

Features

Type	V_{DSS} (@ T_{jmax})	$R_{DS(on)}$ max	I_D
STW55NM60N	650 V	< 0.060 Ω	51 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Application

- Switching applications

Description

This series of devices is designed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

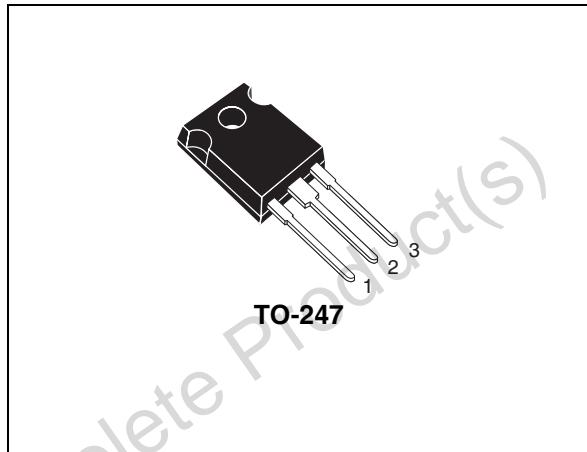


Figure 1. Internal schematic diagram

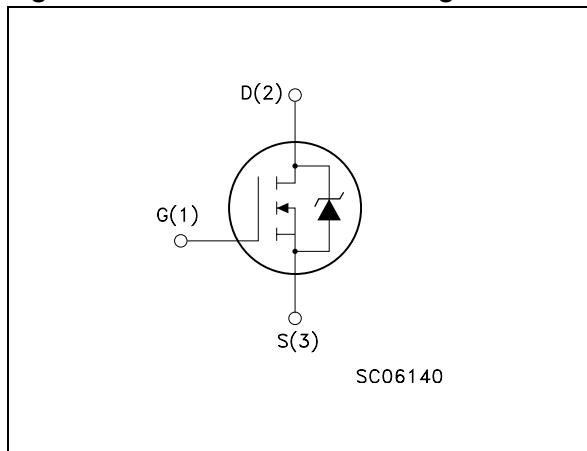


Table 1. Device summary

Order code	Marking	Package	Packaging
STW55NM60N	W55NM60N	TO-247	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Revision history	11

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage ($V_{GS} = 0$)	600	V
V_{GS}	Gate- source voltage	± 25	V
I_D	Drain current (continuous) at $T_C = 25^\circ\text{C}$	51	A
I_D	Drain current (continuous) at $T_C = 100^\circ\text{C}$	32	A
$I_{DM}^{(1)}$	Drain current (pulsed)	204	A
P_{TOT}	Total dissipation at $T_C = 25^\circ\text{C}$	350	W
$dv/dt^{(2)}$	Peak diode recovery voltage slope	15	V/ns
T_{stg}	Storage temperature	-55 to 150	$^\circ\text{C}$
T_j	Max. operating junction temperature	150	$^\circ\text{C}$

1. Pulse width limited by safe operating area
2. $I_{SD} \leq 51 \text{ A}$, $di/dt \leq 400 \text{ A}/\mu\text{s}$, $V_{DD} = 80\% V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case max	0.36	$^\circ\text{C}/\text{W}$
$R_{thj-amb}$	Thermal resistance junction-ambient max	50	$^\circ\text{C}/\text{W}$
T_I	Maximum lead temperature for soldering purpose	300	$^\circ\text{C}$

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	15	A
E_{AS}	Single pulse avalanche energy (starting $T_j = 25^\circ\text{C}$, $I_D = I_{AS}$, $V_{DD} = 50 \text{ V}$)	1600	mJ

2 Electrical characteristics

($T_{CASE}=25^{\circ}\text{C}$ unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1\text{mA}$, $V_{GS} = 0$	600			V
$dv/dt^{(1)}$	Drain source voltage slope	$V_{DD} = 480\text{ V}$, $I_D = 51\text{ A}$, $V_{GS} = 10\text{ V}$		30		V/ns
I_{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	$V_{DS} = \text{Max rating}$ $V_{DS} = \text{Max rating, @ }125^{\circ}\text{C}$			1 100	μA μA
I_{GSS}	Gate-body leakage current ($V_{DS} = 0$)	$V_{GS} = \pm 20\text{ V}$			100	nA
$V_{GS(\text{th})}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250\text{ }\mu\text{A}$	2	3	4	V
$R_{DS(\text{on})}$	Static drain-source on resistance	$V_{GS} = 10\text{ V}$, $I_D = 25.5\text{ A}$		0.047	0.060	Ω

