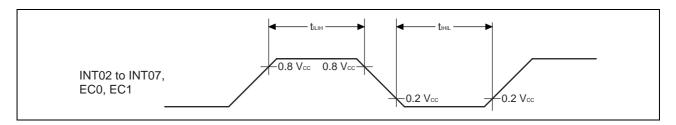
Parameter	Symbol	Value		Unit	Remarks	
Parameter	Symbol	Min	Max	Offic	i/cilial k2	
RST "L" level ulse width	trstl	2 tmcLK*	_	ns		


^{*:} See "(2) Source Clock/Machine Clock" for tmclk.

(4) Power-on Reset

(Vss = 0.0 V, TA = -40 °C to +85 °C)

Parameter	Symbol	Pin		Value		Unit	Remarks
Faranietei	Syllibol	name	Min	Тур	Max	Oilit	Kemarks
Power supply rising time	dV/dt		0.1		_	V/ms	
Power supply cutoff time	Toff		1	-	_	ms	
Reset release voltage	Vdeth	Vcc	1.44	1.60	1.76	V	At voltage rise
Reset detection voltage	Vdetl	VCC	1.39	1.55	1.71	V	At voltage fall
Reset release delay time	Tond		_	-	10	ms	dV/dt ≥ 0.1 mV/µs
Reset detection delay time	Toffd		_	_	0.4	ms	dV/dt ≥ −0.04 mV/μs



(5) Peripheral Input Timing

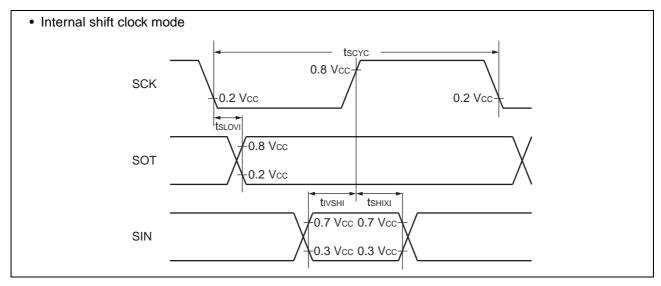
(Vcc = 3.0 V to 5.5 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

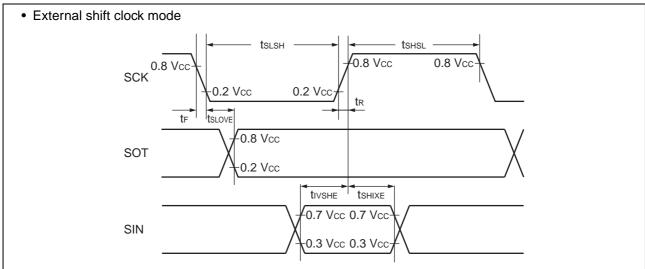
Parameter	Symbol	Pin name	Val	Unit	
	Syllibol	Fill flame	Min	Max	Ollit
Peripheral input "H" pulse width	tılıн	INT02 to INT07, EC0, EC1	2 t мськ*	_	ns
Peripheral input "L" pulse width	tıнıL	11102 10 11107, EGO, EGT	2 tmclk*	_	ns

^{*:} See "(2) Source Clock/Machine Clock" for tmclk.

(6) LIN-UART Timing

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is disabled*². (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)


 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

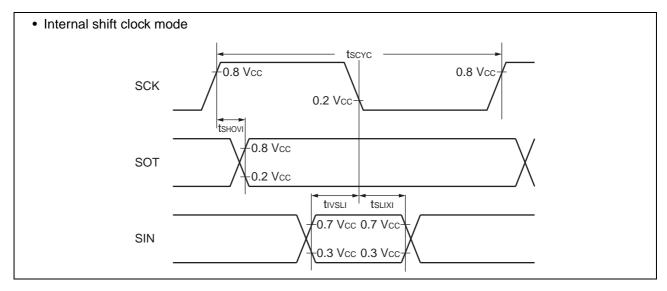

Parameter	Symbol	Pin name	Condition	Va	lue	Unit
Parameter	Symbol	Fin name	Condition	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK\!\!\downarrow \to SOT$ delay time	tslovi	SCK, SOT	Internal clock operation output pin:	-50	+50	ns
Valid SIN → SCK↑	tıvsнı	SCK, SIN	C _L = 80 pF + 1 TTL	tmcLK*3 + 80	_	ns
$SCK^{\uparrow} \rightarrow valid SIN hold time$	t shixi	SCK, SIN	'	0	_	ns
Serial clock "L" pulse width	t slsh	SCK		3 tмськ*3—tr	_	ns
Serial clock "H" pulse width	tshsl	SCK		tmclk*3 + 10	_	ns
$SCK\!\!\downarrow \to SOT$ delay time	tslove	SCK, SOT	External clock	_	2 tмськ*3 + 60	ns
Valid SIN → SCK↑	tivshe	SCK, SIN	operation output pin:	30	_	ns
SCK [↑] → valid SIN hold time	tshixe	SCK, SIN	C _L = 80 pF + 1 TTL	tmcLK*3 + 30	_	ns
SCK fall time	tF	SCK		_	10	ns
SCK rise time	t R	SCK			10	ns

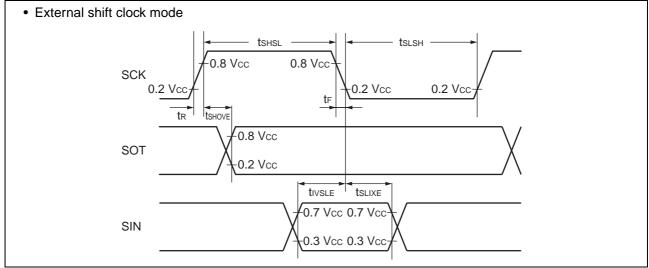
^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

^{*3:} See "(2) Source Clock/Machine Clock" for tmclk.

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is disabled*². (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

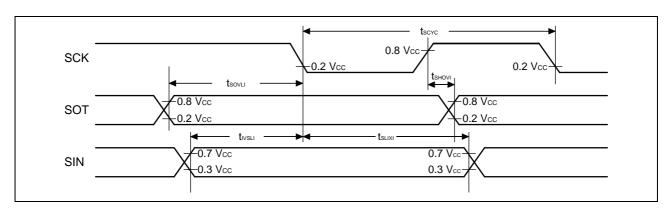

 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	Va	lue	Unit
raiailletei	Symbol	Fili Ilaille	Condition	Min	Max	Oilit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK^{\uparrow} \rightarrow SOT$ delay time	tshovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN → SCK \downarrow	tıvslı	SCK, SIN	operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	tmcLK*3 + 80	_	ns
$SCK \downarrow \rightarrow valid SIN hold time$	t slixi	SCK, SIN	'	0	_	ns
Serial clock "H" pulse width	tshsl	SCK		3 tмсLк*3 − tR	_	ns
Serial clock "L" pulse width	t slsh	SCK		tmcLK*3 + 10	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	tshove	SCK, SOT	External clock	_	2 tмськ*3 + 60	ns
Valid SIN \rightarrow SCK↓	tivsle	SCK, SIN	operation output pin:	30	_	ns
SCK↓→ valid SIN hold time	tslixe	SCK, SIN	C∟ = 80 pF + 1 TTL	tmcLK*3 + 30	_	ns
SCK fall time	tF	SCK		_	10	ns
SCK rise time	t R	SCK		_	10	ns

^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

^{*3:} See "(2) Source Clock/Machine Clock" for tmclk.


Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is enabled*². (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

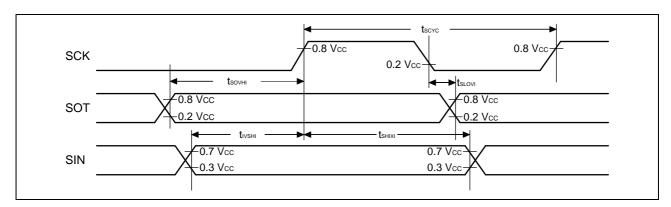
 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	Unit	
rarameter			Condition	Min	Max	Omit
Serial clock cycle time	tscyc	SCK	Internal clock	5 t мськ* ³	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	tshovi	SCK, SOT		-50	+50	ns
Valid SIN → SCK \downarrow	tıvslı	SCK, SIN	operation output pin:	tmcLK*3 + 80	_	ns
$SCK \downarrow \rightarrow valid SIN hold time$	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	_	ns
SOT → SCK↓delay time	tsovli	SCK, SOT		3tмськ*3 - 70	_	ns

^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

^{*3:} See "(2) Source Clock/Machine Clock" for tmclk.

^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.


Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled*². (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 \text{ °C to } +85 \text{ °C})$

Parameter	Cumbal	Pin name	Condition	Va	Unit	
Parameter	Symbol		Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK{\downarrow} o SOT$ delay time	tslovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN → SCK↑	tıvsнı	SCK, SIN	operation output pin:	tmcLK*3 + 80	_	ns
$SCK^{\uparrow} \rightarrow valid SIN hold time$	t shixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	_	ns
SOT → SCK [↑] delay time	tsovні	SCK, SOT		3tмськ*3 - 70		ns

^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

78

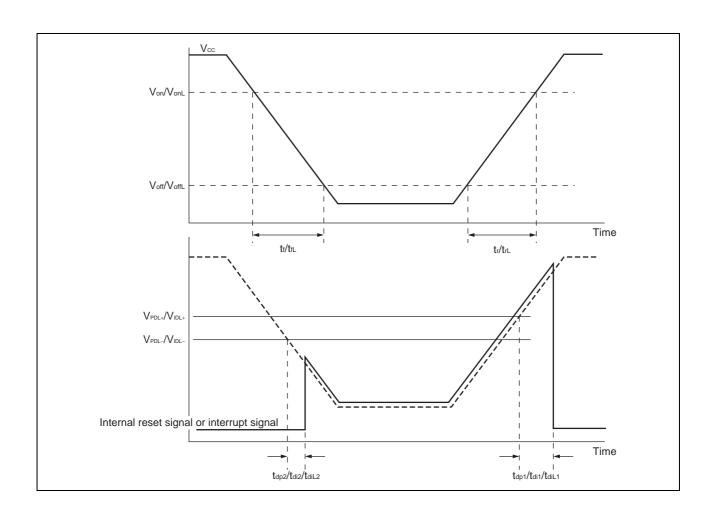
^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

^{*3:} See "(2) Source Clock/Machine Clock" for tmclk.

(7) Low-voltage DetectionNormal mode

 $(Vcc = 1.8 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)$

			Value		1	55 = 0.0 V, TA = -40 C to +03 C)
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Reset release voltage	V _{PDL+}	1.88	2.03	2.18	V	At power supply rise
Reset detection voltage	V _{PDL}	1.8	1.93	2.06	V	At power supply fall
Interrupt release voltage 0	VIDL0+	2.13	2.3	2.47	V	At power supply rise
Interrupt detection voltage 0	VIDL0-	2.05	2.2	2.35	V	At power supply fall
Interrupt release voltage 1	VIDL1+	2.41	2.6	2.79	V	At power supply rise
Interrupt detection voltage 1	VIDL1-	2.33	2.5	2.67	V	At power supply fall
Interrupt release voltage 2	VIDL2+	2.69	2.9	3.11	V	At power supply rise
Interrupt detection voltage 2	VIDL2-	2.61	2.8	2.99	V	At power supply fall
Interrupt release voltage 3	VIDL3+	3.06	3.3	3.54	V	At power supply rise
Interrupt detection voltage 3	VIDL3-	2.98	3.2	3.42	V	At power supply fall
Interrupt release voltage 4	VIDL4+	3.43	3.7	3.97	V	At power supply rise
Interrupt detection voltage 4	VIDL4-	3.35	3.6	3.85	V	At power supply fall
Interrupt release voltage 5	VIDL5+	3.81	4.1	4.39	V	At power supply rise
Interrupt detection voltage 5	VIDL5-	3.73	4	4.27	V	At power supply fall
Power supply start voltage	Voff		_	1.6	V	
Power supply end voltage	Von	4.39	_	_	V	
Power supply voltage change time (at power supply rise)	tr	697.5	_	_	μs	Slope of power supply that the reset release signal generates within the rating (VPDL+/VIDL+)
Power supply voltage change time (at power supply fall)	tr	697.5	_	_	μs	Slope of power supply that the reset release signal generates within the rating (VPDL-/VIDL-)
Reset release delay time	t dp1	_	_	30	μs	
Reset detection delay time	tdp2	_	_	30	μs	
Interrupt release delay time	t di1	_		30	μs	
Interrupt detection delay time	t di2	_	_	30	μs	
LVD reset threshold voltage transition stabilization time	t stb	_	_	30	μs	

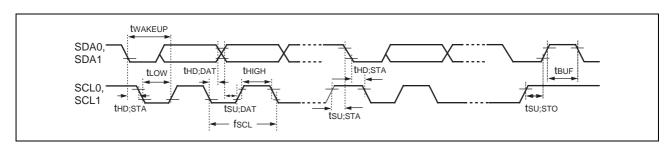

• Low power consumption mode

80

 $(Vcc = 1.8 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Davamatar	Cumbal		Value		Unit	Domarka
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Interrupt release voltage 0	VIDLL0+	2.06	2.3	2.54	V	At power supply rise
Interrupt detection voltage 0	VIDLL0-	1.98	2.2	2.42	V	At power supply fall
Interrupt release voltage 1	VIDLL1+	2.33	2.6	2.87	V	At power supply rise
Interrupt detection voltage 1	VIDLL1-	2.25	2.5	2.75	V	At power supply fall
Interrupt release voltage 2	VIDLL2+	2.6	2.9	3.2	V	At power supply rise
Interrupt detection voltage 2	VIDLL2-	2.52	2.8	3.08	V	At power supply fall
Interrupt release voltage 3	VIDLL3+	2.96	3.3	3.64	V	At power supply rise
Interrupt detection voltage 3	VIDLL3-	2.88	3.2	3.52	V	At power supply fall
Interrupt release voltage 4	VIDLL4+	3.32	3.7	4.08	V	At power supply rise
Interrupt detection voltage 4	VIDLL4-	3.24	3.6	3.96	V	At power supply fall
Interrupt release voltage 5	VIDLL5+	3.68	4.1	4.52	V	At power supply rise
Interrupt detection voltage 5	VIDLL5-	3.6	4	4.4	V	At power supply fall
Power supply start voltage	VoffL	_	_	1.6	V	
Power supply end voltage	VonL	4.52	_	_	V	
Power supply voltage change time (at power supply rise)	tr∟	7300	_	_	μs	Slope of power supply that the interrupt release signal generates within the rating (VIDLL+)
Power supply voltage change time (at power supply fall)	t₁∟	7300	_		μs	Slope of power supply that the interrupt detection signal generates within the rating (VIDLL-)
Interrupt release delay time	t diL1	_	_	400	μs	
Interrupt detection delay time	t diL2	_		400	μs	
Interrupt threshold voltage transition stabilization time	t stbL		_	400	μs	
Interrupt low-voltage detection mode switch time	tmdsw	_	_	400	μs	Normal mode ⇔ Low power consumption mode

