3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS673 - AUGUST 2005

- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates at Least 1 Mbit/s
- Low Standby Current . . . 1 µA Typ
- External Capacitors . . . $4 \times 0.1 \mu F$
- Accepts 5-V Logic Input With 3.3-V Supply
- Designed to Be Interchangeable With Maxim MAX3227
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Protection for RS-232 I/O Pins
 - ±15 kV Human-Body Model
 - ±8 kV IEC1000-4-2, Contact Discharge
 - ±8 kV IEC1000-4-2, Air-Gap Discharge
- **Auto-Powerdown Plus Feature Automatically Disables Drivers for Power** Savings
- **Applications**
 - Battery-Powered, Hand-Held, and **Portable Equipment**
 - PDAs and Palmtop PCs
 - Notebooks, Sub-Notebooks, and Laptops
 - Digital Cameras
 - Mobile Phones and Wireless Devices
- Packaged in Plastic Shrink Small-Outline **Package**

READY 16 FORCEOFF 15 V_{CC} С1+ Г 2 V+ **∏**3 14∏ GND C1− ¶4 13∏ DOUT 12 FORCEON С2+ Г 5 11 DIN C2- []6 V− **∏**7 10 INVALID 9 ROUT RIN L 8

DB PACKAGE

(TOP VIEW)

description/ordering information

The MAX3227 consists of one line driver, one line receiver, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. This device operates at data-signaling rates of 1 Mbit/s in normal operating mode and a maximum of 30-V/µs driver output slew rate. This device also features a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting.

The MAX3227 achieves a 1-μA supply current using the auto-powerdown plus feature. This device automatically enters a low-power powerdown mode when the RS-232 cable is disconnected or the drivers of the connected peripherals are inactive for more than 30 s. They turn on again when they sense a valid transition at any driver or receiver input. Auto-powerdown saves power without changes to the existing BIOS or operating system.

The MAX3227C is characterized for operation from 0°C to 70°C. The MAX3227I is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

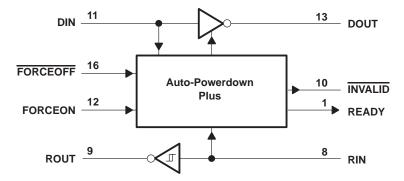
AVAILABLE OPTIONS

_	PACKAGED DEVICE
TA	SHRINK SMALL OUTLINE (DB)
0°C to 70°C	MAX3227CDB
-40°C to 85°C	MAX3227IDB

The DB package is available taped and reeled. Add the suffix R to device type (e.g., MAX3227CDBR).

Function Table

	INPUT	CONDITIONS			OUTPUT	STATES					
FORCE ON	FORCE OFF\	RECEIVER OR DRIVER EDGE WITHIN 30 S	VALID RS-232 LEVEL PRESENT AT RECEIVER	DRIVER OUTPUT	RECEIVER OUTPUT	INVALID\ OUTPUT	READY OUTPUT	OPERATING MODE			
	AUTO-POWERDOWN PLUS CONDITIONS										
Н	Н	NO	NO	Active	Active	L	Н	Normal operation, auto-powerdown plus disabled			
н	Н	NO	YES	Active	Active	Н	Н	Normal operation, auto-powerdown plus disabled			
L	Н	YES	NO	Active	Active	L	Н	Normal operation, auto-powerdown plus enabled			
L	Н	YES	YES	Active	Active	Н	Н	Normal operation, auto-powerdown plus enabled			
L	Н	NO	NO	Z	Active	L	L	Powerdown, auto-powerdown plus enabled			
L	Н	NO	YES	Z	Active	Н	L	Powerdown, auto-powerdown plus enabled			
Х	L	Х	NO	Z	Active	L	L	Manual powerdown			
Х	L	Х	YES	Z	Active	Н	L	Manual powerdown			
	AUTO-POWERDOWN CONDITIONS										
INVALID\	INVALID\	Х	NO	Z	Active	L	L	Powerdown, auto-powerdown enabled			
INVALID\	INVALID\	X	YES	Active	Active	Н	Н	Normal operation, auto-powerdown enabled			