1. Characteristic value at turn off on inductive load

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$g_{fs}^{(1)}$	Forward transconductance	$V_{DS}=15\text{ V}$, $I_D = 25.5\text{ A}$		45		S
C_{iss} C_{oss} C_{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50\text{ V}$, $f = 1\text{ MHz}$, $V_{GS} = 0$		5800 300 30		pF pF pF
$C_{oss\text{ eq.}}^{(2)}$	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V		900		pF
Q_g Q_{gs} Q_{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 480\text{ V}$, $I_D = 51\text{ A}$, $V_{GS} = 10\text{ V}$, (see Figure 15)		190 30 90		nC nC nC
R_g	Gate input resistance	$f=1\text{ MHz}$ gate DC bias=0 Test signal level = 20 mV open drain		2.5		Ω

1. Pulsed: Pulse duration = $300\text{ }\mu\text{s}$, duty cycle 1.5 %

2. $C_{oss\text{ eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on delay time			40		ns
t_r	Rise time			30		ns
$t_{d(off)}$	Turn-off delay time	$V_{DD} = 300 \text{ V}$, $I_D = 25.5 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (see Figure 14)		225		ns
t_f	Fall time			70		ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Typ.	Max	Unit
I_{SD}	Source-drain current			51		A
$I_{SDM}^{(1)}$	Source-drain current (pulsed)			204		A
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 25.5 \text{ A}$, $V_{GS} = 0$			1.3	V
t_{rr}	Reverse recovery time	$I_{SD} = 51 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$	600			ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}$	15			μC
I_{RRM}	Reverse recovery current	(see Figure 16)	51			A
t_{rr}	Reverse recovery time	$I_{SD} = 51 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$	750			ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}$, $T_j = 150 \text{ }^\circ\text{C}$	18			μC
I_{RRM}	Reverse recovery current	(see Figure 16)	51			A

