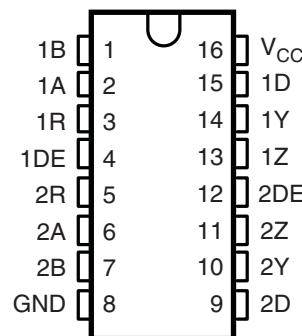

## DUAL DIFFERENTIAL DRIVERS AND RECEIVERS

Check for Samples: [SN7534050](#), [SN7534051](#)


### FEATURES

- Meet or Exceed Standards TIA/EIA-422-B and ITU Recommendation V.11
- Operate From Single 5-V Power Supply
- Driver Positive and Negative Current Limiting
- Receiver Input Sensitivity:  $\pm 200\text{mV}$
- Receiver Input Impedance:  $12\text{ k}\Omega$  Min
- Driver 3-State Outputs
- Receiver 3-State Outputs (SN7534050 Only)

**SN7534050...N OR NS PACKAGE  
(TOP VIEW)**



**SN7534051...N OR NS PACKAGE  
(TOP VIEW)**



### DESCRIPTION

The SN7534050 and SN7534051 dual differential drivers and receivers are monolithic integrated circuits designed to meet the requirements of ANSI standards TIA/EIA-422-B and ITU Recommendations V.11.

The driver outputs provide limiting for both positive and negative currents and thermal shutdown protection from line fault conditions on transmission bus line.

The SN7534050 combines dual 3-state differential drivers and dual 3-state differential input receivers. The drivers and receivers have active-high and active-low enables, respectively which can be externally connected together to function as direction control. SN7534051 drivers each have an individual active-high enable.

### ORDERING INFORMATION

| T <sub>A</sub> | PACKAGE <sup>(1)</sup> (2) |              | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|----------------------------|--------------|-----------------------|------------------|
| -20°C to 85°C  | PDIP – N                   | Tube of 25   | SN7534050N            | SN7534050N       |
|                | SOP – NS                   | Tube of 50   | SN7534050NS           | SN7534050        |
|                |                            | Reel of 2000 | SN7534050NSR          | SN7534050        |
|                | PDIP – N                   | Tube of 25   | SN7534051N            | SN7534051N       |
|                | SOP – NS                   | Tube of 50   | SN7534051NS           | SN7534051        |
|                |                            | Reel of 2000 | SN7534051NSR          | SN7534051        |

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at [www.ti.com/sc/package](http://www.ti.com/sc/package).
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at [www.ti.com](http://www.ti.com).



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

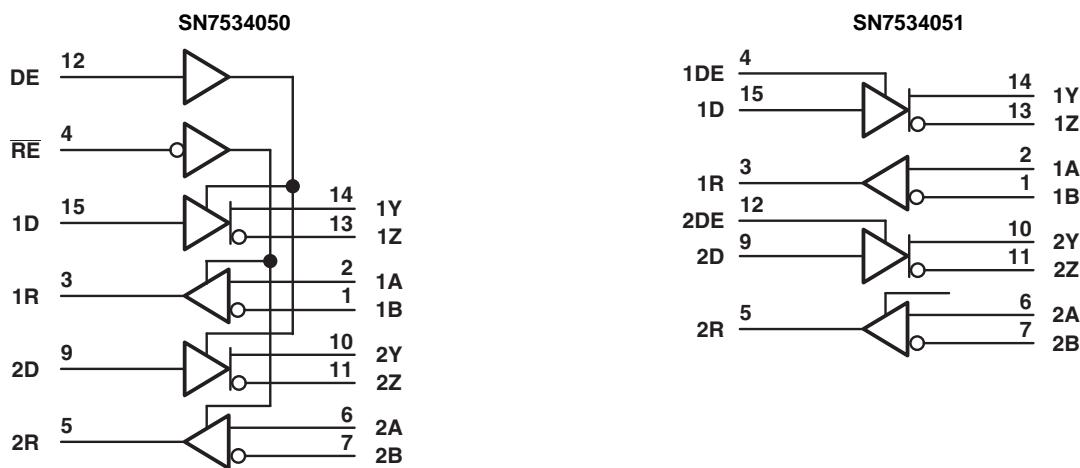
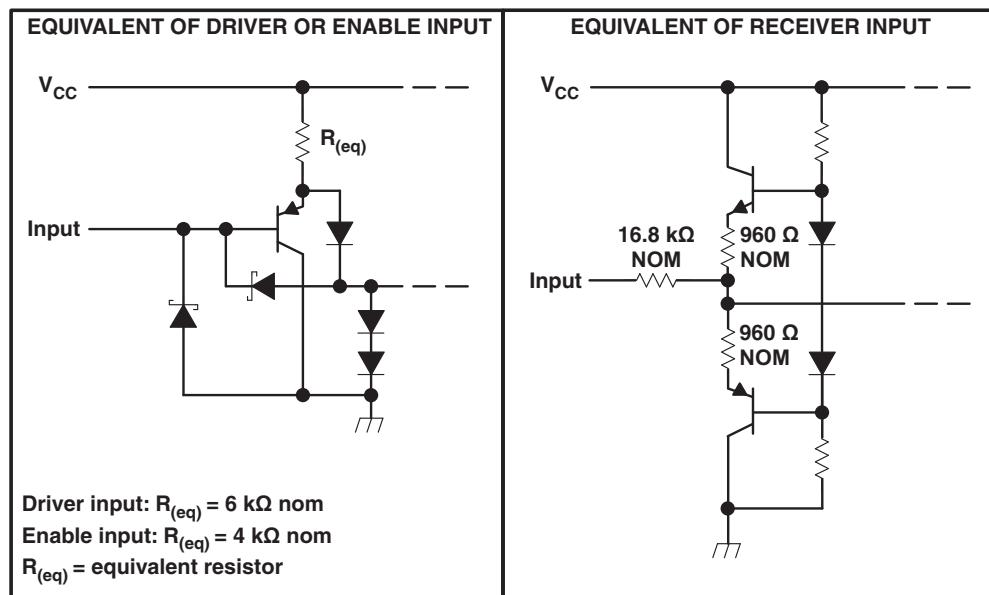
## FUNCTION TABLES

**Table 1. SN7534050,  
SN7534051  
Each Driver<sup>(1)</sup>**

| INPUT<br>D | ENABLE<br>DE | OUTPUTS |   |
|------------|--------------|---------|---|
|            |              | Y       | Z |
| H          | H            | H       | L |
| L          | H            | L       | H |
| X          | L            | Z       | Z |

