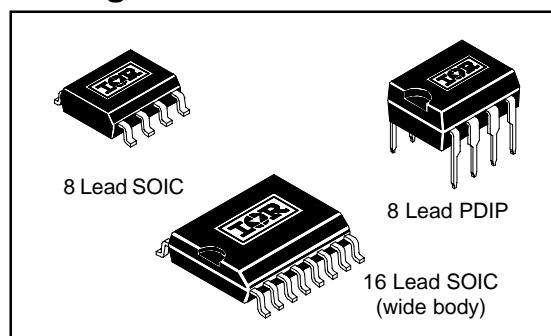


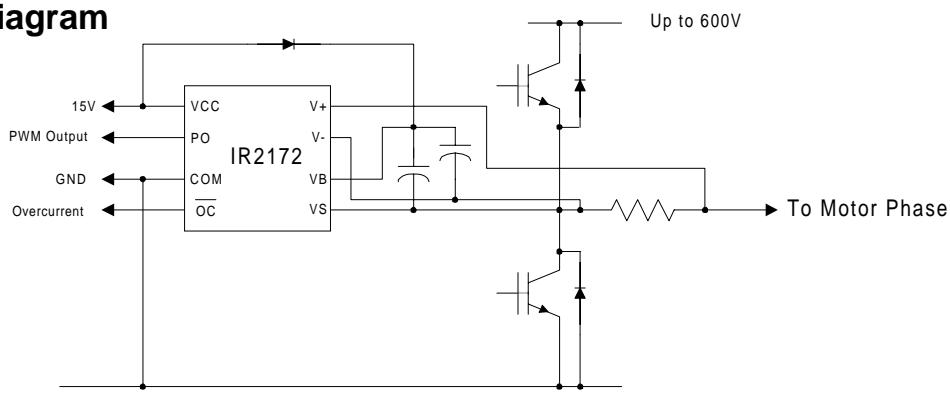
LINEAR CURRENT SENSING IC

Features

- Floating channel up to +600V
- Monolithic integration
- Linear current feedback through shunt resistor
- Direct digital PWM output for easy interface
- Low IQBS allows the boot strap power supply
- Independent fast overcurrent trip signal
- High common mode noise immunity
- Input overvoltage protection for IGBT short circuit condition
- Open Drain outputs


Description

IR2172 is the monolithic current sensing IC designed for motor drive applications. It senses the motor phase current through an external shunt resistor, converts from analog to digital signal, and transfers the signal to the low side. IR's proprietary high voltage isolation technology is implemented to enable the high bandwidth signal processing. The output format is discrete PWM to eliminate need for the A/D input interface. The dedicated overcurrent trip (OC) signal facilitates IGBT short circuit protection. The OC output pulse can be programmed by the external resistor and capacitor. The open-drain outputs make easy for any interface from 3.3V to 15V.


Product Summary

V _{OFFSET}	600Vmax
I _{QBS}	1mA
V _{in}	+/-260mVmax
Gain temp.drift	20ppm/ ^o C (typ.)
f _o	40kHz (typ.)
Overcurrent trip signal delay	1.5usec (typ)
Overcurrent trip level	+/-260mV (typ.)

Packages

Block Diagram

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V_S	High side offset voltage	V	-0.3	600	V
V_{BS}	High side floating supply voltage		-0.3	25	
V_{CC}	Low side and logic fixed supply voltage		-0.3	25	
V_{IN}	Maximum input voltage between V_{IN+} and V_{IN-}		-5	5	
V_{PO}	Digital PWM output voltage		COM -0.3	VCC +0.3	
V_{OC}	Overcurrent output voltage		COM -0.3	VCC +0.3	
V_{IN-}	V_{IN-} input voltage (note 1)		$V_S - 5$	$V_B + 0.3$	
dV/dt	Allowable offset voltage slew rate		—	50	V/ns
P_D	Package power dissipation @ $T_A \leq +25^\circ\text{C}$	8 lead SOIC	—	.625	W
		8 lead PDIP	—	1.0	
		16 lead SOIC	—	1.25	
R_{thJA}	Thermal resistance, junction to ambient	8 lead SOIC	—	200	$^\circ\text{C}/\text{W}$
		8 lead PDIP	—	125	
		16 lead SOIC	—	100	
T_J	Junction temperature	—	—	150	$^\circ\text{C}$
T_S	Storage temperature	—	-55	150	
T_L	Lead temperature (soldering, 10 seconds)	—	—	300	