1. Pulse width limited by safe operating area
2. Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

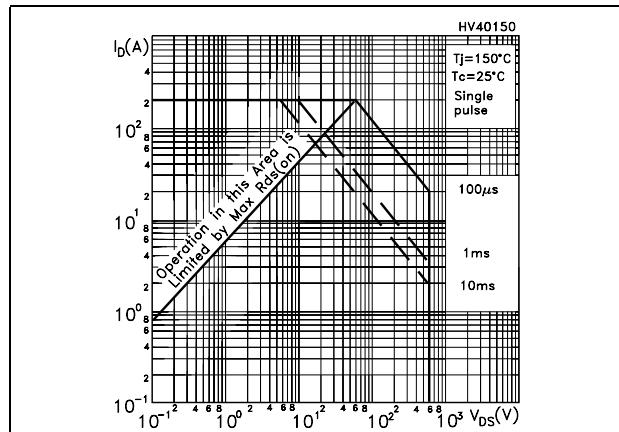


Figure 3. Thermal impedance

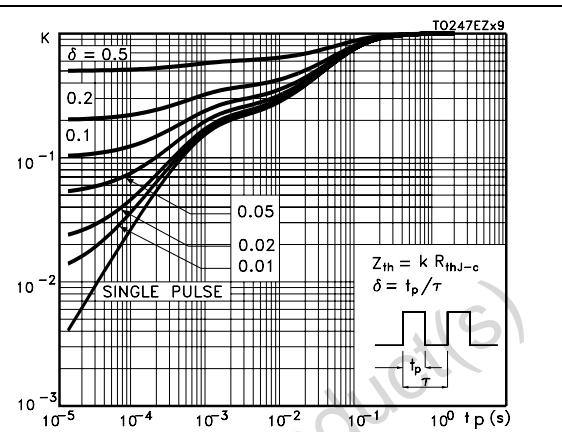


Figure 4. Output characteristics

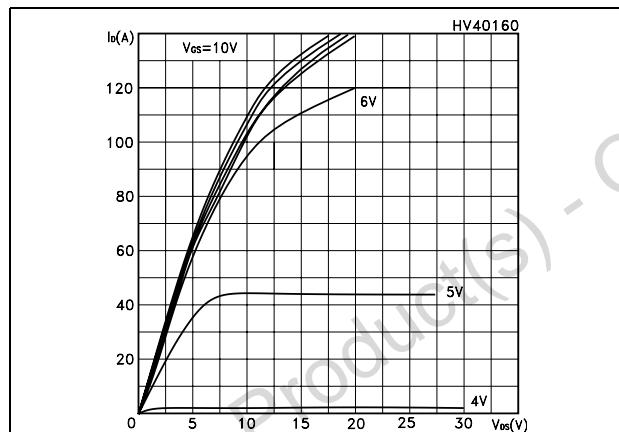


Figure 5. Transfer characteristics

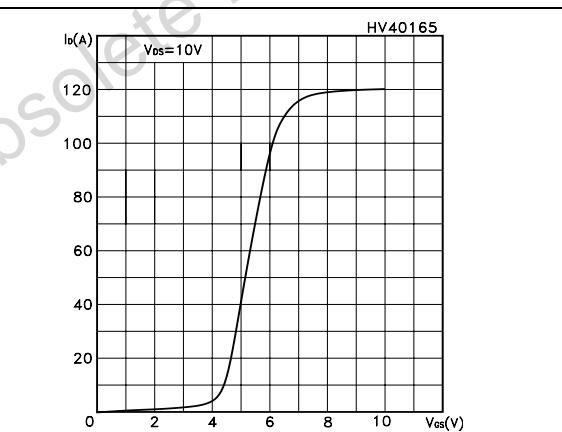


Figure 6. Transconductance

Figure 7. Static drain-source on resistance

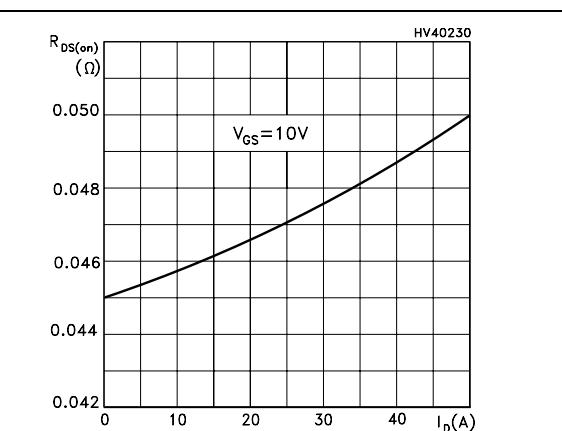


Figure 8. Gate charge vs gate-source voltage