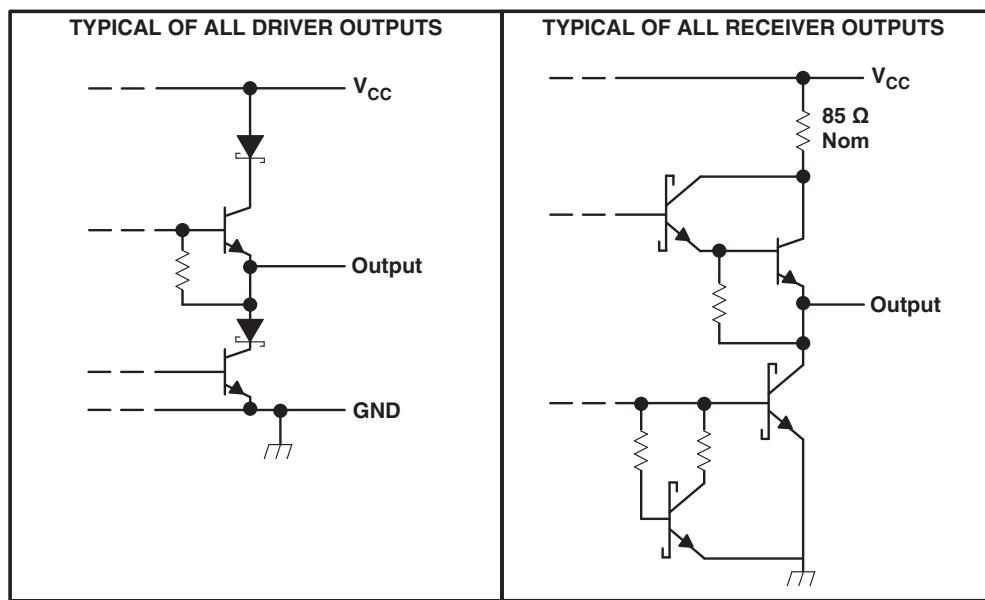
(1) H = high level, L = low level,  
X = irrelevant, Z = high impedance  
(off)

**Table 2. SN7534050  
Each Receiver<sup>(1)</sup>**



| DIFFERENTIAL<br>INPUTS,<br>A–B            | ENABLE<br>RE | OUTPUT<br>R |
|-------------------------------------------|--------------|-------------|
| $V_{ID} \geq 0.2 \text{ V}$               | L            | H           |
| $-0.2 \text{ V} < V_{ID} < 0.2 \text{ V}$ | L            | ?           |
| $V_{ID} \leq -0.2 \text{ V}$              | L            | L           |
| X                                         | H            | Z           |

(1) H = high level, L = low level, ? = indeterminate, X = irrelevant,  
Z = high impedance (off)

**Table 3. SN7534051  
Each Receiver<sup>(1)</sup>**


| DIFFERENTIAL<br>INPUTS,<br>A–B            | OUTPUT<br>R |
|-------------------------------------------|-------------|
| $V_{ID} \geq 0.2 \text{ V}$               | H           |
| $-0.2 \text{ V} < V_{ID} < 0.2 \text{ V}$ | ?           |
| $V_{ID} \leq -0.2 \text{ V}$              | L           |

(1) H = high level, L = low level,  
? = indeterminate

**LOGIC DIAGRAMS**

**SCHEMATIC OF INPUTS**


All resistor values are nominal.

## SCHEMATIC OF OUTPUTS



All resistor values are nominal.

## Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                                                       |                                                     | MIN                            | MAX      | UNIT |
|-------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------|------|
| $V_{CC}$                                              | Supply voltage <sup>(2)</sup>                       |                                | 7        | V    |
| $V_I$                                                 | Input voltage                                       | DE, $\overline{RE}$ , D inputs | 7        | V    |
| $V_i$                                                 | Receiver input voltage                              | A or B inputs                  | $\pm 25$ | V    |
| $V_{ID}$                                              | Receiver differential output voltage <sup>(3)</sup> |                                | $\pm 25$ | V    |
| $V_O$                                                 | Driver output voltage range                         | -10                            | 15       | V    |
| $I_{OL}$                                              | Receiver low-level output current                   |                                | 50       | mA   |
| $\theta_{JA}$                                         | Package thermal impedance <sup>(4)</sup>            | N package                      | 66       | °C/W |
|                                                       |                                                     | NS package                     | 68       |      |
| Operating free-air temperature range                  |                                                     | -20                            | 85       | °C   |
| $T_{stg}$                                             | Storage temperature range                           | -65                            | 150      | °C   |
| Lead temperature, 1.6 mm (1/16 in) from case for 10 s |                                                     |                                | 260      | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages, except differential input voltage, are with respect to the network GND.

(3) Differential input voltage is measured at the noninverting terminal, with respect to the inverting terminal.

(4) The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

## Recommended Operating Conditions

|          |                                          |                         | MIN  | NOM | MAX      | UNIT        |
|----------|------------------------------------------|-------------------------|------|-----|----------|-------------|
| $V_{CC}$ | Supply voltage                           |                         | 4.75 | 5   | 5.25     | V           |
| $V_{IH}$ | High-level input voltage                 | DE, $\overline{RE}$ , D | 2    |     |          | V           |
| $V_{IL}$ | Low-level input voltage                  |                         |      |     | 0.8      | V           |
| $V_{IC}$ | Common-mode input voltage <sup>(1)</sup> | Receiver                |      |     | $\pm 7$  | V           |
| $V_{ID}$ | Differential input voltage               | Receiver                |      |     | $\pm 12$ | V           |
| $I_{OH}$ | High-level output current                | Driver                  |      |     | 40       | mA          |
|          |                                          | Receiver                |      |     | -400     | $\mu A$     |
| $I_{OL}$ | Low-level output current                 | Driver                  |      |     | -40      | mA          |
|          |                                          | Receiver                |      |     | 16       |             |
| $T_A$    | Operating free-air temperature           |                         | -20  |     | 85       | $^{\circ}C$ |

(1) Refer to TIA/EIA-422-B for exact conditions.