Note 1: Capacitors are required between V_B and V_{IN-} , and between V_B and V_S pins when bootstrap power is used. The external power supply, when used, is required between V_S and V_{IN-} , and between V_B and V_S pins.

Recommended Operating Conditions

The output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions.

Symbol	Definition		Min.	Max.	Units
V_B	High side floating supply voltage	V	$V_S +13.0$	$V_S +20$	V
V_S	High side floating supply offset voltage		note 2	600	
V_{PO}	Digital PWM output voltage		COM	VCC	
V_{OC}	Overcurrent output voltage		COM	VCC	
V_{CC}	Low side and logic fixed supply voltage		9.5	20	
V_{IN}	Input voltage between V_{IN+} and V_{IN-}		-260	+260	mV
T_A	Ambient temperature		-40	125	$^\circ\text{C}$

Note 2: Logic operation for V_S of -5 to +600V. Logic state held for V_S of -5V to $-V_{BS}$.

DC Electrical Characteristics

$V_{CC} = V_{BS} = 15V$, unless otherwise specified.

Symbol	Definition	Min.	Typ.	Max.	Units	Test Conditions
V_{IN}	Nominal input voltage range before saturation $ V_{IN+} - V_{IN-} $	-260	—	260	mV	$V_{IN} = 0V$ (Note 1)
V_{OC+}	Overcurrent trip positive input voltage	—	260	—		
V_{OC-}	Overcurrent trip negative input voltage	—	-260	—		
V_{OS}	Input offset voltage	-10	0	10		
$\Delta V_{OS}/\Delta TA$	Input offset voltage temperature drift	—	25	—	$\mu V/^\circ C$	
G	Gain (duty cycle % per V_{IN})	157	162	167	%/V	max gain error=5% (Note 2)
$\Delta G/\Delta TA$	Gain temperature drift	—	20	—	$ppm/^\circ C$	
I_{LK}	Offset supply leakage current	—	—	50	μA	$V_B = V_S = 600V$
I_{QBS}	Quiescent V_{BS} supply current	—	1	2	mA	$V_S = 0V$
I_{QCC}	Quiescent V_{CC} supply current	—	—	1		
LIN	Linearity (duty cycle deviation from ideal linearity curve)	—	0.5	1	%	
$\Delta V_{LIN}/\Delta TA$	Linearity temperature drift	—	.005	—	$\%/^\circ C$	
I_{OPO}	Digital PWM output sink current	20	—	—	mA	$V_O = 1V$
		2	—	—		$V_O = 0.1V$
I_{OCC}	OC output sink current	10	—	—		$V_O = 1V$
		1	—	—		$V_O = 0.1V$

Note 1: $\pm 10mV$ offset represents $\pm 1.5\%$ duty cycle fluctuation

Note 2: Gain = (full range of duty cycle in %) / (full input voltage range).

AC Electrical Characteristics

$V_{CC} = V_{BS} = 15V$, unless otherwise specified.

Symbol	Definition	Min.	Typ.	Max.	Units	Test Conditions
Propagation delay characteristics						
f_0	Carrier frequency output	—	40	—	kHz	figure 1
$\Delta f/\Delta TA$	Temperature drift of carrier frequency	—	500	—	$ppm/^\circ C$	$V_{IN} = 0 & 5V$
D_{min}	Minimum duty	—	7	—	%	$V_{IN+} = -260mV, V_{IN-} = 0V$
D_{max}	Maximum duty	—	93	—	%	$V_{IN+} = +260mV, V_{IN-} = 0V$
BW	f_0 bandwidth		15		kHz	$V_{IN+} = 100mV_{pk-pk}$ sine wave, gain=-3dB
PHS	Phase shift at 1kHz		-10		°	$V_{IN+} = 100mV_{pk-pk}$ sine wave

AC Electrical Characteristics cont.

V_{CC} = V_{BS} = 15V, unless otherwise specified.

Symbol	Definition	Min.	Typ.	Max.	Units	Test Conditions
Propagation delay characteristics						
t _{doc}	Propagation delay time of OC	1	1.5	—	μsec	
t _{woc}	Low true pulse width of OC	—	1	—		

Timing Waveforms

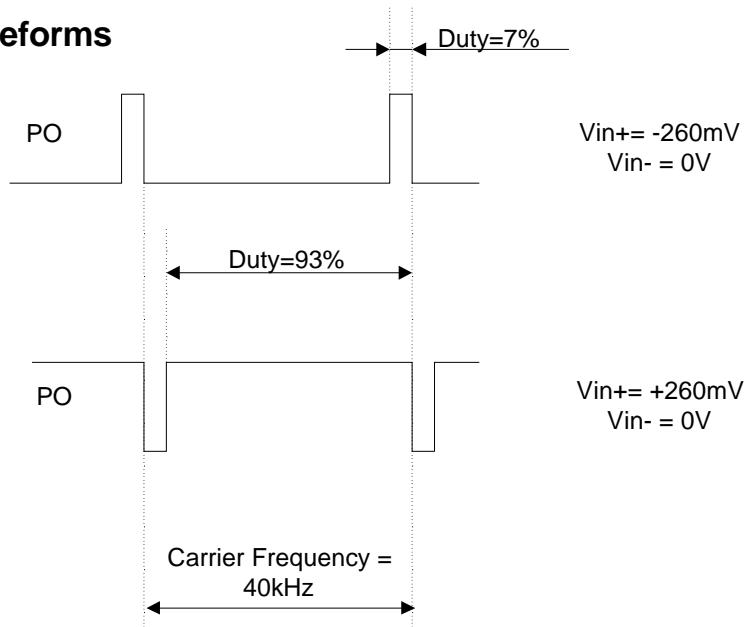
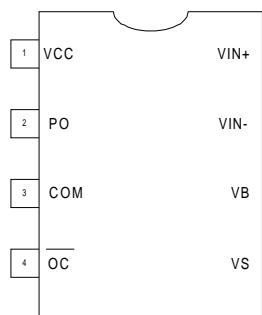
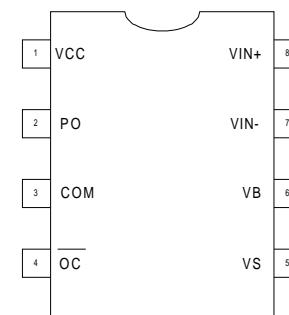


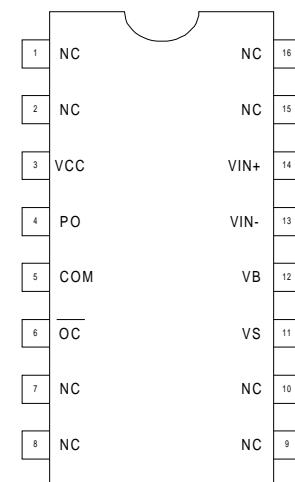
Figure 1 Output waveform


Application Hint:

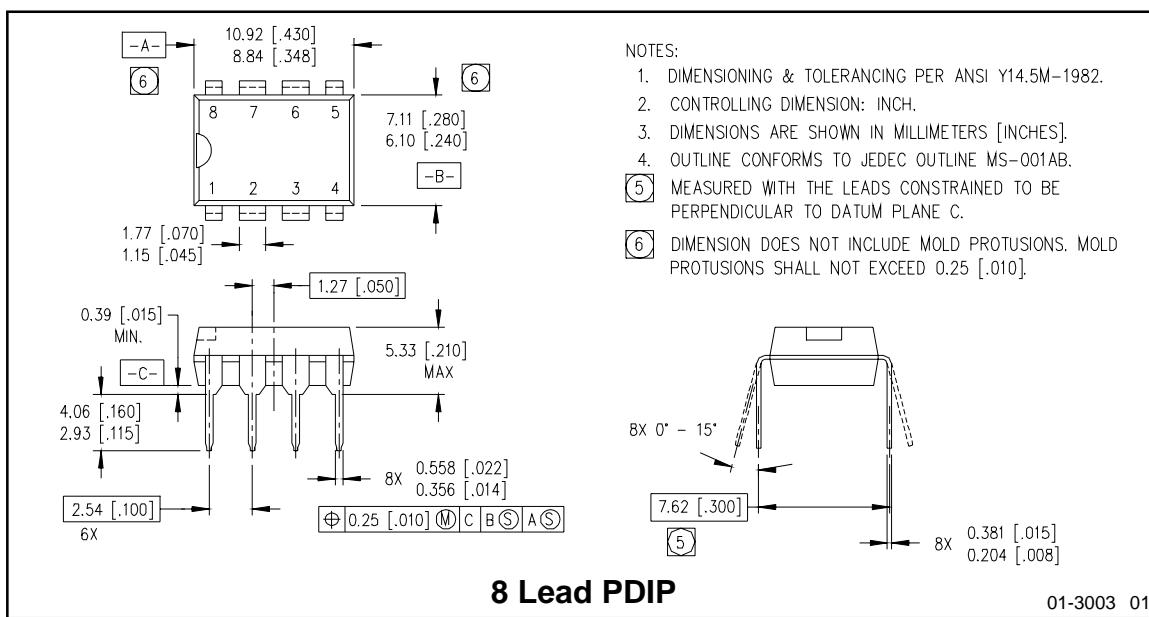
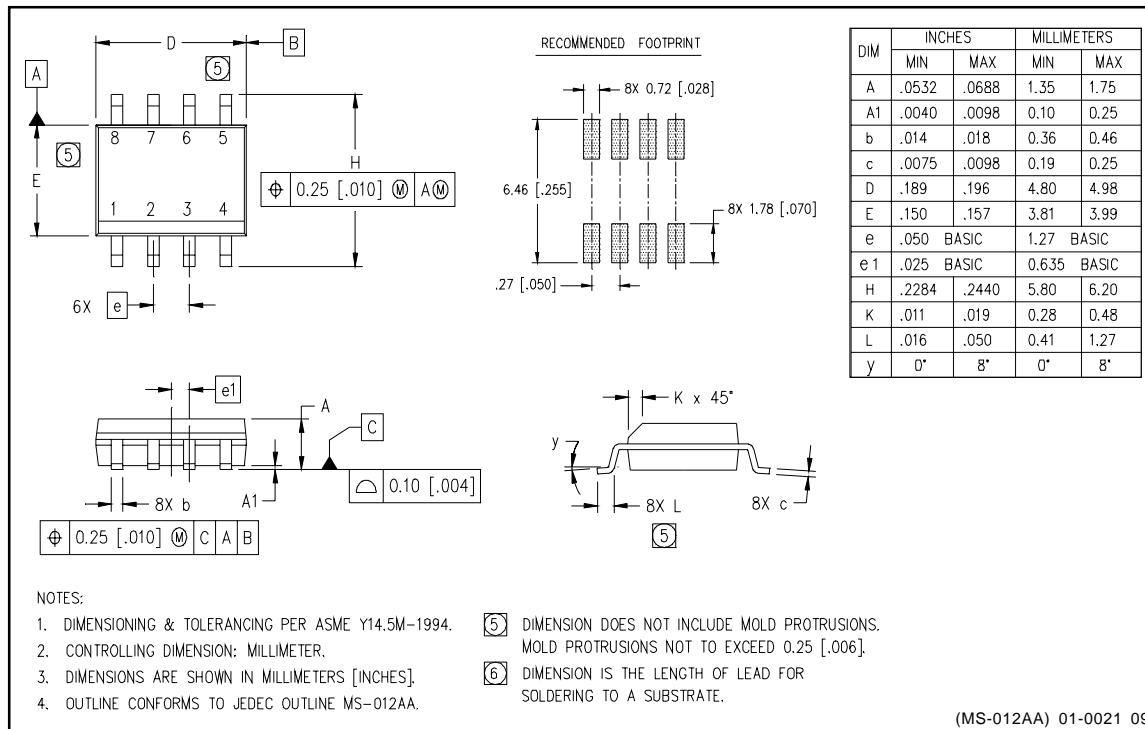
Temperature drift of the output carrier frequency can be cancelled by measuring both a PWM period and the on-time of PWM (Duty) at the same time. Since both periods vary in the same direction, computing the ratio between these values at each PWM period gives consistent measurement of the current feedback over the temperature drift.