H = high level, L = low level, X = irrelevant, Z = high impedance

Terminal Functions

TERMINA	AL.	
NAME	NO.	DESCRIPTION
C1+	2	Positive terminal of voltage-doubler charge-pump capacitor
C1-	4	Negative terminal of voltage-doubler charge-pump capacitor
C2+	5	Positive terminal of inverting charge-pump capacitor
C2-	6	Negative terminal of inverting charge-pump capacitor
DIN	11	CMOS driver input
DOUT	13	RS-232 driver output
FORCEOFF	16	Force-off input, active low. Drive low to shut down drivers, receivers, and charge pump. This overrides auto-shutdown and FORCEON (see Table 1).
FORCEON	12	Force-on input, active high. Drive high to override powerdown, keeping drivers and receivers on (FORCEOFF must be high) (see Table 1).
GND	14	Ground
INVALID	10	Valid signal detector output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input.
READY	1	Ready to transmit output, active high. READY is enabled high when V- goes below -3.5 V and the device is ready to transmit.
RIN	8	RS-232 receiver input
ROUT	9	CMOS receiver output
V+	3	+2 × V _{CC} generated by the charge pump
V-	7	−2 × V _{CC} generated by the charge pump
VCC	15	3-V to 5.5-V single-supply voltage

logic diagram (positive logic)

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS673 - AUGUST 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1)	0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1)	0.3 V to 7 V
Negative output supply voltage range, V– (see Note 1)	0.3 V to -7 V
Supply voltage difference, V+ – V– (see Note 1)	13 V
Input voltage range, V _I : Driver (FORCEOFF, FORCEON)	0.3 V to 6 V
Receiver	–25 V to 25 V
Output voltage range, V _O : Driver	–13.2 V to 13.2 V
Receiver (INVALID, READY)	\dots -0.3 V to V _{CC} + 0.3 V
Short-circuit duration: DOUT to GND	Unlimited
Package thermal impedance, θ_{JA} (see Note 2)	82°C/W
Lead temperature 1,6 mm (1/16 in) from case for 10 s	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3 and Figure 6)

				MIN	NOM	MAX	UNIT
	Supply voltage			3	3.3	3.6	.,
				4.5	5	5.5	V
.,	V _{IH} Driver and control high-level input voltage	DIN FORCES FORCES	V _{CC} = 3.3 V	2		5.5	\/
VIH		DIN, FORCEOFF, FORCEON	V _{CC} = 5 V	2.4		5.5	V
VIL	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON		0		0.8	V
٧ı	V _I Receiver input voltage			-25		25	V
_			MAX3227C	0		70	00
TA	Operating free-air temperature	perating free-air temperature		-40		85	°C

NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 6)

	PARAM	IETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
II	Input leakage current FORCEOFF, FORCEON				±0.01	±1	μΑ
		Auto-powerdown plus disabled	No load, FORCEOFF and FORCEON at V _{CC}		0.3	2	mA
lcc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
	$(T_A = 25^{\circ}C)$	Auto-powerdown plus enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

NOTES: 1. All voltages are with respect to network GND.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 6)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP†	MAX	UNIT
Vон	High-level output voltage	DOUT at R _L = $3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		V
VOL	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DIN = V _{CC}	-5	-5.4		V
lн	High-level input current	VI = VCC			±0.01	±1	μΑ
Ι _Ι L	Low-level input current	V _I at GND			±0.01	±1	μΑ
	Short-circuit output current‡	V _{CC} = 3.6 V,	V _O = 0 V		±35	±60	4
los		V _{CC} = 5.5 V,	V _O = 0 V		±35	±60	mA
r _O	Output resistance	V_{CC} , V+, and V- = 0 V,	V _O = ±2 V	300	10M		Ω
l _{off}	Output leakage current	FORCEOFF = GND,	$V_O = \pm 12 \text{ V}, V_{CC} = 0 \text{ to } 5.5 \text{ V}$			±25	μΑ

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V $_{CC}$ = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V $_{CC}$ = 5 V \pm 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 6)

