

HNOLOGY 1.1MHz, 0.4V/µs Over-The-Top Micropower, Rail-To-Rail Input and Output Op Amp

FEATURES

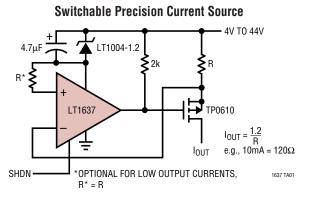
- Operates with Inputs Above V+
- Rail-to-Rail Input and Output
- Micropower: 250µA Supply Current Max
- Operating Temperature Range: –40°C to 125°C
- Gain-Bandwidth Product: 1.1MHz
- Slew Rate: 0.4V/µs
- Low Input Offset Voltage: 350µV Max
- Single Supply Input Range: -0.4V to 44V
- High Output Current: 25mA Min
- Specified on 3V, 5V and ±15V Supplies
- Output Shutdown
- Output Drives 4700pF with Output Compensation
- Reverse Battery Protection to 25V
- High Voltage Gain: 800V/mV
- High CMRR: 110dB

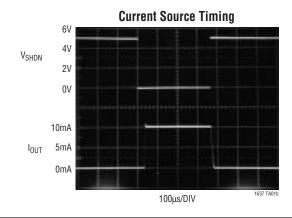
APPLICATIONS

- Battery or Solar Powered Systems: Portable Instrumentation Sensor Conditioning
- Supply Current Sensing
- Battery Monitoring
- MUX Amplifiers
- 4mA to 25mA Transmitters

DESCRIPTION

The LT®1637 is a rugged op amp that operates on all single and split supplies with a total voltage of 2.7V to 44V. The LT1637 has a gain-bandwidth product of 1.1MHz while drawing less than 250 μ A of quiescent current. The LT1637 can be shut down, making the output high impedance and reducing the quiescent current to only 3 μ A. The LT1637 is reverse supply protected: it draws virtually no current for reverse supply up to 25V. The input range of the LT1637 includes both supplies and the output swings to both supplies. Unlike most micropower op amps, the LT1637 can drive heavy loads; its rail-to-rail output drives 25mA. The LT1637 is unity-gain stable into all capacitive loads up to 4700pF when optional 0.22 μ F and 150 Ω compensation is used.

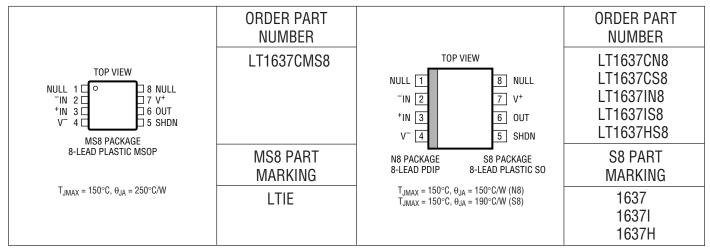

The LT1637 has a unique input stage that operates and remains high impedance when above the positive supply. The inputs take 44V both differential and common mode, even when operating on a 3V supply. Built-in resistors protect the inputs for faults below the negative supply up to 22V. There is no phase reversal of the output for inputs 5V below V_{FF} or 44V above V_{EE} , independent of V_{CC} .


The LT1637 op amp is available in the 8-pin MSOP, PDIP and SO packages.

(T), LTC and LT are registered trademarks of Linear Technology Corporation. Over-The-Top is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Over-The-Top™ Current Source with Shutdown


ABSOLUTE MAXIMUM RATINGS

(N	ote	1
		- 1

Total Supply Voltage (V + to V -)	44V
Input Differential Voltage	
Input Current	
Shutdown Pin Voltage Above V	32V
Shutdown Pin Current	±10mA
Output Short-Circuit Duration (Note 2)	Continuous
Operating Temperature Range (Note 3)	
LT1637C/LT1637I	40°C to 85°C
LT1637H	-40°C to 125°C

Specified Temperature Range (Note 4)		
LT1637C/LT1637I	40°C to	85°C
LT1637H	-40°C to	125°C
Junction Temperature		150°C
Storage Temperature Range	-65° C to	150°C
Lead Temperature (Soldering, 10 sec)		300°C

PACKAGE/ORDER INFORMATION

Consult factory for parts specified with wider operating temperature ranges.

3V AND 5V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, 0V; $V_S = 5V$, 0V; $V_{SHDN} = V^-$, $V_{CM} = V_{OUT} = half$ supply unless otherwise specified. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1637C/I Min tyi		UNITS
V _{OS}	Input Offset Voltage	N8, S8 Packages $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$ $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$	•	100	350 550 700	μV μV μV
		MS8 Package $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$ $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$	•	100	350 750 900	μV μV μV
	Input Offset Voltage Drift (Note 9)	N8, S8 Packages, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ MS8 Package, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	•	1 2	3 6	μV/°C μV/°C
I _{OS}	Input Offset Current	V _{CM} = 44V (Note 5)	•	0.4	6.0 2.5	nA μA
I _B	Input Bias Current	V _{CM} = 44V (Note 5) V _S = 0V	•	20 23 0.1	50 60	nA μA nA