## DRIVER SECTION

### Electrical Characteristics

over recommended supply voltage and operating free-air temperature range (unless otherwise noted)

| PARAMETER       | TEST CONDITIONS                                     | MIN             | TYP <sup>(1)</sup> | MAX       | UNIT    |
|-----------------|-----------------------------------------------------|-----------------|--------------------|-----------|---------|
| $V_{OH}$        | $V_{IH} = 2$ V, $V_{IL} = 0.8$ V, $I_{OH} = -20$ mA |                 | 3.7                |           | V       |
| $V_{OL}$        | $V_{IH} = 2$ V, $V_{IL} = 0.8$ V, $I_{OL} = 20$ mA  |                 | 1.1                |           | V       |
| $V_{OD1}$       | $I_O = 0$ mA                                        |                 | 1.5                | 6         | V       |
| $V_{OD2}$       | $R_L = 100 \Omega$ , See Figure 1                   |                 | 2                  |           | V       |
| $\Delta V_{OD}$ | $R_L = 100 \Omega$ , See Figure 1                   |                 |                    | $\pm 0.4$ | V       |
| $V_{OC}$        | $R_L = 100 \Omega$ , See Figure 1                   |                 |                    | $\pm 3$   | V       |
| $\Delta V_{OC}$ | $R_L = 100 \Omega$ , See Figure 1                   |                 |                    | $\pm 0.4$ | V       |
| $I_{off}$       | $V_{CC} = 0$ V                                      | $V_O = 6$ V     |                    | 100       | $\mu A$ |
|                 |                                                     | $V_O = -0.25$ V |                    | -100      |         |
| $I_{OZ}$        | $V_O = -0.25$ V to 6 V                              |                 |                    | $\pm 100$ | $\mu A$ |
| $I_{IH}$        | $V_I = 2.7$ V                                       |                 |                    | 20        | $\mu A$ |
| $I_{IL}$        | $V_I = 0.4$ V                                       |                 |                    | -100      | $\mu A$ |
| $I_{os}$        | $V_O = V_{CC}$ or GND                               |                 | -30                | -150      | mA      |
| $I_{cc}$        | No load                                             | Output enabled  |                    | 80        | mA      |
|                 |                                                     | Output disabled |                    | 50        |         |

(1) All typical values are at  $V_{CC} = 5$  V and  $T_A = 25^{\circ}C$ .

(2) Refer to TIA-EIA-422-B for exact conditions.

(3) Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

## Switching Characteristics

$V_{CC} = 5 \text{ V}$ ,  $C_L = 50 \text{ pF}$ ,  $T_A = 25^\circ\text{C}$

| PARAMETER                                                   | TEST CONDITIONS                                                           | MIN | TYP | MAX | UNIT |
|-------------------------------------------------------------|---------------------------------------------------------------------------|-----|-----|-----|------|
| $t_{d(OD)}$ Differential output delay time                  | $R_L = 100 \Omega$ , $C_L = 50 \text{ pF}$ , See <a href="#">Figure 3</a> | 20  | 25  | ns  |      |
| $t_{t(OD)}$ Differential output transition time             | $R_L = 100 \Omega$ , $C_L = 50 \text{ pF}$ , See <a href="#">Figure 3</a> | 27  | 35  | ns  |      |
| $t_{PLH}$ Propagation delay time, low- to high-level output | $R_L = 27 \Omega$ , See <a href="#">Figure 4</a>                          | 20  | 25  | ns  |      |
| $t_{PHL}$ Propagation delay time, high- to low-level output | $R_L = 27 \Omega$ , See <a href="#">Figure 4</a>                          | 20  | 25  | ns  |      |
| $t_{PZH}$ Output enable time to high level                  | $R_L = 110 \Omega$ , See <a href="#">Figure 5</a>                         | 80  | 120 | ns  |      |
| $t_{PZL}$ Output enable time to low level                   | $R_L = 110 \Omega$ , See <a href="#">Figure 6</a>                         | 40  | 60  | ns  |      |
| $t_{PHZ}$ Output disable time from high level               | $R_L = 110 \Omega$ , See <a href="#">Figure 5</a>                         | 90  | 120 | ns  |      |
| $t_{PLZ}$ Output disable time from low level                | $R_L = 110 \Omega$ , See <a href="#">Figure 6</a>                         | 30  | 45  | ns  |      |

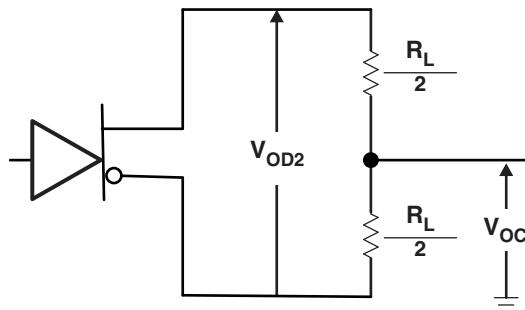
## RECEIVER SECTION

### Electrical Characteristics

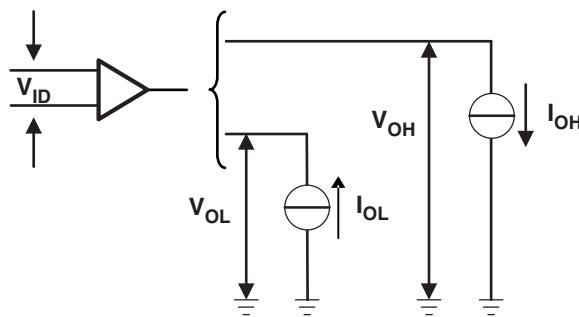
over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                                            | TEST CONDITIONS | MIN                                                          | TYP <sup>(1)</sup>           | MAX      | UNIT             |
|----------------------------------------------------------------------|-----------------|--------------------------------------------------------------|------------------------------|----------|------------------|
| $V_{IT+}$ Positive-going input threshold voltage, differential input |                 |                                                              | 0.2                          |          | V                |
| $V_{IT-}$ Negative-going input threshold voltage, differential input |                 | -0.2 <sup>(2)</sup>                                          |                              |          | V                |
| $V_{hys}$ Input hysteresis ( $V_{IT+} - V_{IT-}$ )                   |                 | 50                                                           |                              |          | mV               |
| $V_{IK}$ Input clamp voltage, $\overline{RE}$                        | SN7534050       | $I_I = -18 \text{ mA}$                                       |                              | -1.5     | V                |
| $V_{OH}$ High-level output voltage                                   |                 | $V_{ID} = 200 \text{ mV}$ ,<br>$I_{OH} = -400 \mu\text{A}$ , | See <a href="#">Figure 2</a> | 2.7      | V                |
| $V_{OL}$ Low-level output voltage                                    |                 | $V_{ID} = -200 \text{ mV}$ ,<br>See <a href="#">Figure 2</a> | $I_{OL} = 8 \text{ mA}$      | 0.45     | V                |
|                                                                      |                 |                                                              | $I_{OL} = 16 \text{ mA}$     | 0.5      |                  |
| $I_{OZ}$ High-impedance-state output current                         | SN7534050       | $V_O = 0.4 \text{ V to } 2.4 \text{ V}$                      |                              | $\pm 20$ | $\mu\text{A}$    |
| $I_I$ Line input current                                             |                 | Other input at 0 V                                           | $V_I = 10 \text{ V}$         | 1.5      | mA               |
|                                                                      |                 |                                                              | $V_I = -10 \text{ V}$        | -2.5     |                  |
| $I_{IH}$ High-level enable input current, $\overline{RE}$            | SN7534050       | $V_{IH} = 2.7 \text{ V}$                                     |                              | 20       | $\mu\text{A}$    |
| $I_{IL}$ Low-level enable input current, $\overline{RE}$             | SN7534050       | $V_{IL} = 0.4 \text{ V}$                                     |                              | -100     | $\mu\text{A}$    |
| $r_i$ Input resistance                                               |                 |                                                              | 12                           |          | $\text{k}\Omega$ |
| $I_{OS}$ Short circuit output current                                |                 |                                                              | -15                          | -85      | mA               |
| $I_{CC}$ Supply current (total package)                              |                 | No load, enabled                                             | 80                           | 110      | mA               |

(1) All typical values are at  $V_{CC} = 5 \text{ V}$  and  $T_A = 25^\circ\text{C}$ .