	PARAMETER	-	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
0		C _L = 1000 pF, See Figure 1	$R_L = 3 k\Omega$,	One DIN switching,	250			
	Maximum data rate	C _L = 1000 pF, V _{CC} = 4.5 V,	$R_L = 3 kΩ$, See Figure 1	One DIN switching,	1000			kbit/s
		C _L = 250 pF, V _{CC} = 3 V,	$R_L = 3 kΩ$, See Figure 1	One DIN switching,	1000			
tsk(p)	Pulse skew§	C _L = 150 pF to 2500 pF,	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	See Figure 2		25		ns
SR(tr)	Slew rate, transition region	V _{CC} = 3.3 V, C _L = 150 pF to 1000 pF,	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ See Figure 1		24		150	V/μs

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

ESD protection

TERM	INAL	_	TEST CONDITIONS		UNIT			
NAME	NO.		TEST CONDITIONS					
		НВМ		±15				
DOUT	13	Contact discharge, IEC10	00-4-2	±8	kV			
		Air-gap discharge, IEC10	00-4-2	±8				

^{\$} Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

[§] Pulse skew is defined as |tplH - tpHL| of each channel of the same device.

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vон	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} – 0.6	V _{CC} - 0.1		V
VOL	Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
.,	Desification is in its part that a had desifted as	VCC = 3.3 V		1.5	2.4	.,
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 5 V		1.8	2.4	V
.,		V _{CC} = 3.3 V	0.6	1.2		.,
V _{IT} –	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.5		V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
l _{off}	Output leakage current			±0.05	±10	μΑ
rį	Input resistance	$V_{I} = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

 $[\]overline{\dagger}$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3)

	PARAMETER	TEST CONDITIONS	TYP†	UNIT
tPLH	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
tPHL	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{sk(p)}	Pulse skew [‡]	See Figure 3	50	ns

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

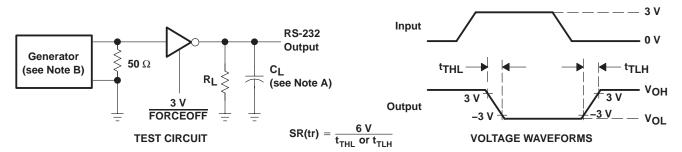
‡ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. NOTE 3: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

ESD protection

TERM	INAL	TEST COMPITIONS		TVD	
NAME	NO.		TEST CONDITIONS	TYP	UNIT
		HBM		±15	
RIN	8	Contact discharge,	IEC1000-4-2	±8	kV
		Air-gap discharge,	IEC1000-4-2	±15	

AUTO-POWERDOWN SECTION

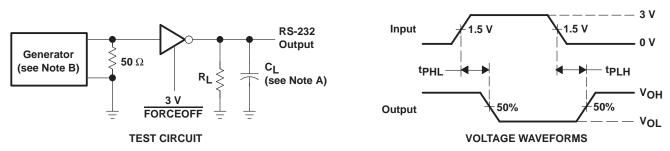
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)


PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
VT+(valid)	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	V
VT-(valid)	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-2.7		V
VT(invalid)	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-0.3	0.3	V
VOH	INVALID, READY output voltage high	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V_{CC}	V _C C - 0.6		V
V _{OL}	INVALID, READY output voltage low	I _{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

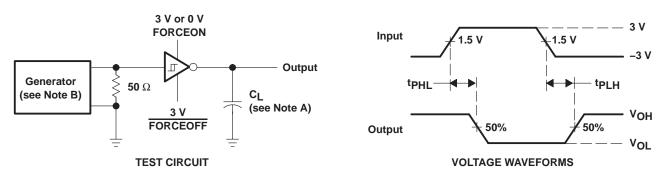
PARAMETER					MAX	UNIT
^t INVH	t _{INVH} Propagation delay time, low- to high-level output					μs
t _{INVL}	t _{INVL} Propagation delay time, high- to low-level output				30	
twu	t _{WU} Supply enable time					μs
^t AUTOPRDN	Driver or receiver edge to driver's shutdown	V _{CC} = 5 V	15	30	60	sec