3V AND 5V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$, otherwise specifications are at $T_{A} = 25^{\circ}\text{C}$. $V_{S} = 3V$, $V_{S} = 5V$, $V_{S} = 5V$, $V_{S} = 5V$, $V_{CM} = V_{OUT} = V_$

Input Noise Current Density				1.75	2971	T		
Input Noise Voltage 0.1Hz to 10Hz 0.6 14VP=P	SYMBOL	PARAMETER	CONDITIONS		1			UNITS
en Input Noise Voltage Density f = 1kHz 27 nV/NFIZ ia Input Noise Current Density f = 1kHz 0.08 pA/NFIZ RIN Input Noise Current Density f = 1kHz 0.08 pA/NFIZ CIN Input Capacitance 0.7 1.4 MΩ CMRR Common Mode Rejection Ratio (Note 5) V _{CM} = 0V to (V _{CC} − 1V) 88 110 dB CMRR Common Mode Rejection Ratio (Note 5) V _{CM} = 0V to 44V (Note 8) 80 98 dB Avgu. Large-Signal Voltage Gain V _S = 3V, 0°C ≤ T _{1x} ≤ 70°C 150 400 V/rmV V _S = 3V, 0°C ≤ T _{1x} ≤ 70°C V _S = 3V, 0°C ≤ T _{1x} ≤ 70°C 150 400 V/rmV V _S = 5V, 0°C ≤ T _{1x} ≤ 70°C 0 150 400 V/rmV V _S = 5V, 0°C ≤ T _{1x} ≤ 70°C 0 150 400 V/rmV V _S = 5V, 4°C ≤ T _{1x} ≤ 70°C 0 150 400 V/rmV V _S = 5V, 4°C ≤ T _{1x} ≤ 70°C 0 150 400 V/rmV V _C = 5V, 4°C ≤ T _{1x} ≤ 70°C								
Input Noise Current Density	en		f = 1kHz			27		nV/√Hz
R _{IIV} Input Resistance Differential Common Mode, V _{CM} = 0V to 44V 1 2.6 MΩQ CN Input Capacitance 4 5P Input Voltage Range 4 0.7 1.4 MQ CMRR Common Mode Rejection Ratio V _{CM} = 0V to (V _{CC} − 1V) • 88 110 d8 AVOL Large-Signal Voltage Gain V _S = 3V, V _O = 500mV to 2.5V, R _L = 10k 150 400 V/mV V _S = 3V, V _O = 500mV to 4.5V, R _L = 10k 150 400 V/mV V/mV V _S = 3V, V _O = 500mV to 4.5V, R _L = 10k 900 800 800 V/mV V _S = 3V, V _O = 500mV to 4.5V, R _L = 10k 900 800 V/mV V _S = 5V, V _O = 500mV to 4.5V, R _L = 10k 900 800 V/mV V _S = 5V, V _O = 500mV to 4.5V, R _L = 10k 900 800 V/mV V _D 0 tuput Voltage Swing HIGH No Load 900 300 800 V/mV V _D 2.5 V, No Load 90 2.94 2.975 V V _S = 5V, No Load 90		Input Noise Current Density	f = 1kHz			0.08		pA/√Hz
Cin Input Capacitance 4 MΩ Input Voltage Range • 0 • 44 ye CMRR Common Mode Rejection Ratio (Note 5) V _{CM} = 0V to (V _{CC} − 1V) • 88 110 dB AvOL. Large-Signal Voltage Gain V _S = 3V, V _O = 500mV to 2.5V, R _L = 10k 150 400 V/mW V _S = 3V, V _O = 500mV to 1.25V, R _L = 10k 150 400 V/mW V/mW V _S = 5V, V _O = 50mA to 4.5V, R _L = 10k 300 800 V/mW V/mW V _S = 5V, V _O = 50mA to 4.5V, R _L = 10k 300 800 V/mW V/mW V _S = 5V, V _O = 50mA to 4.5V, R _L = 10k 300 80 V/mW V/mW V _S = 5V, O [*] C ≤ T _A ≤ 70°C 200 V/mW V/mW <td></td> <td>Input Resistance</td> <td>Differential</td> <td></td> <td>1</td> <td>2.6</td> <td></td> <td>MΩ</td>		Input Resistance	Differential		1	2.6		MΩ
Input Voltage Range			Common Mode, V _{CM} = 0V to 44V		0.7	1.4		MΩ
CMRR (Note 5) (Note 5) Common Mode Rejection Ratio (Note 5) V _{CM} = 0V to (V _{CC} − 1V) ● 88	C _{IN}	Input Capacitance				4		pF
Note 5 V _{CM} = 0V to 44V (Note 8)		Input Voltage Range		•	0		44	V
Avol. Large-Signal Voltage Gain	CMRR			•	1			dB dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Avoi							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· ·VOL			•	100			V/mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_S = 3V, -40^{\circ}C \le T_A \le 85^{\circ}C$	•	75			V/mV
$V_{OL} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						800		V/mV
$\begin{array}{c} V_{OL} & \text{Output Voltage Swing LOW} & \text{No Load} \\ I_{SINK} = 5mA \\ V_S = 5V, I_{SINK} = 10mA \\ \end{array} & \begin{array}{c} 3 & 8 \\ 325 & 700 \\ mV \\ \hline 800 & 1300 \\ mV \\ \end{array} \\ \begin{array}{c} V_{OH} \\ V_{OH} \\ \end{array} & \begin{array}{c} \text{Output Voltage Swing HIGH} \\ \end{array} & \begin{array}{c} V_S = 3V, \text{ No Load} \\ V_S = 5V, I_{SINK} = 10mA \\ \end{array} & \begin{array}{c} 2.94 & 2.975 \\ 2.25 & 2.67 \\ \end{array} & \begin{array}{c} V_S = 5V, I_{SINK} = 10mA \\ \end{array} & \begin{array}{c} 2.95 & 2.67 \\ \end{array} & \begin{array}{c} V_S = 5V, I_{SINK} = 10mA \\ \end{array} & \begin{array}{c} 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ \end{array} & \begin{array}{c} 0.00 $				•	1			V/mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Output Voltage Cruing LOW		•	150		0	_
$V_{OH} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	v _O L	Output voltage Swing LOW						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{OH}	Output Voltage Swing HIGH		•	2.94	2.975		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_S = 3V$, $I_{SOURCE} = 5mA$	•	2.25	2.67		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	1			V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{SC}	Short-Circuit Current (Note 2)			_			mA mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_			mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PSRR	Power Supply Rejection Ratio	$V_S = 3V \text{ to } 12.5V, V_{CM} = V_0 = 1V$	•	90	98		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Minimum Supply Voltage		•			2.7	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse Supply Voltage	$I_S = -100 \mu A$	•	25	40		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _S	Supply Current				190	250	μА
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(Note 6)		•				μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Supply Current, SHDN	V _{PIN5} = 2V, No Load (Note 6)	•		3	12	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{SHDN}	Shutdown Pin Current		•				nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•			5	μΑ
Output Leakage Current, SHDN $V_{PIN5} = 2V$, No Load (Note 6) \bullet 0.02 1 μ A Maximum Shutdown Pin Current $V_{PIN5} = 32V$, No Load (Note 5) \bullet 20 150 μ A ton Turn-On Time $V_{PIN5} = 5V$ to 0V, $R_L = 10k$ 45 μ S to Fig. Turn-Off Time $V_{PIN5} = 0V$ to 5V, $R_L = 10k$ 3 μ S								
Maximum Shutdown Pin Current $V_{PIN5} = 32V$, No Load (Note 5) \bullet 20150μA t_{ON} Turn-On Time $V_{PIN5} = 5V$ to $0V$, $R_L = 10k$ 45μs t_{OFF} Turn-Off Time $V_{PIN5} = 0V$ to $5V$, $R_L = 10k$ 3μs		Output Leakage Current, SHDN		•			1	μА
toNTurn-On Time $V_{PIN5} = 5V$ to 0V, $R_L = 10k$ 45μstoFFTurn-Off Time $V_{PIN5} = 0V$ to 5V, $R_L = 10k$ 3μs		<u> </u>		•			150	μA
t_{OFF} Turn-Off Time $V_{PIN5} = 0V \text{ to } 5V, R_L = 10k$ 3 μs	t _{ON}	Turn-On Time	11110					
	t _{SETTLING}	Settling Time	$0.1\% \text{ Ay} = 1, \Delta V_0 = 2V$			9		μs