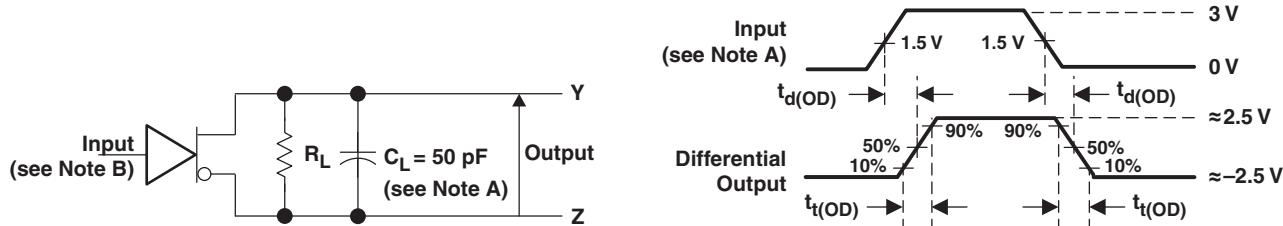

(2) The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels.

## Switching Characteristics


over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                                   | TEST CONDITIONS                                                                    | MIN                                                  | TYP | MAX | UNIT |
|-------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|-----|-----|------|
| $t_{PLH}$ Propagation delay time, low- to high-level output | $V_{ID} = 1.5 \text{ V}$ , $C_L = 15 \text{ pF}$ ,<br>See <a href="#">Figure 7</a> | 20                                                   | 35  | ns  |      |
| $t_{PHL}$ Propagation delay time, high- to low-level output | $V_{ID} = 1.5 \text{ V}$ , $C_L = 15 \text{ pF}$ ,<br>See <a href="#">Figure 7</a> | 22                                                   | 35  | ns  |      |
| $t_{PZH}$ Output enable time to high level                  | SN7534050                                                                          | $C_L = 15 \text{ pF}$ , see <a href="#">Figure 8</a> | 17  | 25  | ns   |
| $t_{PZL}$ Output enable time to low level                   | SN7534050                                                                          | $C_L = 15 \text{ pF}$ , See <a href="#">Figure 8</a> | 20  | 27  | ns   |
| $t_{PHZ}$ Output disable time from high level               | SN7534050                                                                          | $C_L = 15 \text{ pF}$ , See <a href="#">Figure 8</a> | 25  | 40  | ns   |
| $t_{PLZ}$ Output disable time from low level                | SN7534050                                                                          | $C_L = 15 \text{ pF}$ , See <a href="#">Figure 8</a> | 30  | 40  | ns   |

## PARAMETER MEASUREMENT INFORMATION

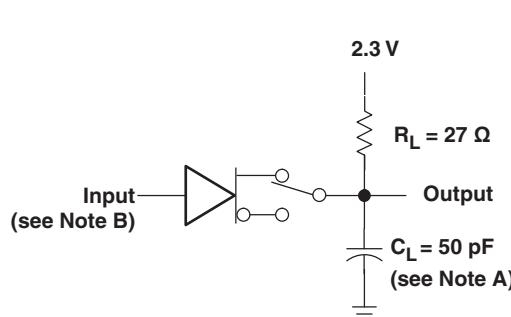



**Figure 1. Driver Test Circuit,  
 $V_{OD2}$  and  $V_{OC}$**

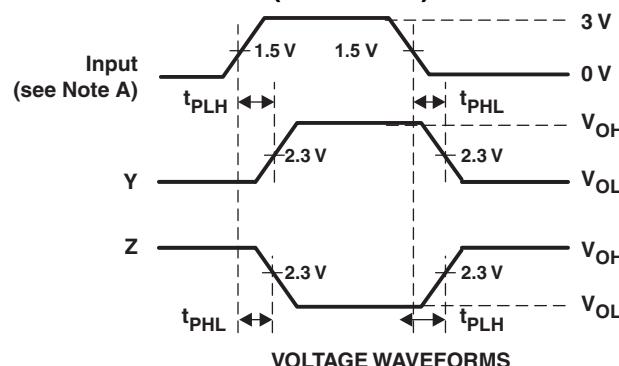


**Figure 2. Receiver Test Circuit,  
 $V_{OH}$  and  $V_{OL}$**

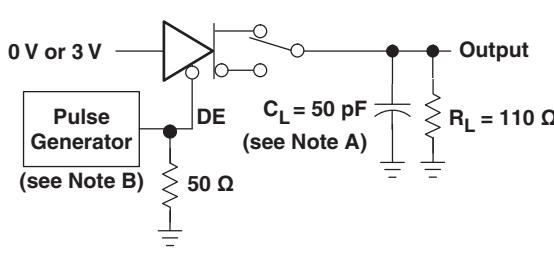
- A.  $C_L$  includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.




**TEST CIRCUIT**


**Figure 3. Driver Test Circuit and Voltage Waveforms,  
 $t_{d(OD)}$  and  $t_{t(OD)}$**

- A.  $C_L$  includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.


