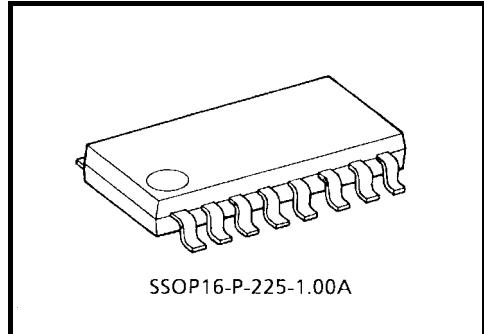
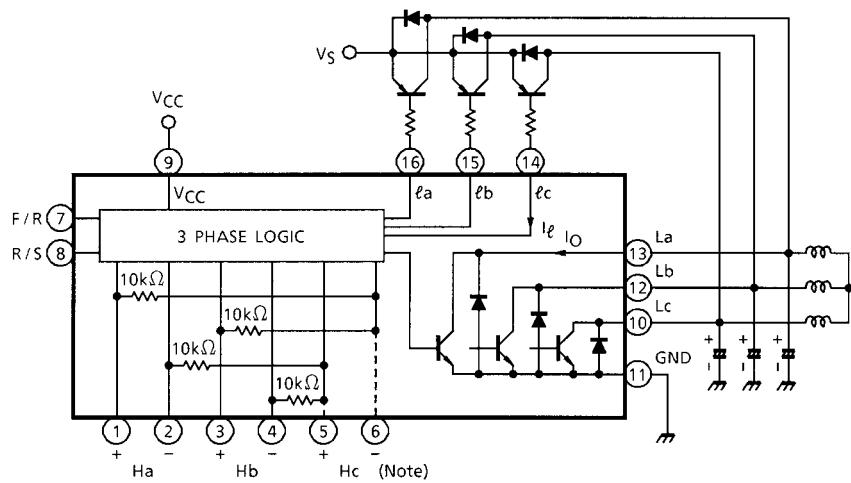


TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic


TA8416F

Low Voltage Use 3-Phase Hall Motor Driver


TA8416F is low voltage use 3-phase Hall Motor Driver IC with stand-by function designed especially for portable VCR, Head Phone Stereo and other battery operated electrical equipment motor drive applications.

Features

- 3-phase bipolar/unipolar Hall motor driver
- Low voltage use
- Switching between forward and reverse rotation
- Voltage drive type
- Stand-by function for longer battery life
- MFP16 Flat package sealed
- 2 Hall sensor drive available
- Operating supply voltage : $V_{CC} = 1.8$ to 7.2 V
 $V_S = 0.2$ to 7.2 V
- Output current : I_O (max) = 0.7 A (AVE.)
= 1.3 A (PEAK)
- Built-in thermal shutdown circuit

Weight: 0.14 g (typ.)

Block Diagram

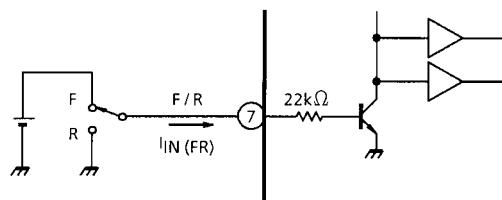
Note: Refer to pin function 3.

Pin Function

Pin No.	Symbol	Function Description	Remark
1	H_a^+	a-phase Hall Amp. positive input terminal.	—
2	H_a^-	a-phase Hall Amp. negative input terminal.	—
3	H_b^+	b-phase Hall Amp. positive input terminal.	—
4	H_b^-	b-phase Hall Amp. negative input terminal.	—
5	H_c^+	c-phase Hall Amp. positive input terminal.	—
6	H_c^-	c-phase Hall Amp. negative input terminal.	—
7	F / R	Rotation direction control input terminal.	H: Forward, L: Rerese
8	R / S	Start / Stand by control Input terminal.	H: Start, L: Stand-by
9	V _{CC}	Power supply input terminal.	V _{CC} (opr.) = 1.8 to 7.2 V
10	L _c	c-phase drive output terminal.	—
11	GND	GND terminal.	—
12	L _b	b-phase drive output terminal.	—
13	L _a	a-phase drive output terminal.	—
14	t_c	c-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base
15	t_b	b-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base
16	t_a	a-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base

Terminal Description

1. Rotation direction control input (F/R input, pin (7))

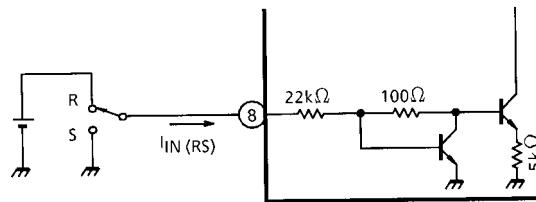

Motor rotation direction is controlled by this terminal. More than 1 V of control voltage becomes motor forward rotation and less than 0.4 V of this voltage becomes motor reverse rotation.