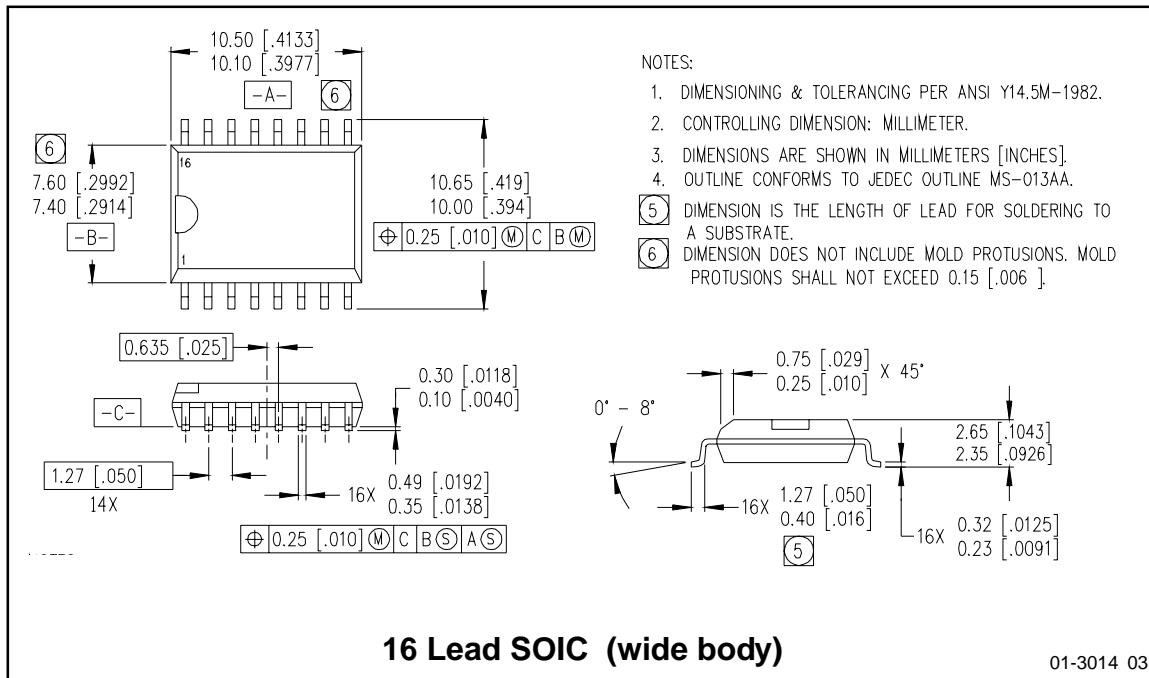

Lead Definitions

Symbol	Description
V _{CC}	Low side and logic supply voltage
COM	Low side logic ground
V _{IN+}	Positive sense input
V _{IN-}	Negative sense input
V _B	High side supply
V _S	High side return
PO	Digital PWM output
\overline{OC}	Overcurrent output (negative logic)
N.C.	No connection


Lead Assignment

IR2172S


IR2172

IR21726S

Case Outline - 8 Lead SOIC

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd., Whyteleafe, Surrey CR3 0BL, United Kingdom
Tel: ++ 44 (0) 20 8645 8000

Data and specifications subject to change without notice. 6/20/2000