## PARAMETER MEASUREMENT INFORMATION (continued)



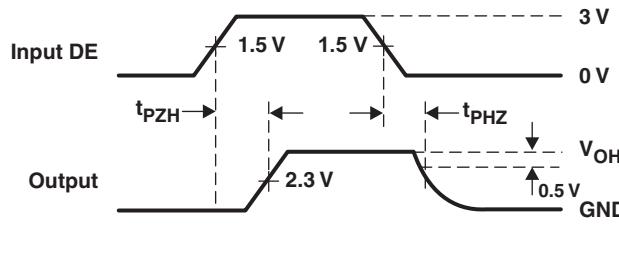
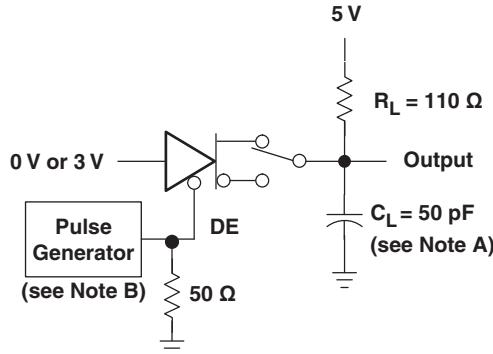

TEST CIRCUIT

Figure 4. Driver Test Circuit and Voltage Waveforms,  
 $t_{PLH}$  and  $t_{PHL}$ 


A.  $C_L$  includes probe and jig capacitance.  
 B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.



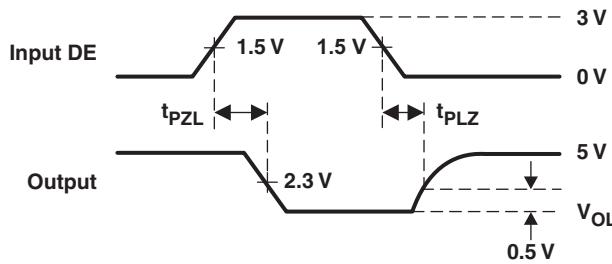
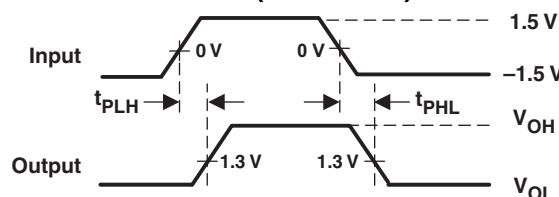
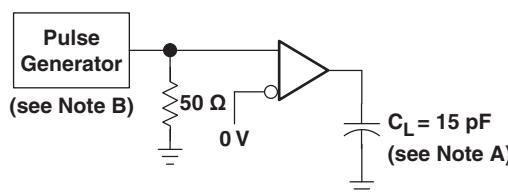
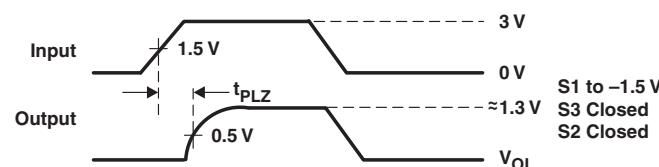
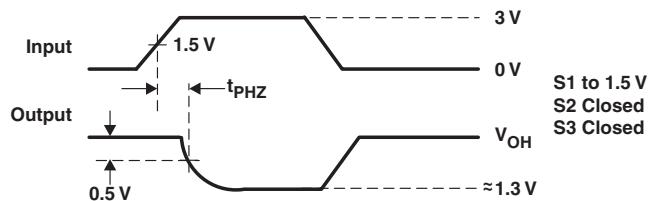
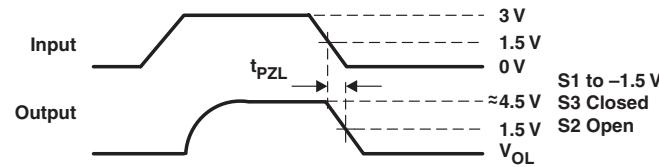
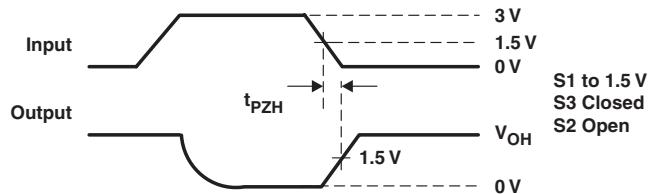
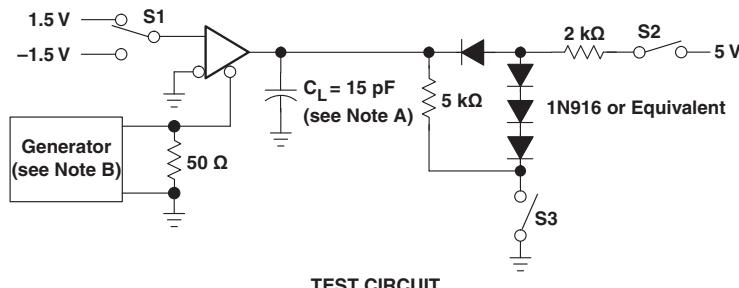

TEST CIRCUIT

Figure 5. Driver Test Circuit and Voltage Waveforms,  
 $t_{PZH}$  and  $t_{PHZ}$ 



A.  $C_L$  includes probe and jig capacitance.  
 B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.



TEST CIRCUIT






Figure 6. Driver Test Circuit and Voltage Waveforms,  
 $t_{PZL}$  and  $t_{PLZ}$ 

A.  $C_L$  includes probe and jig capacitance.  
 B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.

**PARAMETER MEASUREMENT INFORMATION (continued)**


**Figure 7. Receiver Test Circuit and Voltage Waveforms,  
 $t_{PLH}$  and  $t_{PHL}$**

- A.  $C_L$  includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR  $\leq$  1 MHz, duty cycle = 50%,  $t_r = t_f \leq 6$  ns.



**Figure 8. Receiver Test Circuit and Voltage Waveforms,  
 $t_{PZH}$ ,  $t_{PZL}$ ,  $t_{PHZ}$ ,  $t_{PLZ}$  (SN7534050)**

## REVISION HISTORY

| Changes from Original (May 2007) to Revision A     | Page |
|----------------------------------------------------|------|
| • Updated document format from QS to DocZone. .... | 1    |
| • Updated ORDERING INFORMATION table. ....         | 1    |

**PACKAGING INFORMATION**

| Orderable part number        | Status<br>(1) | Material type<br>(2) | Package   Pins | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|------------------------------|---------------|----------------------|----------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| <a href="#">SN7534050N</a>   | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -20 to 85    | SN7534050N          |
| SN7534050N.A                 | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -20 to 85    | SN7534050N          |
| <a href="#">SN7534050NS</a>  | Active        | Production           | SOP (NS)   16  | 50   TUBE             | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -25 to 85    | SN7534050           |
| SN7534050NS.A                | Active        | Production           | SOP (NS)   16  | 50   TUBE             | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -25 to 85    | SN7534050           |
| <a href="#">SN7534050NSR</a> | Active        | Production           | SOP (NS)   16  | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -20 to 85    | SN7534050           |
| SN7534050NSR.A               | Active        | Production           | SOP (NS)   16  | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -20 to 85    | SN7534050           |
| <a href="#">SN7534051N</a>   | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -20 to 85    | SN7534051N          |
| SN7534051N.A                 | Active        | Production           | PDIP (N)   16  | 25   TUBE             | Yes         | NIPDAU                               | N/A for Pkg Type                  | -20 to 85    | SN7534051N          |
| <a href="#">SN7534051NS</a>  | Active        | Production           | SOP (NS)   16  | 50   TUBE             | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -20 to 85    | SN7534051           |
| SN7534051NS.A                | Active        | Production           | SOP (NS)   16  | 50   TUBE             | Yes         | NIPDAU                               | Level-1-260C-UNLIM                | -20 to 85    | SN7534051           |
| <a href="#">SN7534051NSR</a> | Obsolete      | Production           | SOP (NS)   16  | -                     | -           | Call TI                              | Call TI                           | -20 to 85    | SN7534051           |

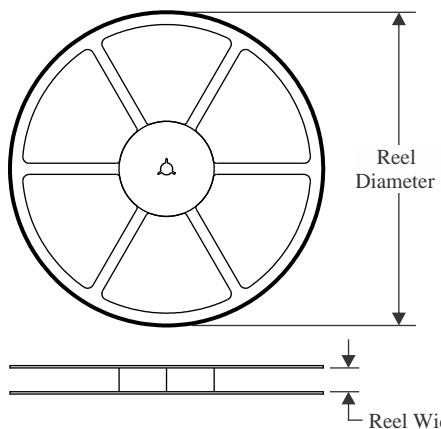
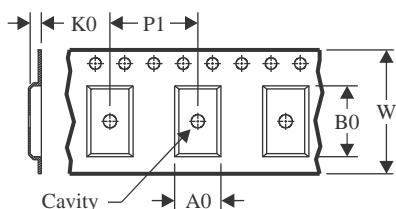
<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

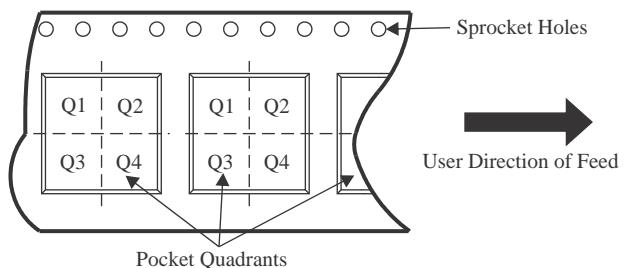
<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

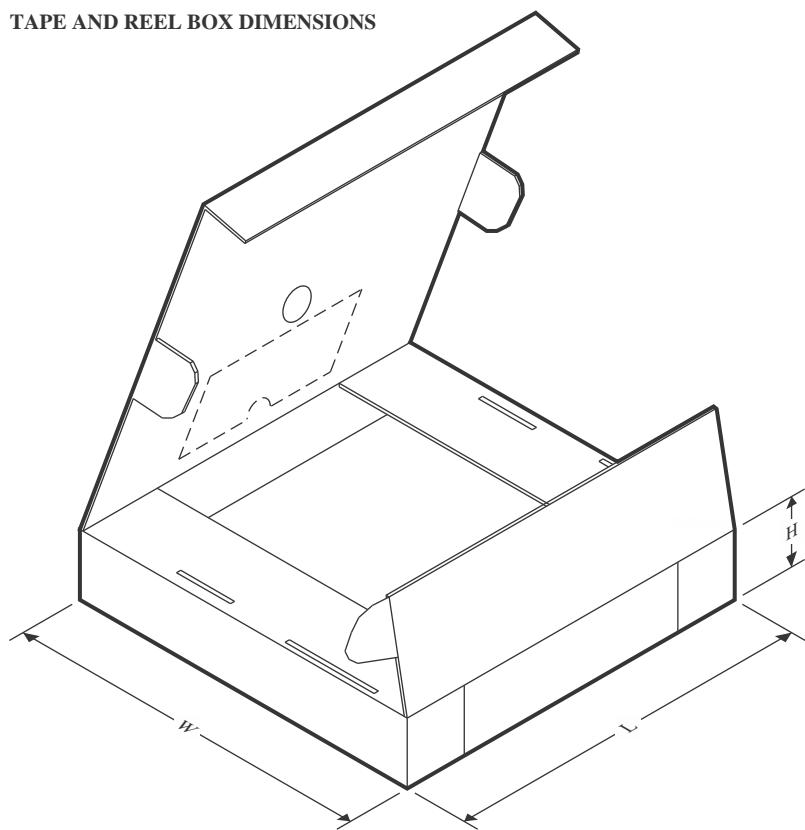


<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


---

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

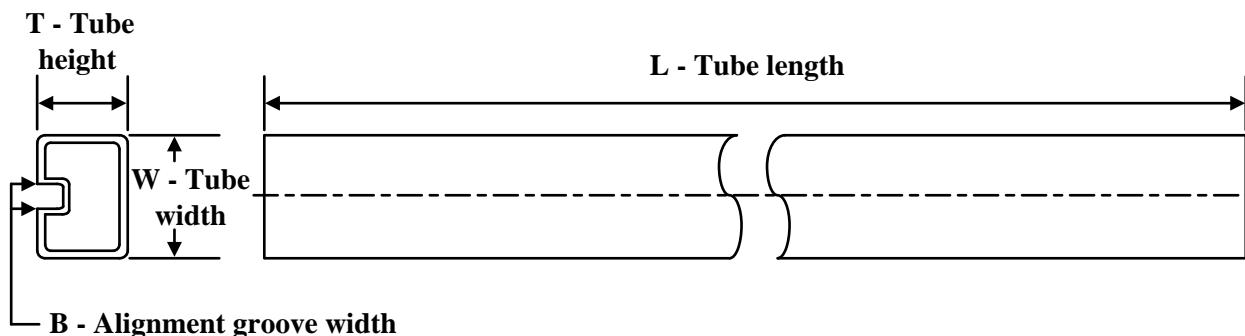
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**



\*All dimensions are nominal

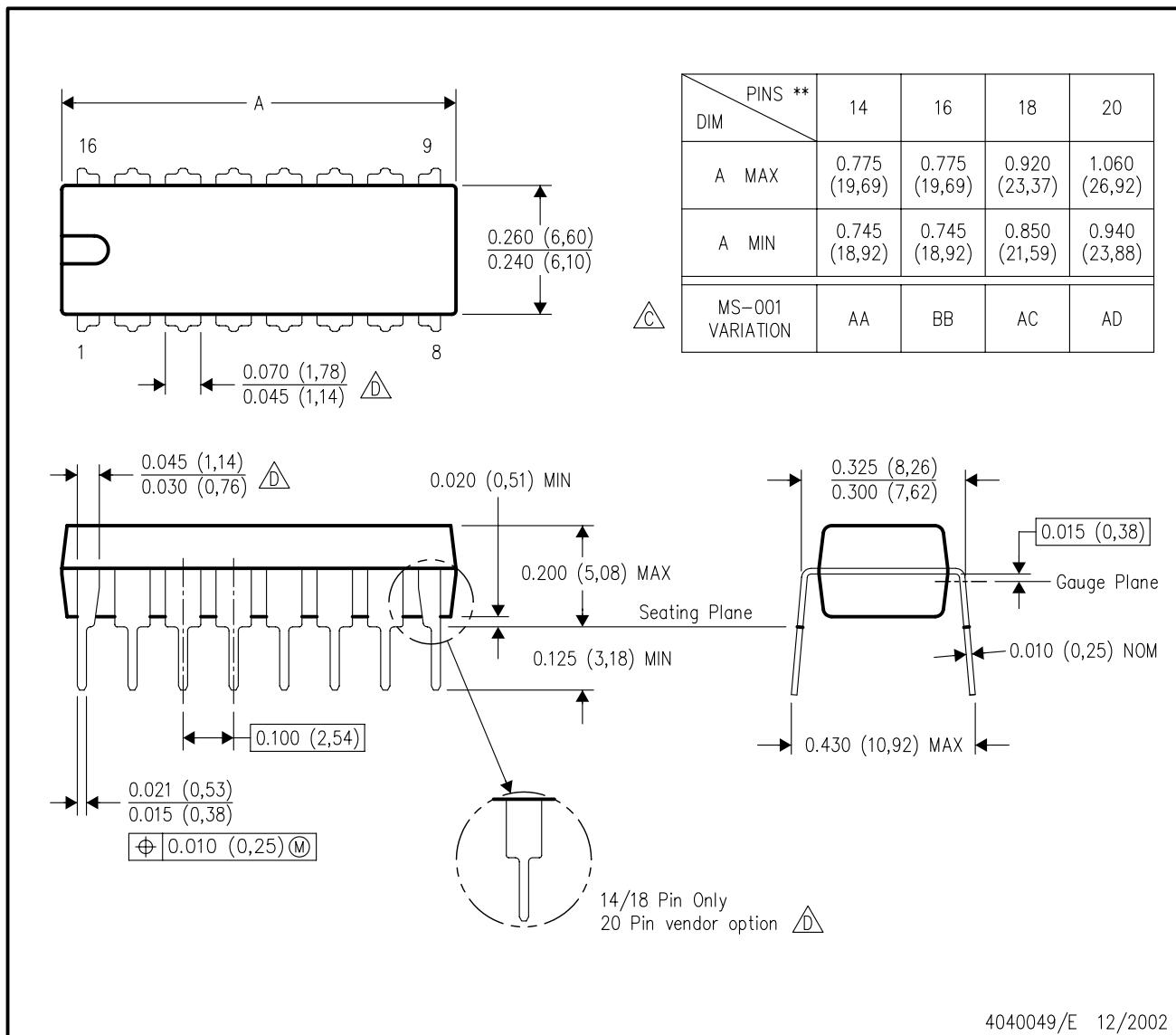
| Device       | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|--------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| SN7534050NSR | SOP          | NS              | 16   | 2000 | 330.0              | 16.4               | 8.1     | 10.4    | 2.5     | 12.0    | 16.0   | Q1            |

**TAPE AND REEL BOX DIMENSIONS**


\*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN7534050NSR | SOP          | NS              | 16   | 2000 | 353.0       | 353.0      | 32.0        |

**TUBE**



\*All dimensions are nominal

| Device        | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T ( $\mu$ m) | B (mm) |
|---------------|--------------|--------------|------|-----|--------|--------|--------------|--------|
| SN7534050N    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| SN7534050N.A  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| SN7534050NS   | NS           | SOP          | 16   | 50  | 530    | 10.5   | 4000         | 4.1    |
| SN7534050NS.A | NS           | SOP          | 16   | 50  | 530    | 10.5   | 4000         | 4.1    |
| SN7534051N    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| SN7534051N.A  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230        | 4.32   |
| SN7534051NS   | NS           | SOP          | 16   | 50  | 530    | 10.5   | 4000         | 4.1    |
| SN7534051NS.A | NS           | SOP          | 16   | 50  | 530    | 10.5   | 4000         | 4.1    |

## N (R-PDIP-T\*\*)

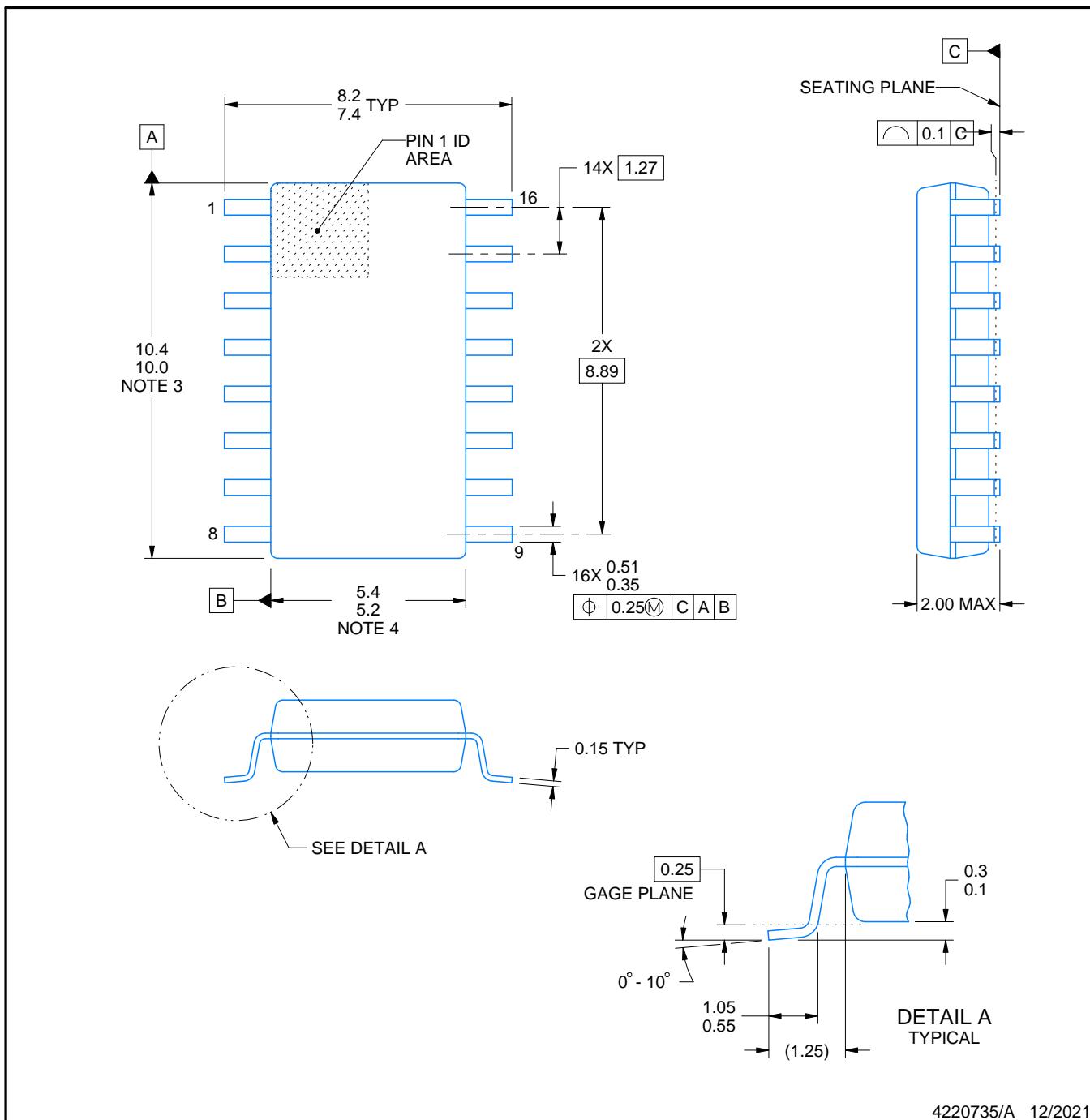
16 PINS SHOWN

## PLASTIC DUAL-IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).  
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).


△ The 20 pin end lead shoulder width is a vendor option, either half or full width.



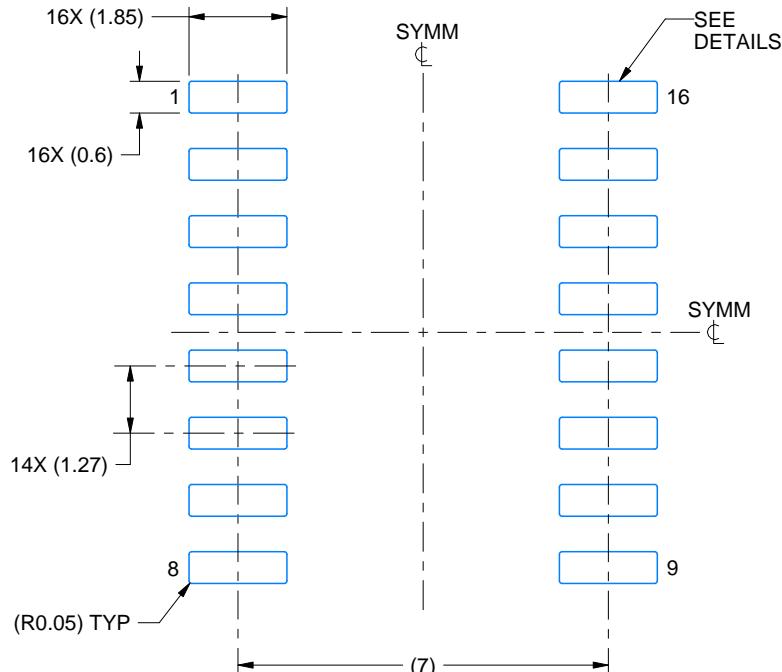
# PACKAGE OUTLINE

## SOP - 2.00 mm max height

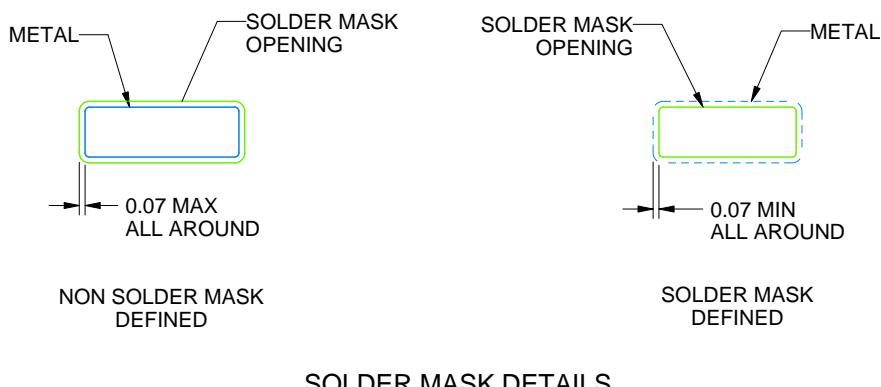
SOP



### NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

# EXAMPLE BOARD LAYOUT


NS0016A

SOP - 2.00 mm max height

SOP



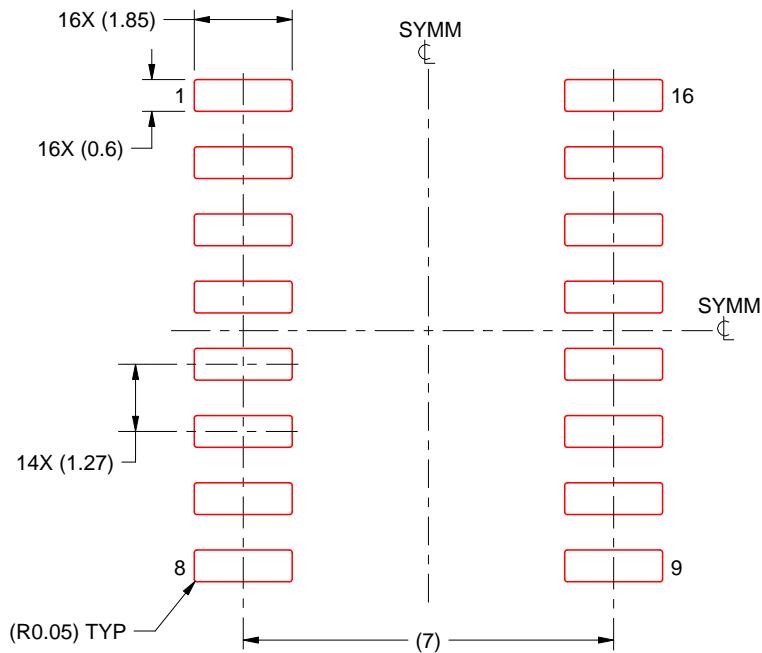
LAND PATTERN EXAMPLE  
SCALE:7X



4220735/A 12/2021

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.


6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

# EXAMPLE STENCIL DESIGN

NS0016A

SOP - 2.00 mm max height

SOP



SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X

4220735/A 12/2021

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2025, Texas Instruments Incorporated