Note: When used for interrupt, the low-voltage detection circuit can be switched between the normal mode and the low power consumption mode. Compared with the normal mode, while the low power consumption mode has lower detection voltage accuracy and lower release voltage accuracy, it has the lower power consumption. See "3. DC Characteristics" for the difference in current consumption between the normal mode and the low power consumption mode. For details of the method for switching between the normal mode and the low power consumption mode, refer to "CHAPTER 17 LOW-VOLTAGE DETECTION CIRCUIT" in "New 8FX MB95650L Series Hardware Manual".


(8) I²C Bus Interface Timing

 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{Ta} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

					Val	ue		
Parameter	Symbol	Pin name	Condition		dard- ode	Fast-	mode	Unit
				Min	Max	Min	Max	-
SCL clock frequency	fscL	SCL0, SCL1		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \to$ SCL \downarrow	thd;sta	SCL0, SCL1, SDA0, SDA1		4.0		0.6	_	μs
SCL clock "L" width	tLOW SCL1, SCL1			4.7		1.3	_	μs
SCL clock "H" width	tніgн	SCL0, SCL1		4.0	_	0.6	_	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0, SCL1, SDA0, SDA1		4.7	_	0.6	_	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	thd;dat	SCL0, SCL1, SDA0, SDA1	$R = 1.7 \text{ k}\Omega$, $C = 50 \text{ pF}^{*1}$	0	3.45* ²	0	0.9*3	μs
Data setup time SDA $\downarrow\uparrow\to$ SCL \uparrow	tsu;dat	SCL0, SCL1, SDA0, SDA1		0.25		0.1	_	μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sто	SCL0, SCL1, SDA0, SDA1		4	_	0.6	_	μs
Bus free time between STOP condition and START condition	t BUF	SCL0, SCL1, SDA0, SDA1		4.7	_	1.3	_	μs

^{*1:} R represents the pull-up resistor of the SCL0/1 and SDA0/1 lines, and C the load capacitor of the SCL0/1 and SDA0/1 lines.

^{*3:} A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of $tsu;DAT \ge 250$ ns is fulfilled.

^{*2:} The maximum thd; DAT in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (tLow) does not extend.

(Vcc = 3.0 V to 5.5 V, Vss = 0.0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

Parameter	Symbol	Pin	Condition	Valu	ue*²	Unit	Remarks
rarameter	Syllibol	name	Condition	Min	Max	Offic	Remarks
SCL clock "L" width	tLOW	SCL0, SCL1		(2 + nm/2)tmclk - 20	1	ns	Master mode
SCL clock "H" width	t HIGH	SCL0, SCL1		(nm/2)tмсLк – 20	(nm/2)tмсLк + 20	ns	Master mode
START condition hold time	thd;sta	SCL0, SCL1, SDA0, SDA1		(-1 + nm/2)tмсLк – 20	(-1 + nm)tмсLк + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
STOP condition setup time	tsu;sто	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF*1	(1 + nm/2)tмсLк – 20	(1 + nm/2)tмсLк + 20	ns	Master mode
START condition setup time	tsu;sta	SCL0, SCL1, SDA0, SDA1	- 00 рі	(1 + nm/2)tмсLк – 20	(1 + nm/2)tмсLк + 20	ns	Master mode
Bus free time between STOP condition and START condition	t BUF	SCL0, SCL1, SDA0, SDA1		(2 nm + 4) tмсLк – 20	_	ns	
Data hold time	thd;dat	SCL0, SCL1, SDA0, SDA1		3 tмсLк — 20	_	ns	Master mode

 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Doromotor	Cumbal	Pin	Condition	Val	ue*2	Unit	Remarks
Parameter	Symbol	name	Condition	Min	Max	Unit	Remarks
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		(-2 + nm/2) tмсLк – 20	(-1 + nm/2) tмсLк + 20	ns	Master mode It is assumed that "L" of SCL is not extended. The minimum value is applied to the first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	tsu;int	SCL0, SCL1		(nm/2) tmcLk - 20	(1 + nm/2) tmcLk + 20	ns	The minimum value is applied to the interrupt at the ninth SCL↓. The maximum value is applied to the interrupt at the eighth SCL↓.
SCL clock "L" width	tLOW	SCL0, SCL1	$R = 1.7 \text{ k}\Omega,$ $C = 50 \text{ pF}^{*1}$	4 tmclk - 20	_	ns	At reception
SCL clock "H" width	t HIGH	SCL0, SCL1		4 tmcLK - 20	_	ns	At reception
START condition detection	thd;sta	SCL0, SCL1, SDA0, SDA1		2 tmcLK - 20	_	ns	No START condition is detected when 1 tmclk is used at reception.
STOP condition detection	tsu;sто	SCL0, SCL1, SDA0, SDA1		2 tмсLк — 20	_	ns	No STOP condition is detected when 1 tmclk is used at reception.
RESTART condition detection condition	tsu;sta	SCL0, SCL1, SDA0, SDA1		2 tмсLк — 20	_	ns	No RESTART condition is detected when 1 tmclk is used at reception.

(Continued)

 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Value*2		Unit	Remarks	
Farameter	Symbol	name	Condition	Min	Max	Oilit	Nemarks	
Bus free time	tвиғ	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF*1		2 tmcLK - 20		ns	At reception
Data hold time	thd;dat	SCL0, SCL1, SDA0, SDA1		2 tmcLk - 20	_	ne	At slave transmission mode	
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		tLow - 3 tMCLK - 20		ns	At slave transmission mode	
Data hold time	thd;dat	SCL0, SCL1, SDA0, SDA1		0	_	ns	At reception	
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		tмсLк — 20	_	ns	At reception	
SDA↓ → SCL↑ (with wakeup function in use)	twakeup	SCL0, SCL1, SDA0, SDA1		Oscillation stabilization wait time +2 tmclk – 20	_	ns		

^{*1:} R represents the pull-up resistor of the SCL0/SCL1 and SDA0/SDA1 lines, and C the load capacitor of the SCL0/SCL1 and SDA0/SDA1 lines.

