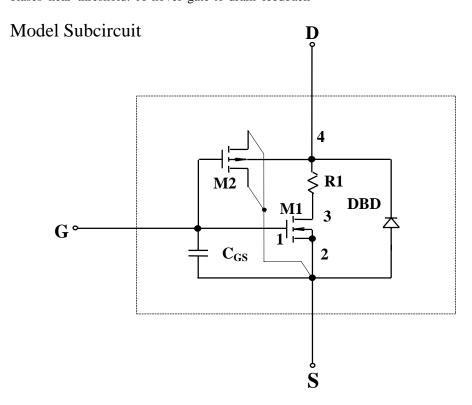


N-Channel Enhancement-Mode MOSFET

Characteristics


- N-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

capacitance network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

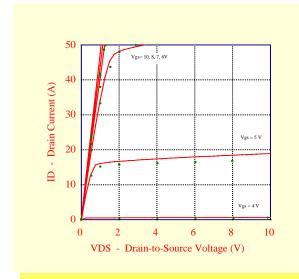
Siliconix 4/17/01

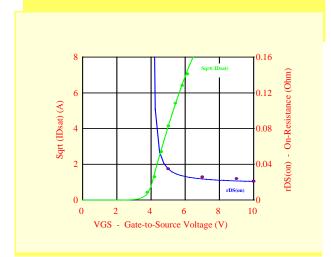
Document: 70908

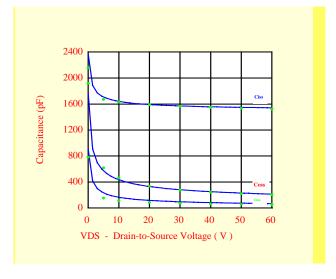
N-Channel Device (T_J=25°C Unless Otherwise Noted)

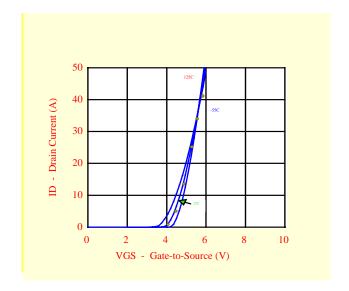
Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.85	V
On-State Drain Current ^b	$I_{D(on)}$	$V_{DS} \ge 5V, V_{GS} = 10V$	221	A
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = 10V, I_D = 7.5A$	0.021	Ω
		$V_{GS} = 6V, I_D = 6.5A$	0.026	
Forward Transconductance ^b	$g_{ m fs}$	$V_{DS} = 15V, I_D = 7.5A$	19.6	S
Diode Forward Voltage ^b	V_{SD}	$I_{S} = 2.1A, V_{GS} = 0V$	0.76	V
Dynamic				
Total Gate Charge	Q_{g}		31	
Gate-Source Charge	Q_{gs}	$V_{DS} = 30V, V_{GS} = 10V,$	7.7	nC
		$I_D = 7.5A$		
Gate-Drain Charge	Q_{gd}		8.3	
Turn-On Delay Time	$t_{d(on)}$		12	
Rise Time	$t_{\rm r}$	$V_{\rm DD} = 30 V, R_{\rm L} = 30 \Omega$	10	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	41	ns
		$R_G = 6\Omega$		
Fall Time	t_{f}	7	27	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.1A,$	46	
		$di/dt = 100A/\mu s$		

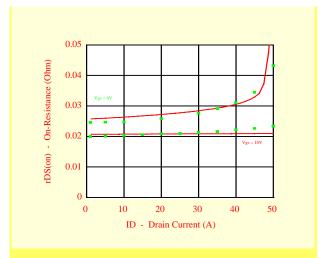
Notes:

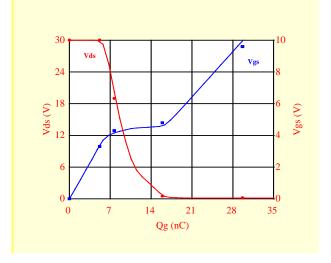

4/17/01 Document: 70908


a) For design aid only; not subject to production testing


b) Pulse test: Pulse Width $\leq 300 \,\mu\text{sec}$, Duty Cycle $\leq 2\%$







Siliconix 4/17/01 Document: 70908