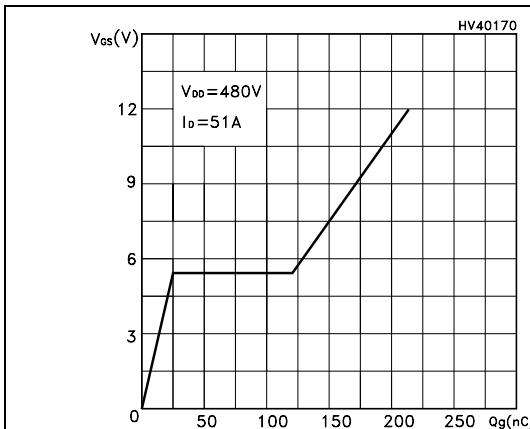


Figure 9. Capacitance variations

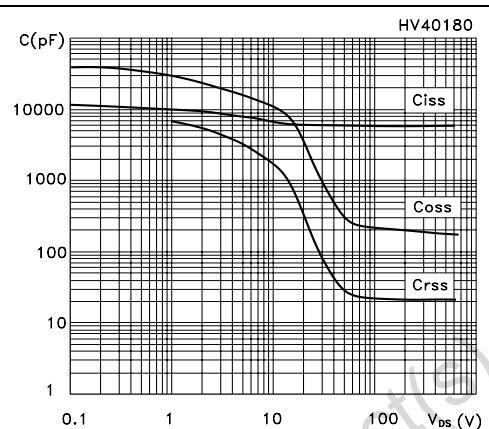


Figure 10. Normalized gate threshold voltage vs temperature

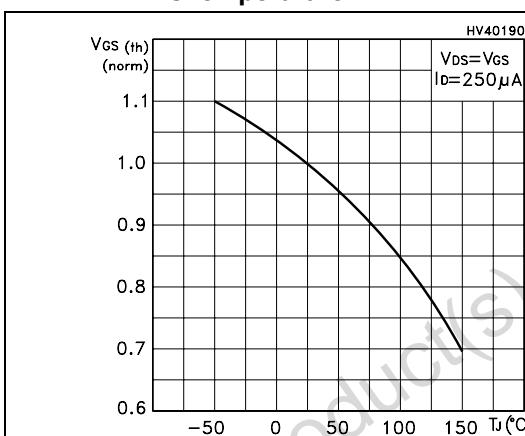


Figure 11. Normalized on resistance vs temperature

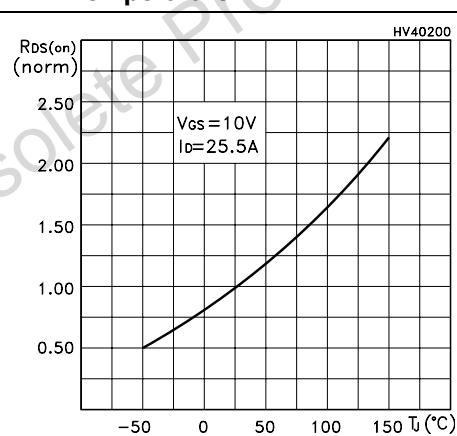
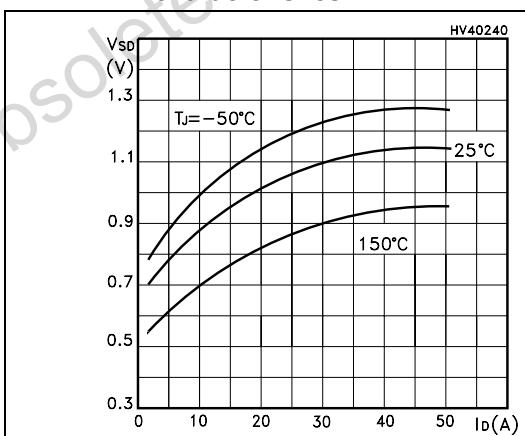
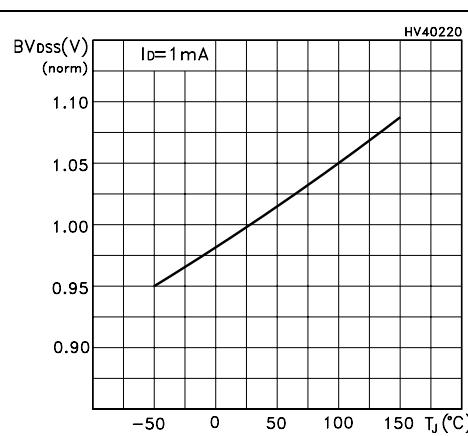
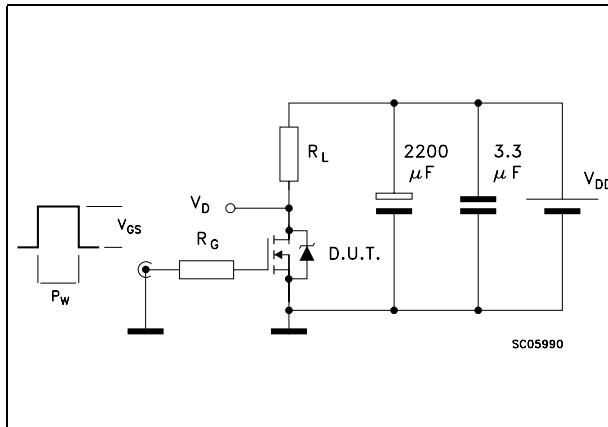
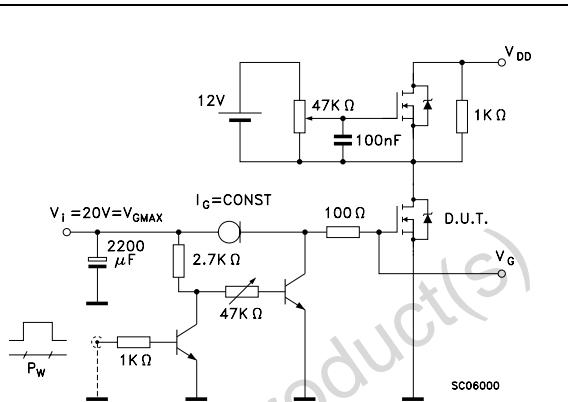
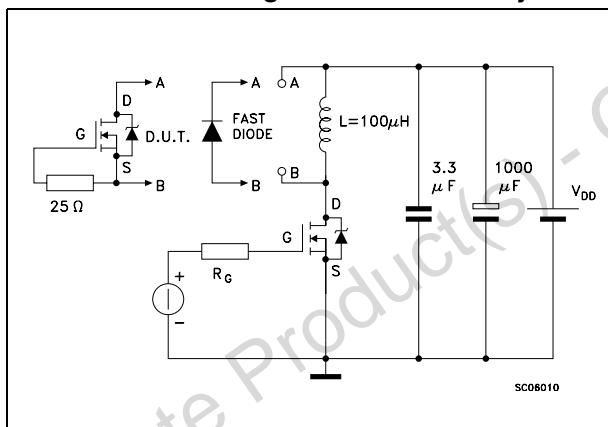
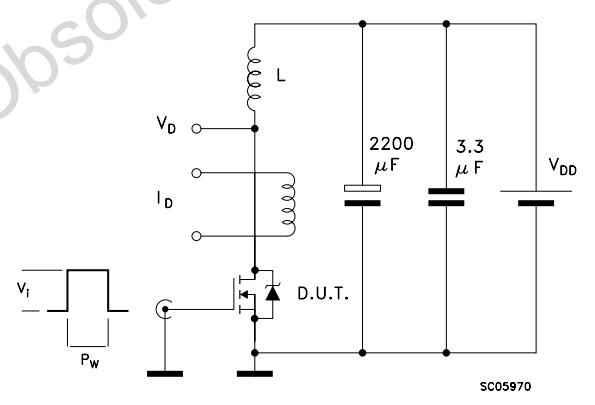





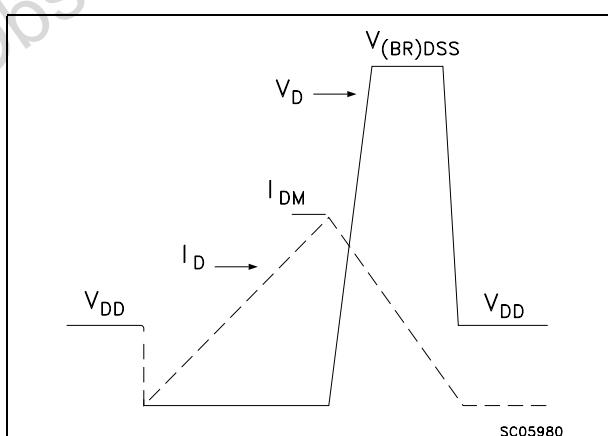
Figure 12. Source-drain diode forward characteristics


Figure 13. Normalized BV_{DSS} vs temperature

3 Test circuit


Figure 14. Switching times test circuit for resistive load


Figure 15. Gate charge test circuit


Figure 16. Test circuit for inductive load switching and diode recovery times

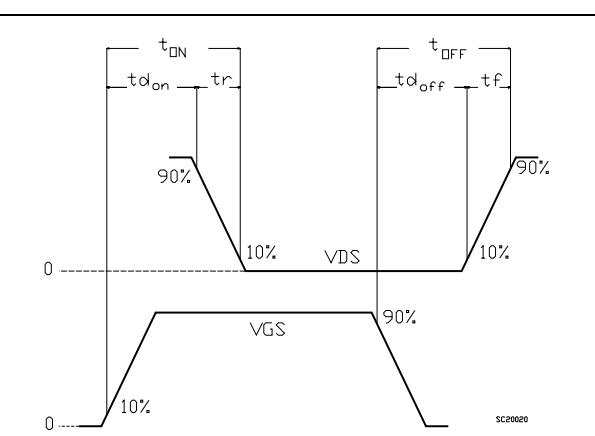
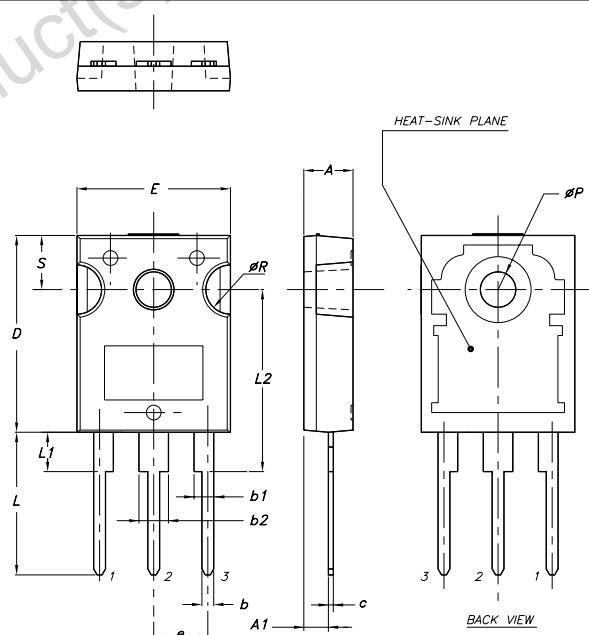

Figure 17. Unclamped inductive load test circuit

Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-247 Mechanical data

Dim.	mm.		
	Min.	Typ	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
c	0.40		0.80
D	19.85		20.15
E	15.45		15.75
e		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ϕP	3.55		3.65
ϕR	4.50		5.50
S		5.50	

0075325 F

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
06-Nov-2007	1	Initial release
19-Dec-2007	2	<i>Figure 9: Capacitance variations</i> has been updated
16-Jan-2008	3	Document status promoted from preliminary data to datasheet.
31-Jul-2008	4	E_{AS} value has been updated in <i>Table 4</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com