- m represents the CS[4:3] bits in the I2C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).
- n represents the CS[2:0] bits in the I²C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).
- The actual timing of the I²C bus interface is determined by the values of m and n set by the machine clock (tmclk) and the CS[4:0] bits in the ICCR0/ICCR1 register.
- Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < tmcLK (machine clock) < 16.25 MHz.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

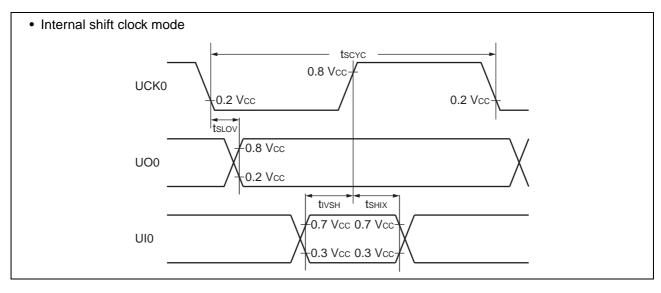
```
\begin{array}{lll} \text{(m, n)} = (1, 8) & \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 1 \text{ MHz} \\ \text{(m, n)} = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) & \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 2 \text{ MHz} \\ \text{(m, n)} = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) & \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 4 \text{ MHz} \\ \text{(m, n)} = (1, 98), (5, 22), (6, 22), (7, 22) & \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 10 \text{ MHz} \\ \text{(m, n)} = (8, 22) & \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \ge 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} < \text{tmclk} \le 16.25 \text{ MHz} \\ \text{: } 0.9 \text{ MHz} <
```

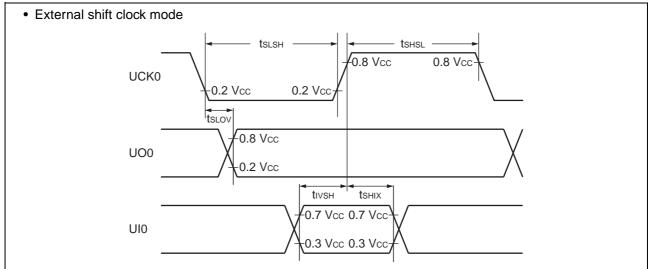
• Fast-mode:

m and n can be set to values in the following range: 3.3 MHz < tmcLk (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

```
\begin{array}{lll} (m,\,n) = (1,\,8) & : 3.3 \; \text{MHz} < \text{tmclk} \le 4 \; \text{MHz} \\ (m,\,n) = (1,\,22),\,(5,\,4) & : 3.3 \; \text{MHz} < \text{tmclk} \le 8 \; \text{MHz} \\ (m,\,n) = (1,\,38),\,(6,\,4),\,(7,\,4),\,(8,\,4) & : 3.3 \; \text{MHz} < \text{tmclk} \le 10 \; \text{MHz} \\ (m,\,n) = (5,\,8) & : 3.3 \; \text{MHz} < \text{tmclk} \le 16.25 \; \text{MHz} \end{array}
```

^{*2: •} See "(2) Source Clock/Machine Clock" for tmclk.


(9) UART/SIO, Serial I/O Timing


 $(Vcc = 3.0 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	Unit	
raiailletei	Symbol	Finitianie	Condition	Min	Max	Onne
Serial clock cycle time	tscyc	UCK0		4 t мськ*	_	ns
$UCK \downarrow \to UO$ time	tslov	UCK0, UO0	Internal clock operation	-190	+190	ns
Valid UI → UCK ↑	tıvsh	UCK0, UI0	internal clock operation	2 tmclk*	_	ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsнıx	UCK0, UI0		2 tmclk*	_	ns
Serial clock "H" pulse width	tshsl	UCK0		4 t мськ*	_	ns
Serial clock "L" pulse width	t slsh	UCK0		4 t мськ*	_	ns
$UCK \downarrow \to UO$ time	tslov	UCK0, UO0	External clock operation	_	190	ns
Valid UI → UCK ↑	tıvsh	UCK0, UI0		2 tmclk*	_	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK0, UI0		2 t мськ*	_	ns

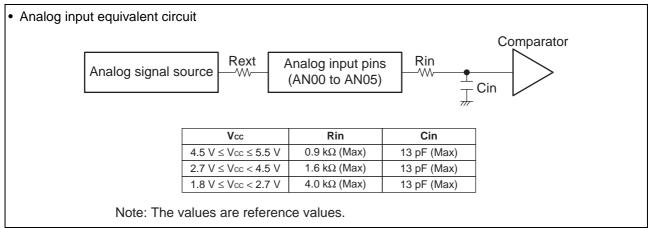
^{*:} See "(2) Source Clock/Machine Clock" for tmclk.

86

5. A/D Converter

(1) A/D Converter Electrical Characteristics

(Vcc = 1.8 V to 5.5 V, Vss = 0.0 V, Ta = -40 °C to +85 °C)


Parameter	Cymbol	Value			Unit	Remarks
Parameter Symbol		Min	Тур	Max	Offic	Remarks
Resolution		_	_	12	bit	
Total error	_	-6	_	+6	LSB	Vcc ≥ 2.7 V
Total enoi		-10	_	+10	LSB	Vcc < 2.7 V
Linearity error		-3	_	+3	LSB	Vcc ≥ 2.7 V
Linearity error		- 5	_	+5	LSB	Vcc < 2.7 V
Differential linearity		-1.9	_	+1.9	LSB	Vcc ≥ 2.7 V
error		-2.9	_	+2.9	LSB	Vcc < 2.7 V
Zero transition voltage	Vот	Vss – 6 LSB	_	Vss + 8.2 LSB	mV	
Full-scale transition voltage	VFST	Vcc – 6.2 LSB	_	Vcc + 9.2 LSB	mV	
Sampling time	Ts	*	_	10	μs	
Compare time	Tcck	0.861	_	14	μs	Vcc ≥ 2.7 V
Compare time	I CCK	2.8	_	14	μs	Vcc < 2.7 V
Time of transiting to operation enabled state	Tstt	1	_	_	μs	
Analog input current	lain	-0.3	_	+0.3	μΑ	
Analog input voltage	Vain	Vss	_	Vcc	V	

^{*:} See "(2) Notes on Using A/D Converter" for details of the minimum sampling time.

(2) Notes on Using A/D Converter

• External impedance of analog input and its sampling time

The A/D converter of the MB95650L Series has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.

Relationship between external impedance and minimum sampling time

The sampling required varies according to external impedance. Ensure that the following condition is met when setting the sampling time.

 $Ts \ge (Rin + Rext) \times Cin \times 9$

Ts: Sampling time

Rin: Input resistance of A/D converter
Cin: Input capacitance of A/D converter
Rext: Output impedance of external circuit

• A/D conversion error

As |Vcc - Vss| decreases, the A/D conversion error increases proportionately.

(3) Definitions of A/D Converter Terms

Resolution

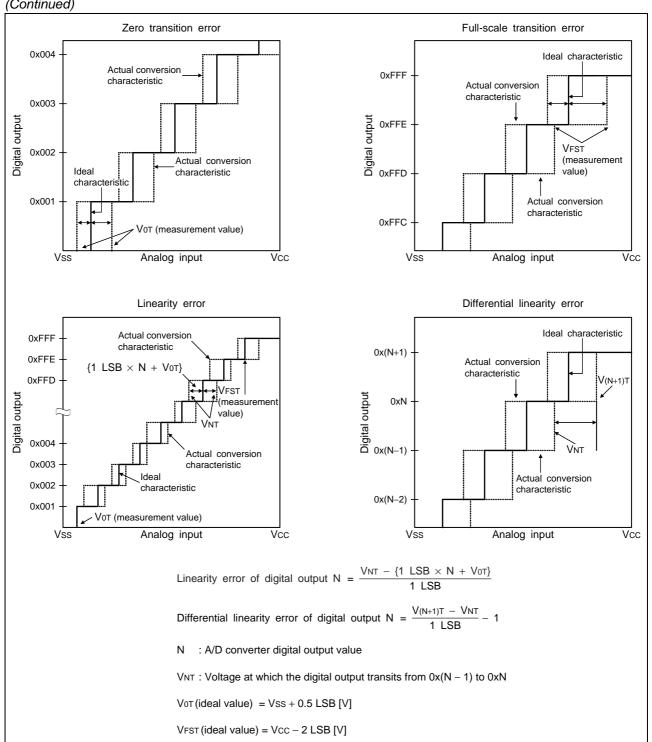
It indicates the level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 12, analog voltage can be divided into $2^{12} = 4096$.

• Linearity error (unit: LSB)

It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00000000000" $\leftarrow \rightarrow$ "000000000001") of a device to the full-scale transition point ("11111111111" $\leftarrow \rightarrow$ "11111111111110") of the same device.

• Differential linear error (unit: LSB)


It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

• Total error (unit: LSB)

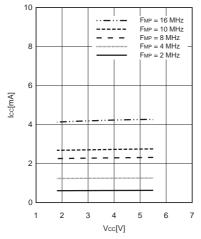
It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks	
Parameter	Min	Тур	Max	Ullit	Remarks	
Sector erase time (2 Kbyte sector)		0.3*1	1.6*2	s	The time of writing "0x00" prior to erasure is excluded.	
Sector erase time (32 Kbyte sector)	_	0.6*1	3.1*2	s	The time of writing "0x00" prior to erasure is excluded.	
Byte writing time	_	17	272	μs	System-level overhead is excluded.	
Program/erase cycle	100000	_	_	cycle		
Power supply voltage at program/erase	1.8		5.5	V		
	20*3	_	_		Average T _A = +85 °C Number of program/erase cycles: 1000 or below	
Flash memory data retention time	10*³	_	_	year	Average T _A = +85 °C Number of program/erase cycles: 1001 to 10000 inclusive	
	5* ³	_	_		Average T _A = +85 °C Number of program/erase cycles: 10001 or above	

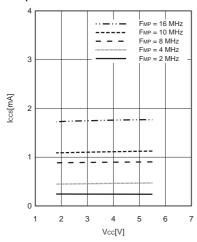
^{*1:} Vcc = 5.5 V, Ta = +25 °C, 0 cycle

^{*2:} Vcc = 1.8 V, TA = +85 °C, 100000 cycles

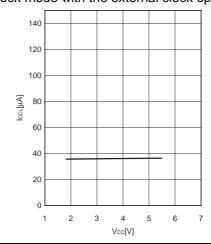

^{*3:} These values were converted from the result of a technology reliability assessment. (These values were converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85 °C.)

■ SAMPLE CHARACTERISTICS

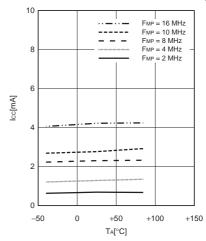
• Power supply current temperature characteristics


Icc - Vcc

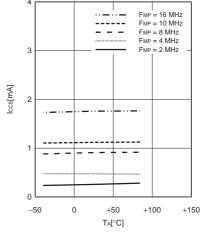
 $T_A = +25$ °C, $F_{MP} = 2$, 4, 8, 10, 16 MHz (divided by 2) Main clock mode with the external clock operating


Iccs - Vcc

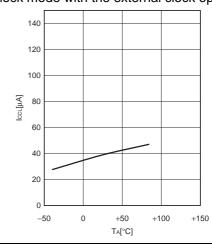
 $T_A = +25$ °C, $F_{MP} = 2$, 4, 8, 10, 16 MHz (divided by 2) Main sleep mode with the external clock operating


Iccl – Vcc

 $T_A = +25$ °C, $F_{MPL} = 16$ kHz (divided by 2) Subclock mode with the external clock operating

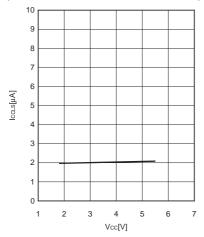

Icc – Ta

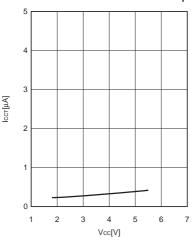
Vcc = 3.3V, FmP = 2, 4, 8, 10, 16 MHz (divided by 2) Main clock mode with the external clock operating


Iccs - Ta

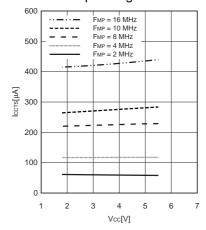
Vcc = 3.3 V, Fmp = 2, 4, 8, 10, 16 MHz (divided by 2) Main sleep mode with the external clock operating

ICCL - TA

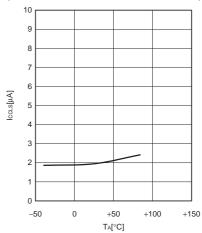

Vcc = 3.3 V, $F_{MPL} = 16 \text{ kHz}$ (divided by 2) Subclock mode with the external clock operating


Iccls - Vcc

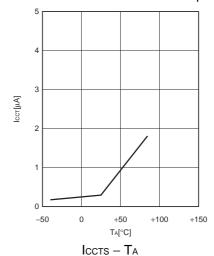
 $T_A = +25$ °C, $F_{MPL} = 16$ kHz (divided by 2) Subsleep mode with the external clock operating


Icct - Vcc

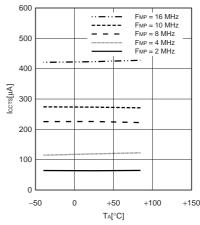
 $T_A = +25$ °C, $F_{MPL} = 16$ kHz (divided by 2) Watch mode with the external clock operating