3V AND 5V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, $V_S = 5V$, $V_S = 5V$, $V_S = V_T = V_T$

				LT1	637C/LT16	i37I	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
GBW	Gain-Bandwidth Product	f = 10kHz		650	1000		kHz
	(Note 5)	$0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$	•	550			kHz
		$-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$		500			kHz
SR	Slew Rate	$A_V = -1$, $R_L = \infty$		0.210	0.35		V/µs
	(Note 7)	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		0.185			V/µs
		$-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$	•	0.170			V/µs

±15V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$ unless otherwise specified. (Note 4)

				LT1637C/LT1637I		i37I		
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
V _{OS}	Input Offset Voltage	N8, S8 Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	450 650 800	μV μV μV	
		MS8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	450 800 950	μV μV μV	
	Input Offset Voltage Drift (Note 9)	N8, S8 Packages, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ MS8 Package, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	•		1 2	3 6	μV/°C μV/°C	
I _{OS}	Input Offset Current		•		1	6	nA	
I _B	Input Bias Current		•		17	50	nA	
	Input Noise Voltage	0.1Hz to 10Hz			0.6		μV _{P-P}	
en	Input Noise Voltage Density	f = 1kHz			27		nV/√Hz	
in	Input Noise Current Density	f = 1kHz			0.08		pA/√Hz	
R _{IN}	Input Resistance	Differential Common Mode, $V_{CM} = -15V$ to 14V		1	3 2200		MΩ MΩ	
C _{IN}	Input Capacitance				4		pF	
	Input Voltage Range		•	-15		29	V	
CMRR	Common Mode Rejection Ratio	$V_{CM} = -15V$ to 29V	•	80	110		dB	
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 14V, R_L = 10k$ $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	100 75 50	400		V/mV V/mV V/mV	
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 5mA I _{SINK} = 10mA	•		-14.997 -14.680 -14.420	-14.25	V V V	

±15V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$ unless otherwise specified. (Note 4)

						637I	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OH}	Output Voltage Swing HIGH	No Load I _{SOURCE} = 5mA I _{SOURCE} = 10mA	•	14.9 14.2 13.7	14.967 14.667 14.440		V V V
I _{SC}	Short-Circuit Current (Note 2)	Short Output to GND $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	±25 ±20 ±15	±31.7		mA mA mA
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 22 V$	•	90	115		dB
	Minimum Supply Voltage		•			±1.35	V
Is	Supply Current		•		230	300 370	μΑ μΑ
	Positive Supply Current, SHDN	$V_{PIN5} = -20V$, $V_{S} = \pm 22V$, No Load	•		6	40	μΑ
I _{SHDN}	Shutdown Pin Current	$V_{PIN5} = -21.7V$, $V_S = \pm 22V$, No Load $V_{PIN5} = -20V$, $V_S = \pm 22V$, No Load	•		0.3 0.9	15 8	nA μA
	Maximum Shutdown Pin Current	$V_{PIN5} = 32V, V_{S} = \pm 22V$	•		20	150	μΑ
	Output Leakage Current, SHDN	$V_{PIN5} = -20V$, $V_{S} = \pm 22V$, No Load	•		0.02	2	μА
V_L	Shutdown Pin Input Low Voltage	$V_S = \pm 22V$	•	-21.7	-21.6		V
V_{H}	Shutdown Pin Input High Voltage	$V_S = \pm 22V$	•		-20.8	-20.0	V
t_{ON}	Turn-On Time	$V_{PIN5} = -10V \text{ to } -15V, R_L = 10k$			35		μS
t _{OFF}	Turn-Off Time	$V_{PIN5} = -15V \text{ to } -10V, R_L = 10k$			3		μS
GBW	Gain-Bandwidth Product	$ f = 10kHz $ $0^{\circ}C \le T_A \le 70^{\circ}C $ $-40^{\circ}C \le T_A \le 85^{\circ}C $	•	750 650 600	1100		kHz kHz kHz
SR	Slew Rate	$A_V=-1,~R_L=\infty,~V_0=\pm 10V,~Measure~at~V_0=\pm 5V$ $0^{\circ}C\leq T_A\leq 70^{\circ}C$ $-40^{\circ}C\leq T_A\leq 85^{\circ}C$	•	0.225 0.200 0.180	0.4		V/µs V/µs V/µs

3V AND 5V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 125^{\circ}C$. $V_S = 3V$, 0V; $V_S = 5V$, 0V; $V_{CM} = V_{OUT} = \text{half supply unless otherwise specified.}$ (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	LT1637H TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		100	450 3	μV mV
	Input Offset Voltage Drift (Note 9)		•		3	10	μV/°C
I _{OS}	Input Offset Current	V _{CM} = 44V (Note 5)	•			15 10	nA μA
I _B	Input Bias Current	V _{CM} = 44V (Note 5)	•			150 100	nA μA
	Input Voltage Range		•	0.3		44	V
CMRR	Common Mode Rejection Ratio (Note 5)	$V_{CM} = 0.3V \text{ to } (V_{CC} - 1V)$ $V_{CM} = 0.3V \text{ to } 44V$	•	72 74			dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_S = 3V$, $V_0 = 500$ mV to 2.5V, $R_L = 10$ k	•	150 20	400		V/mV V/mV
		$V_S = 5V$, $V_0 = 500$ mV to 4.5V, $R_L = 10$ k	•	300 35	800		V/mV V/mV
V _{OL}	Output Voltage Swing LOW	No Load $I_{SINK} = 5mA$ $V_S = 5V$, $I_{SINK} = 10mA$	•			15 900 1500	mV mV mV
V_{OH}	Output Voltage Swing HIGH	$V_S = 3V$, No Load $V_S = 3V$, I _{SOURCE} = 5mA	•	2.90 2.05			V
		$V_S = 5V$, No Load $V_S = 5V$, I _{SOURCE} = 10mA	•	4.90 3.50			V V
PSRR	Power Supply Rejection Ratio	$V_S = 3V$ to 12.5V, $V_{CM} = V_0 = 1V$	•	80			dB
	Minimum Supply Voltage		•	2.7			V
	Reverse Supply Voltage	$I_S = -100\mu A$	•	23			V
Is	Supply Current	(Note 6)	•		190	250 400	μA μA
	Supply Current, SHDN	V _{PIN5} = 2V, No Load (Note 6)	•			15	μА
I _{SHDN}	Shutdown Pin Current	V _{PIN5} = 0.3V, No Load (Note 6) V _{PIN5} = 2V, No Load (Note 5)	•			200 7	nA μA
	Output Leakage Current, SHDN	V _{PIN5} = 2V, No Load (Note 6)	•			5	μΑ
	Maximum Shutdown Pin Current	V _{PIN5} = 32V, No Load (Note 5)	•			200	μА
GBW	Gain-Bandwidth Product	f = 10kHz (Note 5)	•	650 350	1000		kHz kHz
SR	Slew Rate	$A_V = -1$, $R_L = \infty$ (Note 7)	•	0.210 0.1	0.35		V/µs V/µs

+15V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 125^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$, $T_A = -40^{\circ}C$ to $125^{\circ}C$, unless otherwise specified. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	LT1637H TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		100	550 3.4	μV mV
	Input Offset Voltage Drift (Note 9)		•		3	11	μV/°C
I _{OS}	Input Offset Current		•			25	nA
I _B	Input Bias Current		•			250	nA
CMRR	Common Mode Rejection Ratio	$V_{CM} = -14.7V \text{ to } 29V$	•	72			dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 14V, R_L = 10k$	•	100 4	400		V/mV V/mV
V_0	Output Voltage Swing	No Load $I_{OUT} = \pm 5$ mA $I_{OUT} = \pm 10$ mA	•			±14.8 ±14.0 ±13.4	V V V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V$ to 22V	•	84			dB
	Minimum Supply Voltage		•	±1.35			V
I _S	Supply Current		•		230	300 500	μ Α μ Α
	Positive Supply Current, SHDN	$V_{PIN5} = -20V$, $V_S = \pm 22V$, No Load	•			60	μΑ
I _{SHDN}	Shutdown Pin Current	$V_{PIN5} = -21.7V$, $V_{S} = \pm 22V$, No Load $V_{PIN5} = -20V$, $V_{S} = \pm 22V$, No Load	•			200 10	nA μA
	Maximum Shutdown Pin Current	$V_{PIN5} = 32V, V_S = \pm 22V$	•			200	μΑ
	Output Leakage Current, SHDN	$V_{PIN5} = -20V, V_S = \pm 22V, No Load$	•			100	μΑ
V_L	Shutdown Pin Input Low Voltage	V _S = ±22V	•			-21.7	V
V_{H}	Shutdown Pin Input High Voltage	V _S = ±22V	•	-20			V
GBW	Gain-Bandwidth Product	f = 10kHz	•	750 400	1100		kHz kHz
SR	Slew Rate	$A_V = -1$, $R_L = \infty$, $V_0 = \pm 10V$, Measure at $V_0 = \pm 5V$	•	0.225 0.1	0.4		V/µs V/µs

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: A heat sink may be required to keep the junction temperature below absolute maximum.

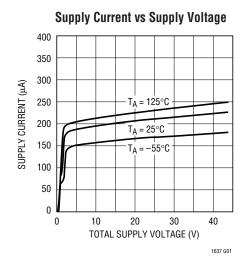
Note 3: The LT1637C and LT1637I are guaranteed functional over the operating temperature range of -40° C to 85°C. The LT1637H is guaranteed functional over the operating temperature range of -40° C to 125°C.

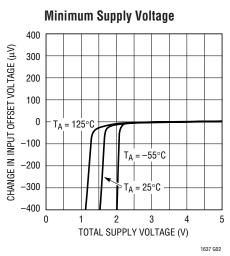
Note 4: The LT1637C is guaranteed to meet specified performance from 0° C to 70° C. The LT1637C is designed, characterized and expected to meet specified performance from -40° C to 85° C but is not tested or QA sampled at these temperatures. The LT1637I is guaranteed to meet specified

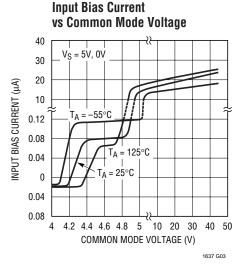
performance from -40° C to 85° C. The LT1637H is guaranteed to meet specified performance from -40° C to 125° C.

Note 5: V_S = 5V limits are guaranteed by correlation to V_S = 3V and V_S = ± 15 V or V_S = ± 22 V tests.

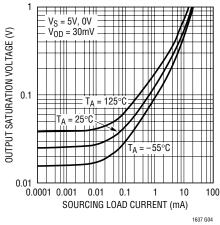
Note 6: V_S = 3V limits are guaranteed by correlation to V_S = 5V and V_S = ± 15 V or V_S = ± 22 V tests.

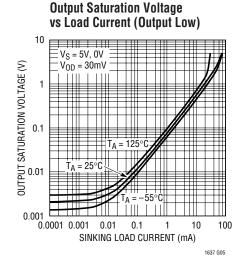

Note 7: Guaranteed by correlation to slew rate at $V_S = \pm 15V$ and GBW at $V_S = 3V$ and $V_S = \pm 15V$ tests.

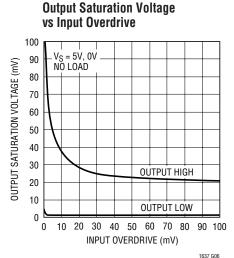

Note 8: This specification implies a typical input offset voltage of $650\mu V$ at $V_{CM}=44V$ and a maximum input offset voltage of 5.4mV at $V_{CM}=44V$.


Note 9: This parameter is not 100% tested.

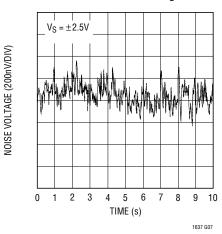
TYPICAL PERFORMANCE CHARACTERISTICS

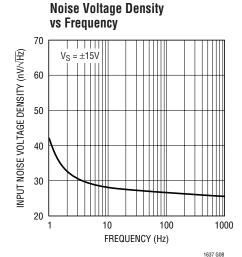




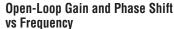


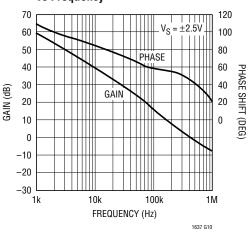
Output Saturation Voltage
vs Load Current (Output High)

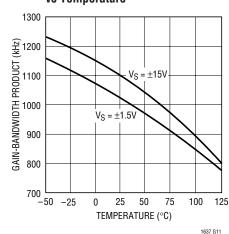

1
Vs = 5V, 0V



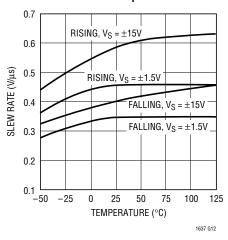
0.1Hz to 10Hz Noise Voltage

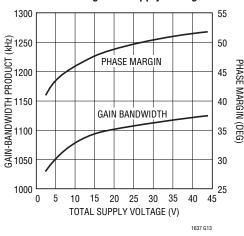


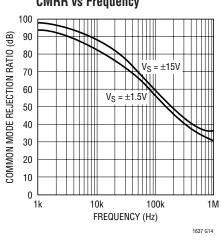


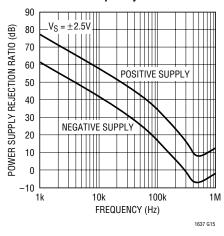


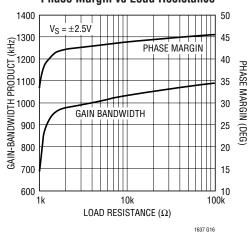
TYPICAL PERFORMANCE CHARACTERISTICS

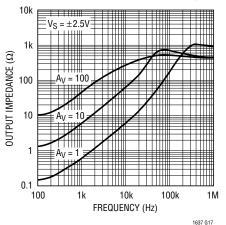


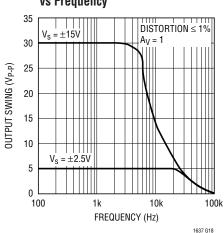

Gain-Bandwidth Product vs Temperature


Slew Rate vs Temperature

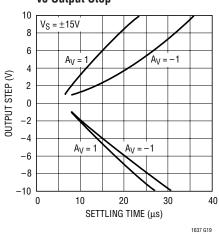

Gain-Bandwidth Product and Phase Margin vs Supply Voltage

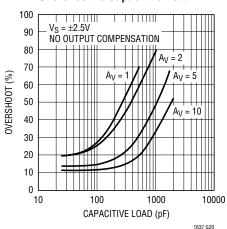

CMRR vs Frequency


PSRR vs Frequency

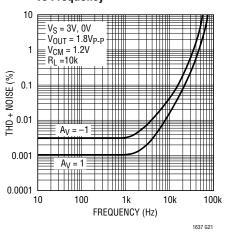

Gain-Bandwidth Product and Phase Margin vs Load Resistance

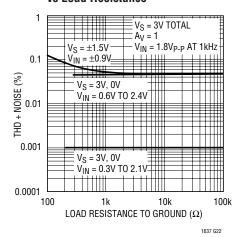
Output Impedance vs Frequency

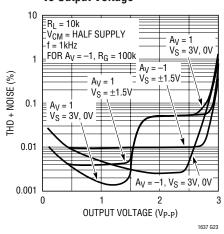

Undistorted Output Swing vs Frequency

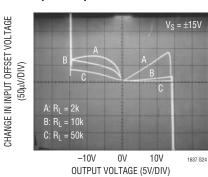


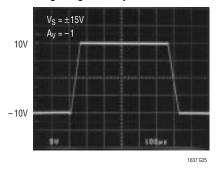
TYPICAL PERFORMANCE CHARACTERISTICS

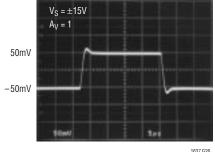

Settling Time to 0.1% vs Output Step


Capacitive Load Handling, Overshoot vs Capacitive Load


Total Harmonic Distortion + Noise vs Frequency


Total Harmonic Distortion + Noise vs Load Resistance


Total Harmonic Distortion + Noise vs Output Voltage


Open-Loop Gain

Large-Signal Response

Small-Signal Response

1637 G2

APPLICATIONS INFORMATION

Supply Voltage

The positive supply pin of the LT1637 should be bypassed with a small capacitor (about $0.01\mu F$) within an inch of the pin. When driving heavy loads an additional $4.7\mu F$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.

The LT1637 is protected against reverse battery voltages up to 25V. In the event a reverse battery condition occurs, the supply current is typically less than 1nA.

When operating the LT1637 on total supplies of 30V or more, the supply must not be brought up faster than 1 μ s. This is especially true if low ESR bypass capacitors are used. A series RLC circuit is formed from the supply lead inductance and the bypass capacitor. 5Ω of resistance in the supply or the bypass capacitor will dampen the tuned circuit enough to limit the rise time.

Inputs

The LT1637 has two input stages, NPN and PNP (see the Simplified Schematic), resulting in three distinct operating regions as shown in the Input Bias Current vs Common Mode typical performance curve.

For input voltages about 0.9V or more below V⁺, the PNP input stage is active and the input bias current is typically -20nA. When the input voltage is about 0.5V or less from V⁺, the NPN input stage is operating and the input bias current is typically 80nA. Increases in temperature will cause the voltage at which operation switches from the PNP stage to the NPN stage to move towards V⁺. The input offset voltage of the NPN stage is untrimmed and is typically $600\mu\text{V}$.

A Schottky diode in the collector of each NPN transistor of the NPN input stage allows the LT1637 to operate with either or both of its inputs above V⁺. At about 0.3V above V⁺ the NPN input transistor is fully saturated and the input bias current is typically $23\mu A$ at room temperature. The input offset voltage is typically $600\mu V$ when operating above V⁺. The LT1637 will operate with its input 44V above V⁻ regardless of V⁺.

The inputs are protected against excursions as much as 22V below V⁻ by an internal 1.3k resistor in series with each input and a diode from the input to the negative supply. There is no output phase reversal for inputs up to 5V below V⁻. There are no clamping diodes between the inputs and the maximum differential input voltage is 44V.

Output

The output voltage swing of the LT1637 is affected by input overdrive as shown in the typical performance curves. When monitoring input voltages within 100mV of V^+ , gain should be taken to keep the output from clipping.

The output of the LT1637 can be pulled up to 25V beyond V^+ with less than 1nA of leakage current, provided that V^+ is less than 0.5V.

The normally reverse biased substrate diode from the output to V^- will cause unlimited currents to flow when the output is forced below V^- . If the current is transient and limited to 100mA, no damage will occur.

The LT1637 is internally compensated to drive at least 200pF of capacitance under any output loading conditions. A $0.22\mu F$ capacitor in series with a 150Ω resistor between the output and ground will compensate these amplifiers for larger capacitive loads, up to 4700pF, at all output currents.

Distortion

There are two main contributors of distortion in op amps: output crossover distortion as the output transitions from sourcing to sinking current and distortion caused by nonlinear common mode rejection. Of course, if the op amp is operating inverting there is no common mode induced distortion. When the LT1637 switches between input stages there is significant nonlinearity in the CMRR. Lower load resistance increases the output crossover distortion, but has no effect on the input stage transition distortion. For lowest distortion the LT1637 should be operated single supply, with the output always sourcing current and with the input voltage swing between ground and $(V^+ - 0.9V)$. See the Typical Performance Characteristics curves.

APPLICATIONS INFORMATION

Gain

The open-loop gain is less sensitive to load resistance when the output is sourcing current. This optimizes performance in single supply applications where the load is returned to ground. The typical performance photo of Open-Loop Gain for various loads shows the details.

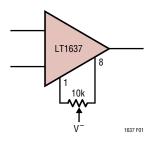
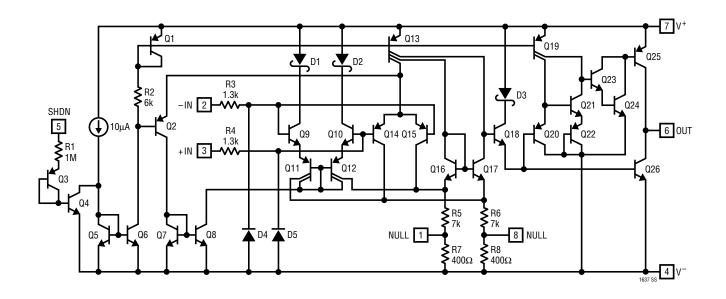
Shutdown

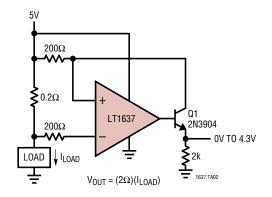
The LT1637 can be shut down two ways: using the shutdown pin or bringing V+ to within 0.5V of V⁻. When V+ is brought to within 0.5V of V⁻ both the supply current and output leakage current drop to less than 10nA. When the shutdown pin is brought 1.2V above V⁻, the supply current drops to about 3 μ A and the output leakage current is less than 1 μ A, independent of V+. In either case the input bias current is less than 0.1nA (even if the inputs are 44V above the negative supply).

The shutdown pin can be taken up to 32V above V⁻. The shutdown pin can be driven below V⁻, however the pin current through the substrate diode should be limited with an external resistor to less than 10mA.

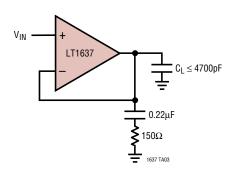
Input Offset Nulling

The input offset voltage can be nulled by placing a 10k potentiometer between Pins 1 and 8 with its wiper to V⁻ (see Figure 1). The null range will be at least ±3mV.

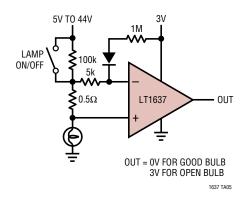



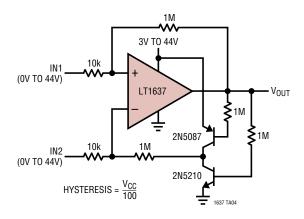

Figure 1. Input Offset Nulling

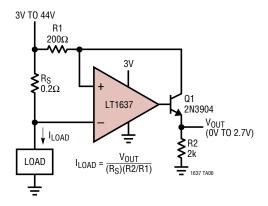
SIMPLIFIED SCHEMATIC



TYPICAL APPLICATIONS

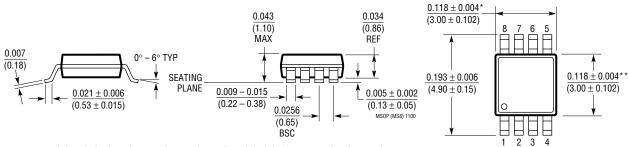

Positive Supply Rail Current Sense


Optional Output Compensation for Capacitive Loads Greater Than 200pF


Lamp Outage Detector

Over-The-Top Comparator with Hysteresis

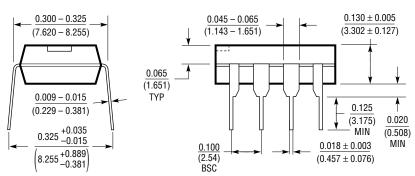
Over-The-Top Current Sense

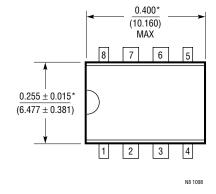


PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

MS8 Package 8-Lead Plastic MSOP


(LTC DWG # 05-08-1660)



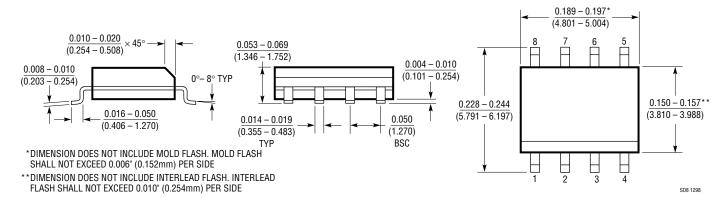
- * DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

N8 Package 8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

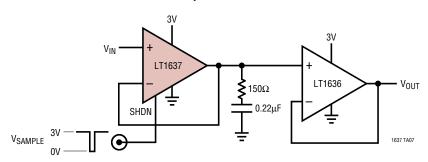
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)



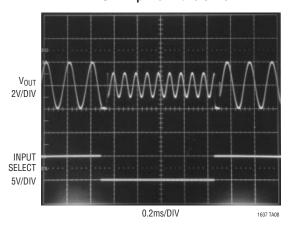
PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)


(LTC DWG # 05-08-1610)

TYPICAL APPLICATIONS


Sample-and-Hold

DROOP (LT1636 BUFFER): 200mV/s DROOP INTO HIGH IMPEDANCE : LESS THAN 0.625mV/s

MUX Amplifier V_{IN1} 5kHz AT 4V_{P-P} LT1637 V_{OUT} SHDN 5V LT1637 V_{IN2} 10kHz AT 2V_{P-P} SHDN INPUT SELECT 1kHz AT 5V_{P-P} 74HC04

MUX Amplifier Waveforms

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1078/LT1079 LT2078/LT2079	Dual/Quad 55μA Max, Single Supply, Precision Op Amps	Input/Output Common Mode Includes Ground, 70μV V _{OS(MAX)} and 2.5μV/°C Drift (Max), 200kHz GBW, 0.07V/μs Slew Rate
LT1178/LT1179 LT2178/LT2179	Dual/Quad 17μA Max, Single Supply, Precison Op Amps	Input/Output Common Mode Includes Ground, 70μV V _{OS(MAX)} and 4μV/°C Drift (Max), 85kHz GBW, 0.04V/μs Slew Rate
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	475μV V _{OS(MAX)} , 500V/mV A _{VOL(MIN)} , 400kHz GBW
LT1490/LT1491	Dual/Quad Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	Single Supply Input Range: -0.4V to 44V, Micropower 50µA per Amplifier, Rail-to-Rail Input and Output, 200kHz GBW
LT1636	Single Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp	55µA Supply Current, V _{CM} Extends 44V above V _{EE} , Independent of V _{CC} ; MSOP Package, Shutdown Function
LT1638/LT1639	Dual/Quad 1.2MHz Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	0.4V/μs Slew Rate, 230μA Supply Current per Amplifier
LT1782	Micropower, Over-The-Top, SOT-23, Rail-to-Rail Input and Output Op Amp	SOT-23, $800\mu V V_{OS(MAX)}$, $I_S = 55\mu A (Max)$, Gain-Bandwidth = $200kHz$, Shutdown Pin
LT1783	1.2MHz, Over-The-Top, Micropower, Rail-to-Rail Input and Output Op Amp	SOT-23, $800\mu V V_{OS(MAX)}$, $I_S = 300\mu A (Max)$, Gain-Bandwidth = 1.2MHz, Shutdown Pin