22 k Ω ($\pm 25\%$) of input resistance is equipped in series of this terminal. Therefore input current is calculated by following equation.

$$I_{IN(FR)} = \frac{V(7) - V_{BE}}{22 \times 10^3 \Omega} = \frac{3V - 0.7V}{22 \times 10^3 \Omega} \approx 100 \mu A$$

(V(7) = 3 V)

And the open mode as well as GND mode of the terminal, there's no input current flow.



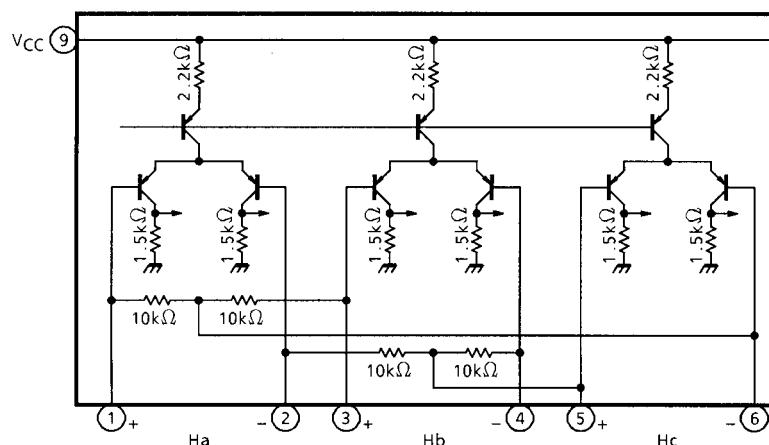
2. Start/stand-by control input (R/S input, pin (8))

This control input is used to stop and start the motor.

Like the F/R input, the R/S input operates on active-high logic. The input current is in sink mode. If the input is 1 V or higher, it causes the motor to run. If it is 0.5 V or lower, it keeps the motor on standby.

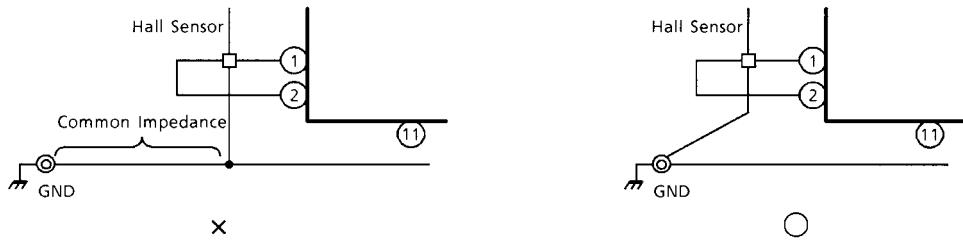
When the motor is on standby, the Hall-effect device signal amplifier current and the I2L injector current are turned off, leading to a supply current of 100 μ A or lower.

3. Hall sensor inputs (Ha⁺, -, Hb⁺, -, Hc⁺, -, pin (1), (2), (3), (4), (5), (6))

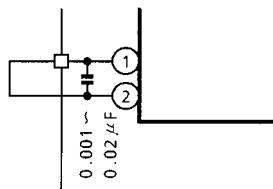

Hall Sensor Inputs for position sensing.

2 Hall Sensor Drive is also available by 4 pcs of 10 k Ω matrix resistors connect to Ha⁺, - and Hb⁺, - terminals.

But, in case of lower speed application, poor precision sensor positioning and good torque ripple and W / F characteristics required.

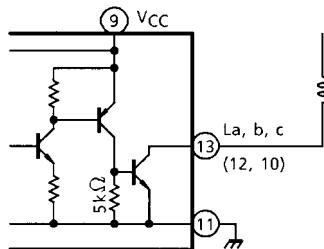

We recommend to use 3 Hall Sensors for stable operations. Input sensitivity is 20 mV_{p-p} (Typ), but actual value is 2 to 3 mV.

We recommend to input more than 20 mV_{p-p} to get good W/F characteristics.

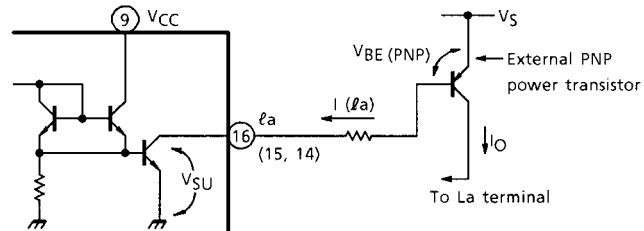


Wide DC operating range of 0 to $V_{CC} - 1.2$ V is accomplished by PNP input circuit and also built in hysteresis restricts mis-function caused by external noise.

But care should be taken not to have a common impedance between Hall Sensor GND lines and the power GND line for stable operations.


To decrease noise problems, we recommend to connect noise suppression capacitance (0.001 to 0.02 μ F) between each Hall Input Terminal.

4. The drive output pins (La, Lb, and Lc, that is, pins 13, 12, and 10) have an open-collector configuration.


This IC is designed for use 3 phase unipolar drive applications, but Bipolar drives also available with additional 3 transistors.

Care should be taken with back electron motive force generated by coil not to over the specified voltage.

5. Pre-drive stage (ℓ_a , ℓ_b , ℓ_c , pin (16), (15), (14))

Open collector type Pre-drive stage required current are calculated by following equation.

$$I (\ell_a) = K_O \cdot \frac{I_O}{h_{fe}}$$

$$K_O \geq 2$$

h_{fe} : h_{fe} of PNP transistor

I_O : Output current

$$I (\ell_a) = \frac{V_S - V_{BE}(\text{PNP}) - V_{SU}}{R}$$

Summing that, $V_{BE}(\text{PNP}) = 0.7 \text{ V}$, $V_{SU} = 0.2 \text{ V}$

$$R = \frac{h_{fe}(V_S - 0.9)}{K_O \cdot I_O}$$

For Example, $V_S = 3 \text{ V}$, $h_{fe} = 100$, $I_O = 0.7 \text{ A}$, $K_O = 2$

$$R = 150 \Omega$$

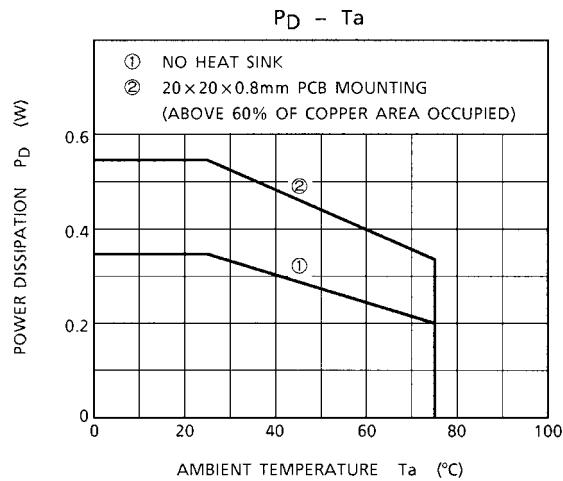
Function

Rotation Control		Position Sensing Input			Upper Side Output			Lower Side Output		
F/R	R/S	Ha	Hb	Hc	ℓ_a	ℓ_b	ℓ_c	La	Lb	Lc
H	H	H	L	H	1	0	0	0	1	0
		H	L	L	1	0	0	0	0	1
		H	H	L	0	1	0	0	0	1
		L	H	L	0	1	0	1	0	0
		L	H	H	0	0	1	1	0	0
		L	L	H	0	0	1	0	1	0
L	H	H	L	H	0	1	0	1	0	0
		H	L	L	0	0	1	1	0	0
		H	H	L	0	0	1	0	1	0
		L	H	L	1	0	0	0	1	0
		L	H	H	1	0	0	0	0	1
		L	L	H	0	1	0	0	0	1
-	L	H	L	H	High impedance			High impedance		
		H	L	L						
		H	H	L						
		L	H	L						
		L	H	H						
		L	L	H						

H: $V_H^+ > V_H^-$ 1: ON

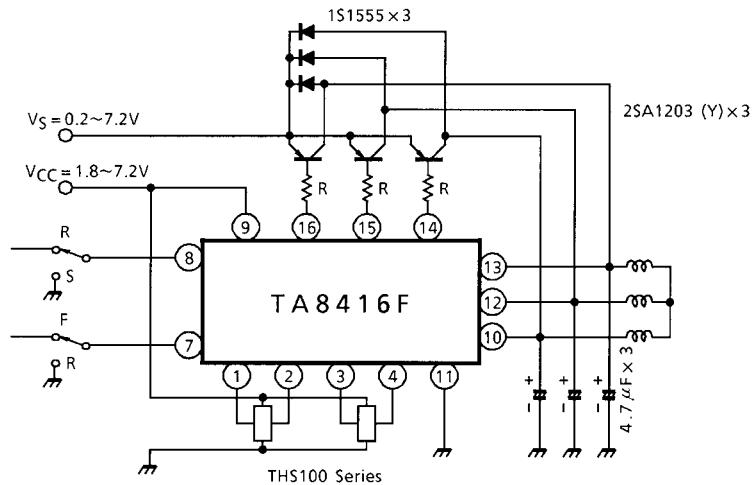
L: $V_H^+ < V_H^-$ 0: OFF

Maximum Ratings (Ta = 25°C)


Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	8	V
	V _S	8	
Output current	I _O	0.7	A
	I _t	20.0	
Power dissipation	P _D	350 (Note 1)	mW
		550 (Note 2)	
Operating temperature	T _{opr}	-30 to 80	°C
Storage temperature	T _{stg}	-55 to 150	°C

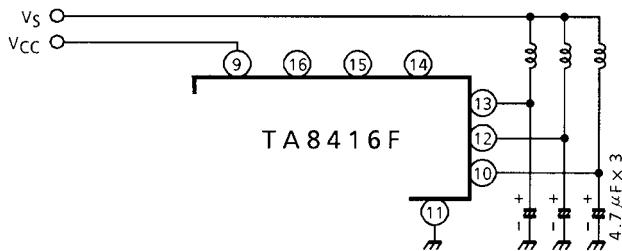
Note 1: No heat sink

Note 2: This rating is obtained by mounting on 20 × 20 × 0.8 mm PCB that occupied above 60% of copper area.


Electrical Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Supply current	I _{CC1}	—	V _{CC} = 3 V, output "OPEN"	—	2.7	4.0	mA
	I _{CC2}		V _{CC} = 6 V, output "OPEN"	—	3.0	5.0	μA
	I _{CC3}		Stand-by mode output "OPEN" V _{CC} = 3 V	—	0	100	
Saturation voltage	V _{SL-1}	—	I _O = 0.1 A	—	0.2	—	V
	V _{SL-2}	—	I _O = 0.6 A	—	0.6	1.0	
	I _t , I _b , I _c side	V _{SU}	I _t = 10 mA	—	0.1	0.2	
Position sensing input	Sensitivity	V _H	—	—	20	—	mV _{p-p}
	Operating DC level	CMR	—	0	—	V _{CC} -1.2	V
Diode forward voltage	V _F	—	I _F = 0.7 A	—	1.2	—	V
Rotation control input voltage	Operating voltage	Forward	V _{SWD}	—	1.0	—	V
		Reverse	V _{RVS}	—	—	—	
	Operating current	I _{IN} (FR)	—	V _{F/R} = 3 V	—	100 200	μA
Start / Stand-by Control Input Voltage	Operating voltage	Run	V _{RUN}	—	—	—	V
		Stand-by	V _{ST}	—	—	—	
	Operating current	I _{IN} (RS)	—	V _{F/R} = 3 V	—	100 200	μA
Saturation voltage differential (La, Lb, Lc Side)	ΔV _S	—	I _O = 200 mA, La, Lb, Lc	—	20	—	mV
Leakage current	I _L	—	V = 8 V	—	0	100	μA
Thermal shut-down circuit operating temperature	T _{SD}	—	Junction temperature	140	—	—	°C

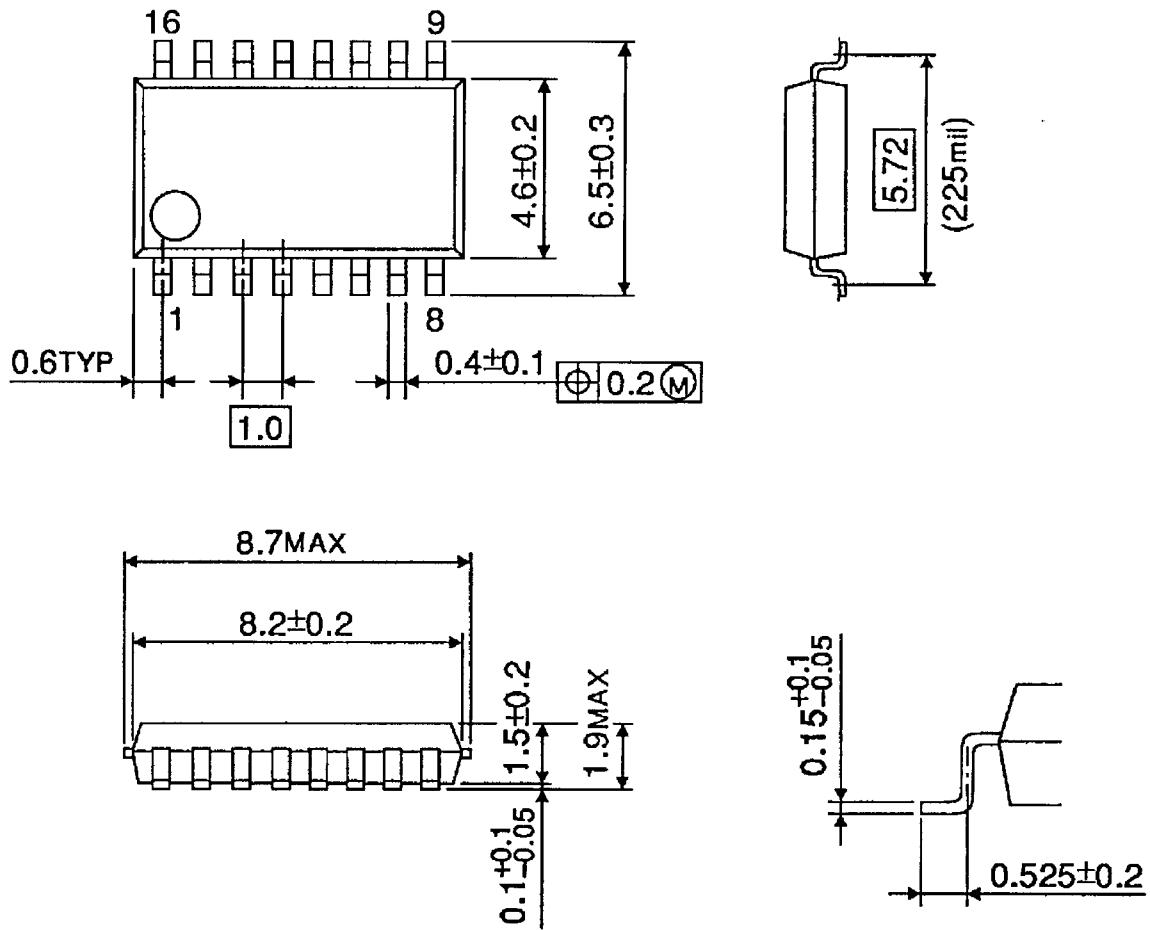
Application Circuit


1. 3 phase full wave application

Note:

- Vs and VCC terminals connecting application also available.
- We recommend to use TOSHIBA Ga-As type Hall Sensor THS100 series.
- Output capacitors ($4.7 \mu F \times 3$) are for noise suppression use.
It is required to increase the value if the vibration noise is so loud.

2. 3 phase half wave application


Note:

- Other circuit and configurations are all the same to APPLICATION CIRCUIT 1.
- Care should be taken with BEMF value generated by coils that not increase specified value of output transistor withstand voltage.
- Utmost care is necessary in the design of the output line, V_{CC} (V_M , V_S , V_{EE}) and GND line since IC may be destroyed due to short-circuit between outputs, to supply fault, or to ground.

Package Dimensions

SSOP16-P-225-1.00A

Unit : mm

Weight: 0.14 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.