Iccтs – Vcc

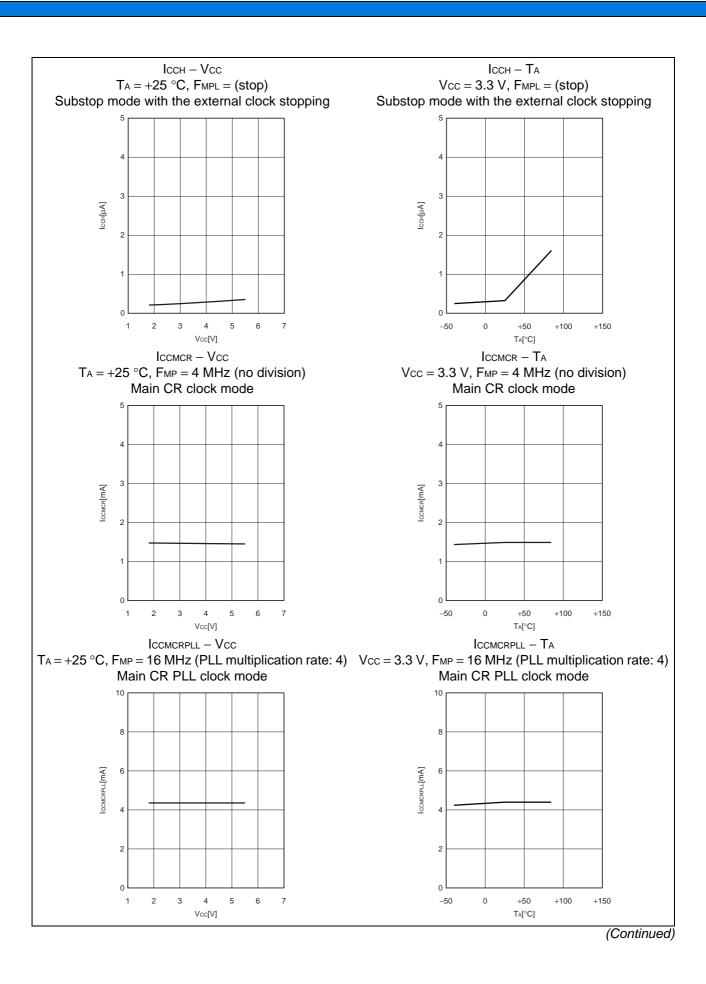
 $T_A = +25$ °C, $F_{MP} = 2, 4, 8, 10, 16$ MHz (divided by 2) Time-base timer mode with the external clock operating

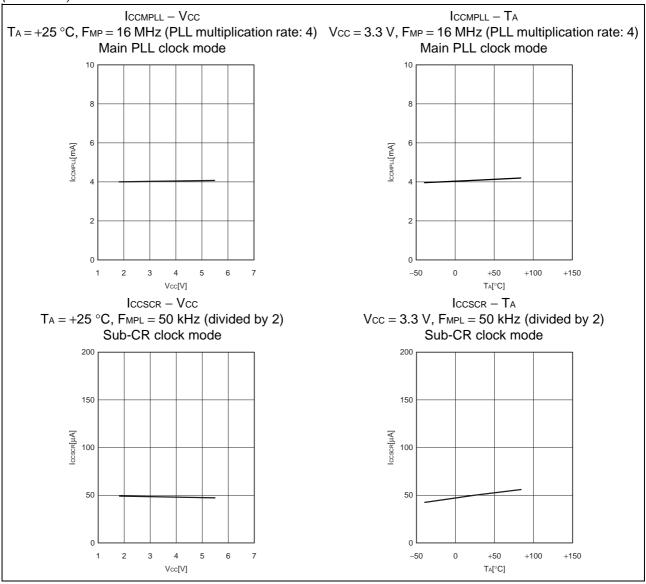

 $I_{\text{CCLS}} - T_{\text{A}}$

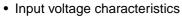
Vcc = 3.3 V, $F_{\text{MPL}} = 16 \text{ kHz}$ (divided by 2) Subsleep mode with the external clock operating

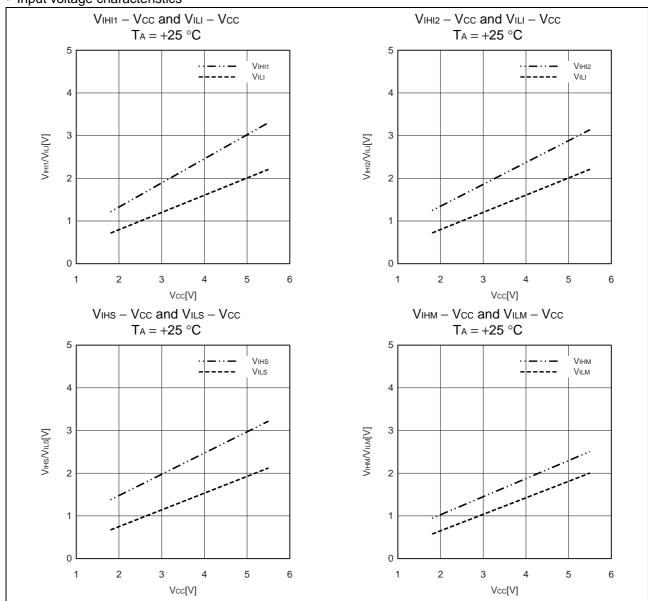

ICCT - TA

Vcc = 3.3 V, F_{MPL} = 16 kHz (divided by 2) Watch mode with the external clock operating

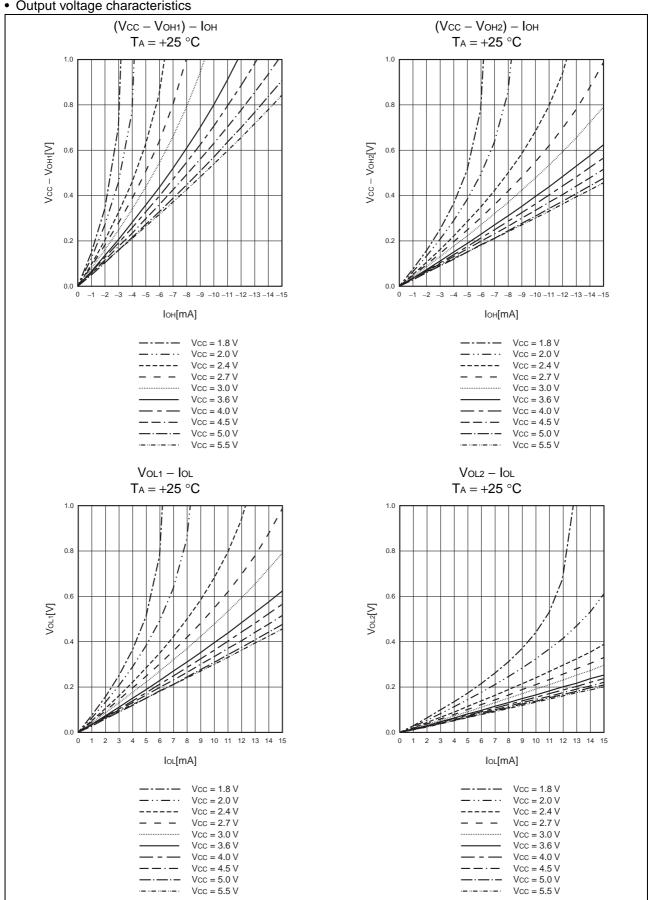


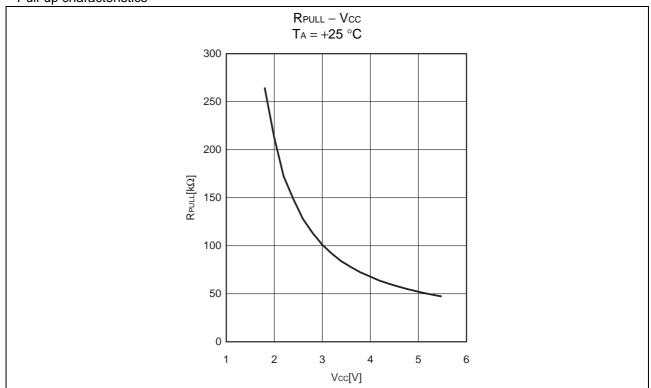

Vcc = 3.3 V, FMP = 2, 4, 8, 10, 16 MHz (divided by 2) Time-base timer mode with the external clock


operating



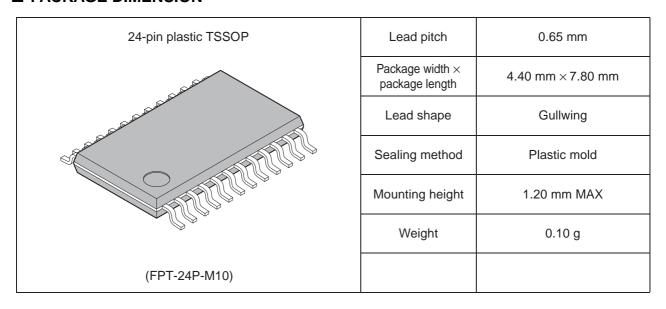
94

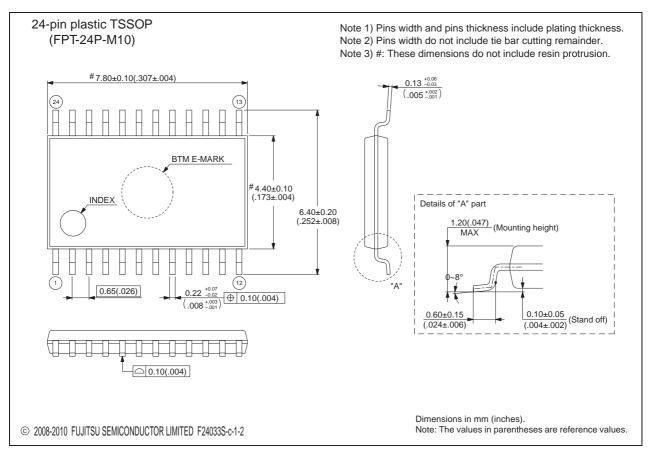




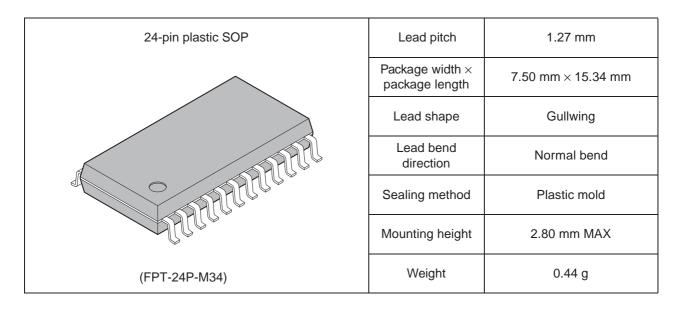
· Output voltage characteristics

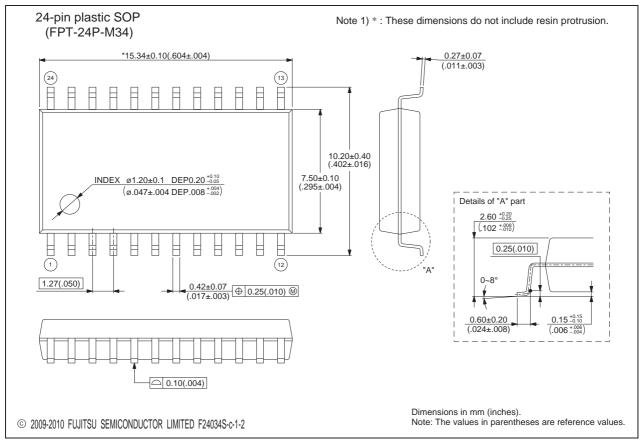
• Pull-up characteristics

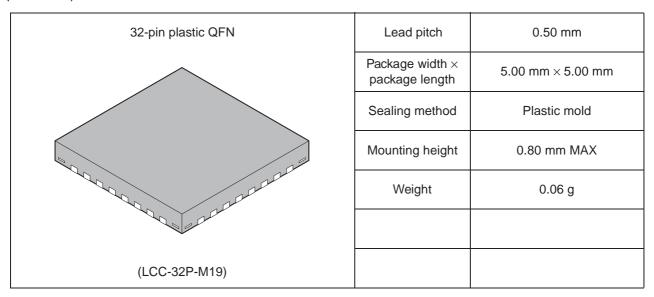

■ MASK OPTIONS

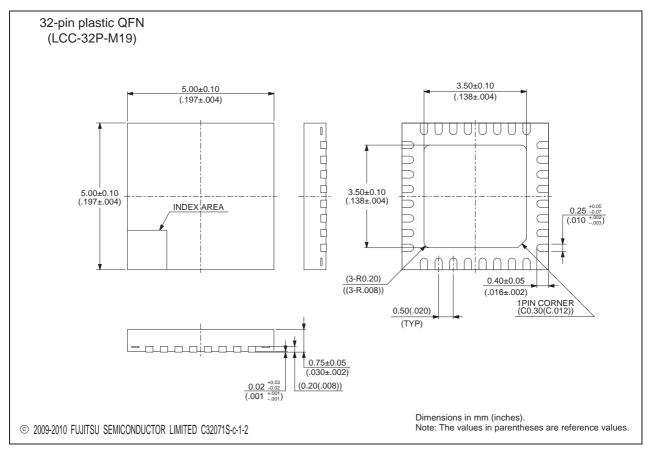

No.	Part number	MB95F652E MB95F653E MB95F654E MB95F656E	MB95F652L MB95F653L MB95F654L MB95F656L		
	Selectable/Fixed	Fixed			
1	Low-voltage detection reset/interrupt	With low-voltage detection reset/interrupt	Without low-voltage detection reset/interrupt		
2	Reset	Without dedicated reset input	With dedicated reset input		

■ ORDERING INFORMATION


Part number	Package
MB95F652EPFT-G-SNE2 MB95F652LPFT-G-SNE2 MB95F653EPFT-G-SNE2 MB95F653LPFT-G-SNE2 MB95F654EPFT-G-SNE2 MB95F654LPFT-G-SNE2 MB95F656EPFT-G-SNE2 MB95F656LPFT-G-SNE2	24-pin plastic TSSOP (FPT-24P-M10)
MB95F652EPF-G-SNE2 MB95F652LPF-G-SNE2 MB95F653EPF-G-SNE2 MB95F653LPF-G-SNE2 MB95F654EPF-G-SNE2 MB95F654LPF-G-SNE2 MB95F656EPF-G-SNE2 MB95F656LPF-G-SNE2	24-pin plastic SOP (FPT-24P-M34)
MB95F652EWQN-G-SNE1 MB95F652EWQN-G-SNERE1 MB95F652LWQN-G-SNERE1 MB95F652LWQN-G-SNERE1 MB95F653EWQN-G-SNERE1 MB95F653EWQN-G-SNERE1 MB95F653LWQN-G-SNERE1 MB95F653LWQN-G-SNERE1 MB95F654EWQN-G-SNERE1 MB95F654EWQN-G-SNERE1 MB95F654LWQN-G-SNERE1 MB95F656LWQN-G-SNERE1 MB95F656EWQN-G-SNERE1 MB95F656EWQN-G-SNERE1 MB95F656EWQN-G-SNERE1 MB95F656LWQN-G-SNERE1 MB95F656LWQN-G-SNERE1 MB95F656LWQN-G-SNERE1	32-pin plastic QFN (LCC-32P-M19)

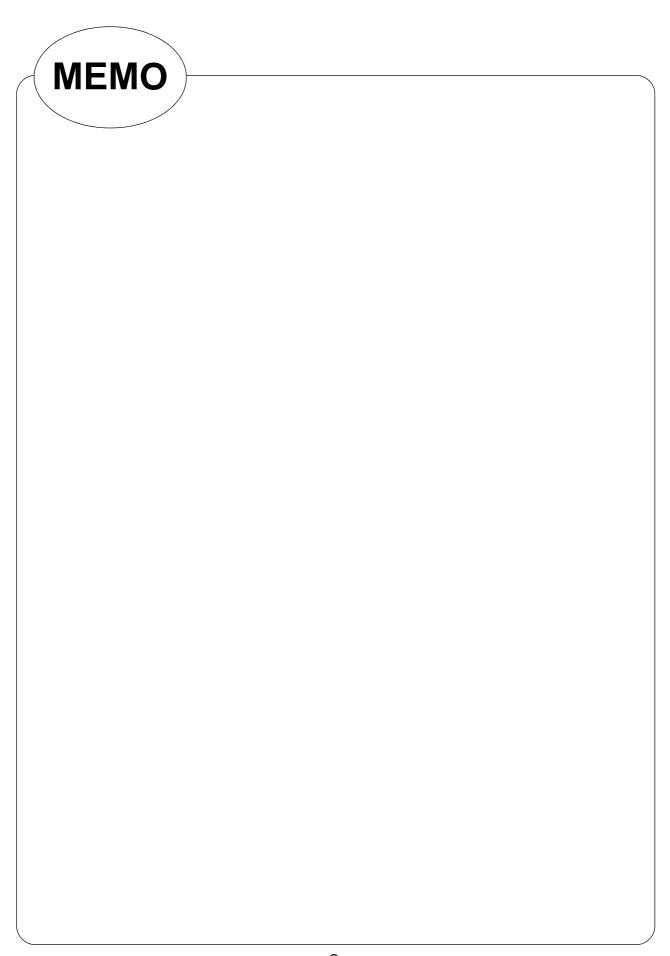

■ PACKAGE DIMENSION

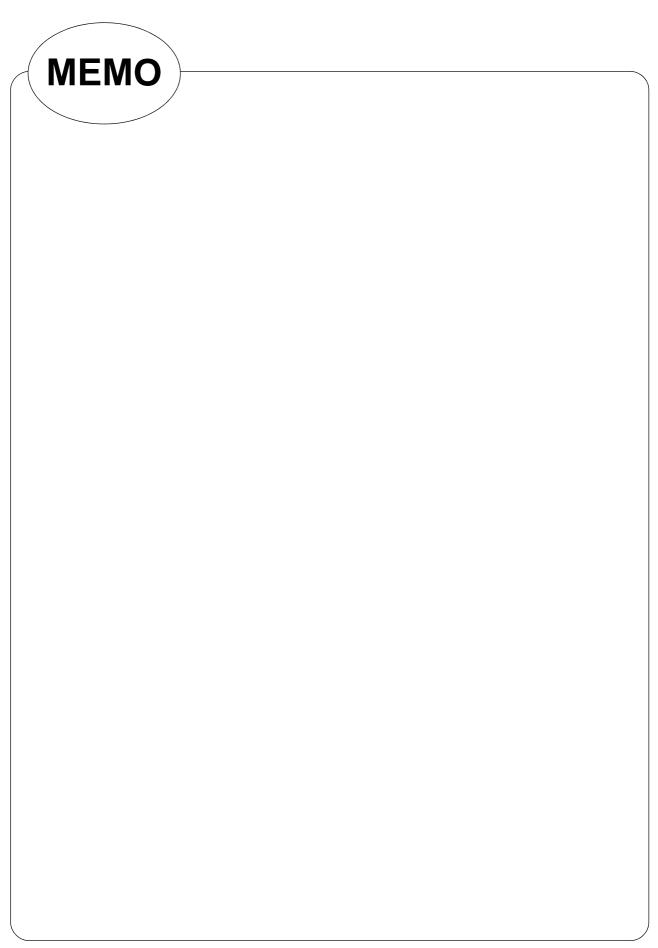

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

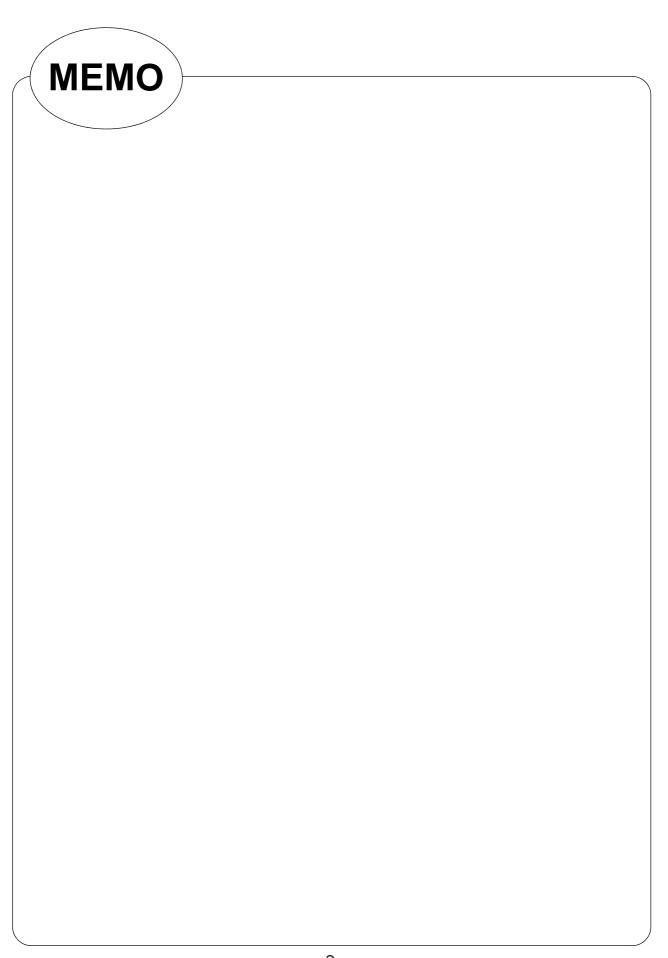


Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)




Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/


■ MAJOR CHANGES IN THIS EDITION

A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Details
19	■ PIN CONNECTION • C pin	Corrected the following statement. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. → The decoupling capacitor for the Vcc pin must have a capacitance equal to or larger than the capacitance of Cs.
64	■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Clock Timing	Corrected the pin name of the parameter "Input clock rising time and falling time". $X0 \rightarrow X0$, $X0A$

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fujitsu.com/kr/fsk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://sg.fujitsu.com/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China
Tel: +86-21-6146-3688 Fax: +86-21-6146-3660
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong
Tel: +852-2736-3232 Fax: +852-2314-4207

http://cn.fujitsu.com/fsp/

All Rights Reserved.

FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions

operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

Edited: Sales Promotion Department