 $^{^{\}dagger}$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

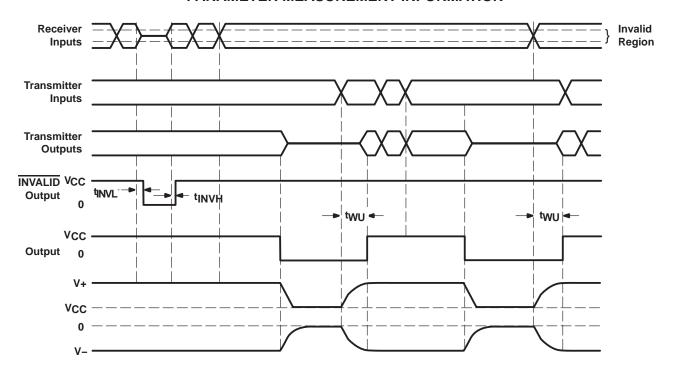
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns, $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

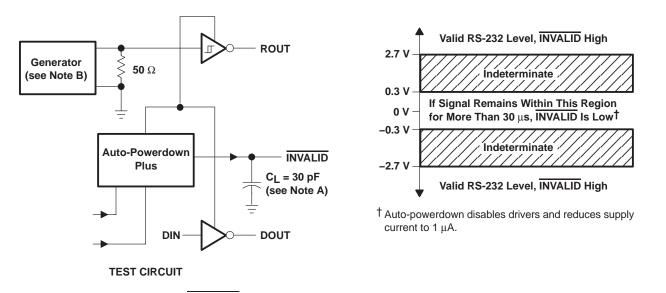
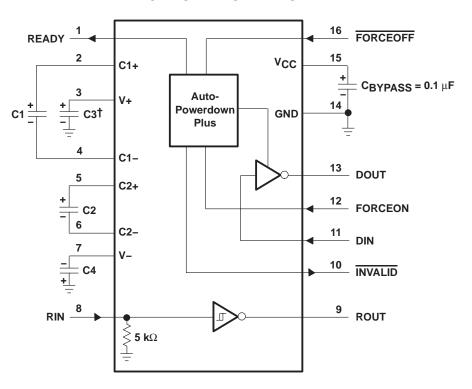



Figure 4. INVALID Propagation Delay Times and Driver Enabling Time

APPLICATION INFORMATION

†C3 can be connected to VCC or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

VCC	C1	C2, C3, and C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 5. Typical Operating Circuit and Capacitor Values

.com 23-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX3227CDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227CDBE4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227CDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227CDBRE4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227IDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227IDBE4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227IDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3227IDBRE4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

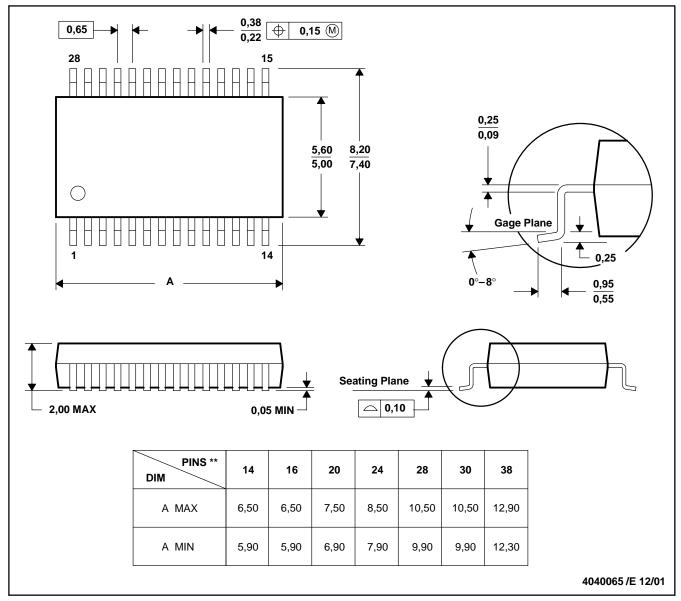
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated