IBM ®

IBM Packet Routing Switch PRS28.4G Version 1.7

Datasheet

© Copyright International Business Machines Corporation 1999, 2000, 2001.

All Rights Reserved
Printed in the United States of America February 2001

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM IBM logo

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS.

In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com
The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

prs28_title.04.fm February 6, 2001

Contents

List of Figures	7
List of Tables	9
1. General Information	11
1.1 Features	11
1.2 Description	11
1.3 Ordering Information	12
1.4 Conventions	12
2. Architecture	15
2.1 Functional Island	16
2.1.1 Sizing	
2.1.2 Output Queuing and Priorities	
2.1.3 Flow Control	
2.1.4 Multicast	
2.1.5 Control Packets	
2.1.6 Incoming Flow Process	
2.1.7 Incoming Flow Control	
2.1.8 Outgoing Flow Process 2.1.9 Outgoing Flow Control	
2.1.9 Odigong Flow Control	
2.1.11 Internal Features	
2.1.12 Miscellaneous	
2.2 Expansion Modes	
2.2.1 Speed Expansion	
2.2.2 Port Expansion	
3. Functional Description	25
3.1 Logical Interface	
3.1.1 Physical Interface	
3.1.2 Packet Type	27
3.2 Header Format	30
3.2.1 Header Byte H0 - Packet Qualifier	30
3.2.2 Header Byte H1 and H2	
3.2.3 Idle Packet Trailer Byte T	33
3.3 Packet Reception	33
3.3.1 Master Input Port Operation	33
3.3.2 Slave Input Port Operation	
3.3.3 Parity and CRC Errors	
3.3.4 Address Insertion	
3.4 Input Flow Control	
3.4.1 Memory Threshold Exceeded Condition	
3.4.2 Programming the Memory Full Thresholds	
3.4.3 Output Queue Threshold Exceeded Condition	
J. 7. 7 F AUNEL NEUEULIUH FAIIHESS	30

	3.5 Output Queue Grant Signaling	37
	3.5.1 Adapter Transmission Rules	
	3.5.2 Flow Control Error	
	3.6 Output Queues and Output Queue Priorities	39
	3.7 Shared Memory	39
	3.7.1 Organization	
	3.7.2 Shared Memory Access by Local Processor	39
	3.8 Packet Transmission	
	3.8.1 Output Port Servicing	
	3.8.2 Idle Packet Transmission	41
	3.9 Send Grant	42
	3.10 Receive Filter	42
	3.11 Port Disabling	43
	3.12 Address Manager and Address Corruption	43
	3.13 Control Packets	
	3.13.1 Control Packet Reception	
	3.13.2 Control Packet Transmission	
	3.14 Speed Expansion	44
	3.14.1 External Speed Expansion	
	3.14.2 Internal Speed Expansion	
	3.14.3 Packet Reception Window for Speed Expansion	
	3.14.4 Synchronization of Slave Device with Master Device	
	3.14.5 Master Slave Address Communication	45
4.	Programming Interface and Internal Registers	47
	4.1 OCM Instruction/Status Mode	
	4.1.1 OCM Instruction Register	
	4.1.2 OCM Instruction Set	
	4.1.3 OCM Response Register	
	4.1.4 OCM Error Checking	49
	4.1.5 Operational Protocol	50
	4.2 OCM Scan Mode	50
	4.2.1 Operational Protocol	
	4.2.2 Scan String Access from OCM	51
	4.3 Built In Self Test (BIST)	51
	4.3.1 Pseudo-Random Pattern Generator (PRPG)	51
	4.3.2 Multiple Input Signature Register (MISR)	
	4.3.3 BIST Execution	52
5.	Internal Registers	54
	5.1 Status Register	54
	5.2 Application Register Definitions	
	5.2.1 Indirect Access of Memory Data and Look-Up Table	
	5.2.2 Register Formats	
	5.2.3 Mode Register	
	5.2.4 Configuration Register 0	
	5.2.5 Configuration Register 1	
	5.2.6 Port Enable Register	
	5.2.7 Output Queue Threshold Register	63

	5.2.8 Shared Memory Threshold Register 0	64
	5.2.9 Shared Memory Threshold Register 1	65
	5.2.10 Mask Register	66
	5.2.11 Synchronization Status and Hunt Register	67
	5.2.12 Sync Packet Transmit Register	68
	5.2.13 CRC Port ID Register	69
	5.2.14 CRC Error Counter	70
	5.2.15 NoSignal Register	
	5.2.16 Flow Control Violation Port ID Register	72
	5.2.17 Miscellaneous Status Register	
	5.2.18 Output Queue Status Registers 0-3	
	5.2.19 Look-Up Tables and Memory Row	
	5.2.20 Table Pointer Register	
	5.2.21 Table Data Register	
	5.2.22 Memory Row Address Register	
	5.2.23 Command Register	
	5.2.24 Control Packet Destination Register	
	5.2.25 Bit Map Filter Register	
	5.2.26 Yellow Packet Received Register	
	5.2.27 PLL Configuration Register	
	5.2.28 Processor Access Registers	
	5.2.29 Processor Address Register	
	5.2.30 Processor Data Register	
	5.2.31 BIST Data Register	
	5.2.32 BIST Control Register	87
_		
6.	. Reset, Initialization, and Operation	
	6.1 Clock and PLL	
	6.1.1 Internal PLL	
	6.1.2 External PLL	
	6.2 Reset	
	6.2.1 Power-On-Reset Sequence and Clock Start OCM Event	
	6.2.2 Flush Reset and OCM_RESET Command	
	6.2.3 nTRST Primary Input Reset	
	6.3 Initialization	89
	6.4 DASL Initialization and Operation	90
	6.5 Control Packet Reception and Transmission	92
	6.5.1 Control Packet Reception	
	6.5.2 Control Packet Transmission	
7.	. I/O Definitions and Timing	94
	7.1 I/O Timing	
	7.1.1 DASL Signals	
	7.1.2 OCM Interface Signals	
	7.1.3 Master-Slave Speed Expansion Signals	
	7.1.0 Iviaster-Olave Opeeu Expansion Olynais	100
Ω	. Packaging and Pin Information	109
u.	. i ackaying and i in information	109
^	DACI Charification and Disc Processes	404
IJ .	. DASL Specification and Pico-Processor	124

10. Electrical Characteristics	125
11. Line Termination	128
11.1 HSTL	128
11.2 DASL and SYS_CLK	128
12. Internal RAM ABIST	130
13. References	131
3. Revision Log	131

List of Figures

Figure 1: Pinout	13
Figure 2: Block Diagram	14
Figure 3: Speed Expansion Block Diagram	22
Figure 4: Single Stage Port Expansion Block Diagram	24
Figure 5: Packet Format 1.77 Gb/s Port	25
Figure 6: Packet Format for 3.54 Gb/s Port	25
Figure 7: Idle Packet Format	28
Figure 8: Input-side Grant Operation	38
Figure 9: OCM Interface Signals Timing Diagram	
Figure 10: OCM Signal Timing Diagram	106
Figure 11: SND_GRANT(n)	107
Figure 12: RCV_GRANT(n)	107
Figure 13: Q_FULL, Q_EMPTY, Q_SYNC Timing Diagram	108
Figure 14: Package Physical Dimensions	109
Figure 15: HSTL Termination	128
Figure 16: DASL Termination for Slave LUs	128
Figure 17: DASL Termination for Master LUs, Bits 2 and 3	129

List of Tables

Table 1: Speed Expansion Shared Memory Buffering Capacities	22
Table 2: Physical Bit Organization of a Port	
Table 3: Packet Length and Logical Unit Length	29
Table 4: Header Byte H0 for Idle Packets	
Table 5: Header Byte H0 for Data Packet (Bits 2 and/or 3 ≠ 0), and Control Packet	30
Table 6: Data Packet Priority	
Table 7: Bit Map Filter	31
Table 8: Header Byte 1 and 2 and Incoming Packet Bitmap	32
Table 9: Header Byte 0 and 1 and Output queue grant	32
Table 10: Byte Reordering via the Look-Up Table	
Table 11: Shared Memory Reserved Address for Control Packets	44
Table 12: Port Combination in Internal Port Expansion	45
Table 13: OCM Instruction Set Definitions	
Table 14: Number of Instruction Bits Protected by Parity Bit	49
Table 15: OCM Instruction Mode Sequence	50
Table 16: OCM Scan Mode Sequence	
Table 17: Simulated BIST Signatures	53
Table 18: Status Register Bit Definitions	54
Table 19: Application Register List	56
Table 20: Master and Slave Memory Bank Addressing	92
Table 21: Signal Definitions	
Table 22: DBG_DATA Bus Definitions	100
Table 23: I/O Summary	
Table 24: DASL Interface Skew	
Table 25: OCM Signal Timing Values	106
Table 26: SND_Grant Sampling Window Timing	
Table 27: RCV_Grant Sampling Window Timing	
Table 28: Q_FULL, Q_EMPTY, Q_SYNC Timing Values	
Table 29: Pin List, Sorted by Pin Name	
Table 30: Pin List, Sorted by Pin Number	
Table 31: DASL Temperature Range	
Table 32: Instruction Memory in Processor Address Space	
Table 33: Absolute Maximum Ratings	
Table 34: Recommended Operating Conditions	
Table 35: Electrical Characteristics for DASL I/Os	127
Table 26: Clocks	127

1. General Information

1.1 Features

- · Non-blocking, self-routing, single-stage switch
- High Performance:
 - 100 MHz to 111.1 MHz frequency operation
 - 1.77 Gb/s throughput per port (16x16 config.)
 - Up to 3.54 Gb/s throughput per port (8x8 config.)
 - Up to 28.4 Gb/s single device aggregate throughput
 - Up to 56.8 Gb/s aggregate throughput with speed expansion
- Serial data communication at 444 Mb/s, compliant with the EIA/JEDEC JESD8-6 standard.
- Multicast support without packet duplication in shared memory
- Dynamically shared output buffer (256 packets of 64 to 80 bytes)
- Configurable number of traffic priorities (1 to 4) with programmable output queue thresholds and shared memory thresholds
- · Configurable packet lengths of:
 - 64 to 80 bytes (increment of four)
 - 128 to 160 (increment of eight) with external speed expansion only

- Serial processor interface (on-chip monitor)
- Packet header of three bytes, containing destination bit map, packet priority, switch redundancy support information, all protected by a parity bit
- · Shared output buffer with total capacity of:
 - 256 packets for a single chip
 - 512 packets with external speed expansion
- Packet lossless switchover (scheduled switchover) facility
- Reception on any input port of Control Packets destined to the local processor
- Transmission of control packets from the local processor to any output port
- Detection of link liveness by reception of specific packets
- Programmable byte shuffling in outgoing packets
- CMOS5S6 (0.35μm) technology: 3.3V compliant TTL compatible I/O for low speed signals
- IEEE 1149.1 standard boundary scan to facilitate circuit board testing

1.2 Description

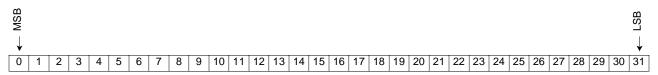
The IBM Packet Routing Switch PRS28.4G is the first in a family of second generation switching devices designed for high performance, non-blocking fixed length packet switching. Its modularity enables development of scalable switch fabrics of aggregate bandwidth from 28.4Gb/s to 227.2 Gb/s.

The PRS28.4G receives packets on 16 input ports and routes them to one or more of 16 output ports based on bit map information carried in the packet header. Each port operates at 1.77 Gb/s, resulting in a single device throughput of 28.4 Gb/s. This data speed is achieved by implementing, in one device, two 16 by 16 sub-switch elements, running at 888 Mb/s per port and organized internally in speed expansion mode. In addition, 444 Mb/s serial data communication provides, over two differential pairs, the necessary bit rate per island.

Quality of service support is provided through four levels of packet priority. The architecture supports flow control, based on a grant mechanism, and provides programmable thresholds, one per priority.

Scalability of speed is achieved by external speed expansion. Two devices operate in parallel (one as master, the other as slave) to form a 16 by 16 switch element at 3.54 Gb/s per port. Scalability of ports is provided by single stage port expansion, which allows the number of ports on the switch fabric to be increased.

No synchronization is required between input ports. However, packets on a given port are always received or transmitted at fixed periodicity equal to the packet length.



1.3 Ordering Information

Part Number	Description
IBM3221L0572	IBM Packet Routing Switch

1.4 Conventions

Throughout this document, standard IBM notation is used: bits and bytes are numbered in ascending order from left to right. Thus the Most Significant Bit (MSB) has the lowest number and the Least Significant Bit (LSB) has the highest number:

The use of overbars, for example RESET, designates signals that are active low.

Decimal, hexadecimal, and binary numbers are used in this document and represented as follows:

Decimal: 12345.67

Hexadecimal: 0x"ABCD" or ABCD'x'

Binary: '000'b

Figure 1: Pinout (Refer to Pin List, Sorted by Pin Number on page 117 for names of all pins).

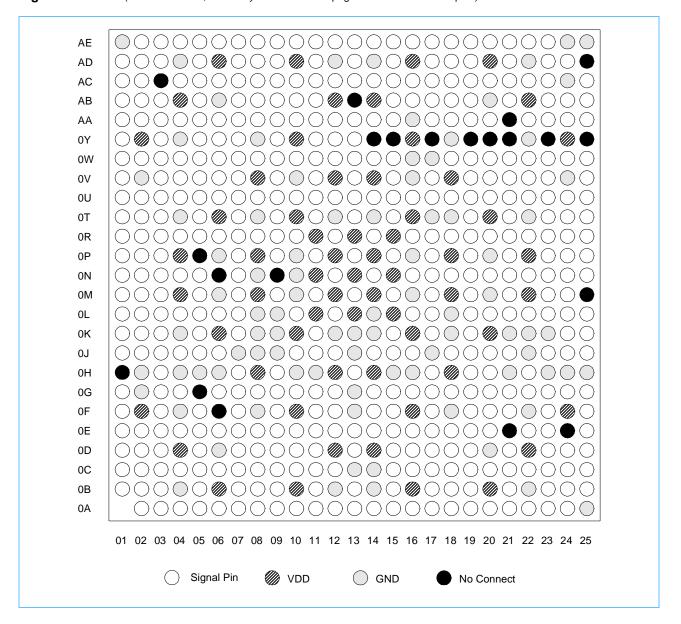
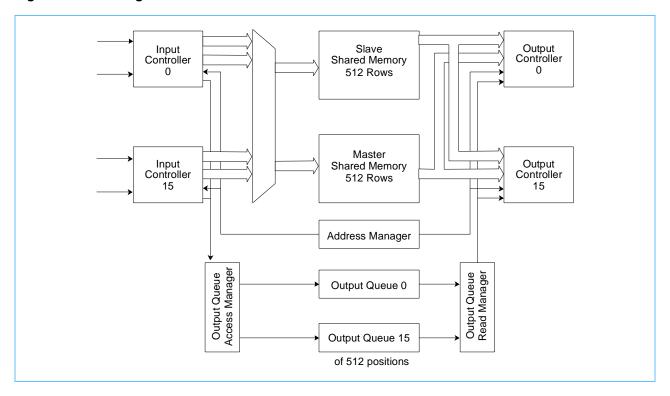



Figure 2: Block Diagram

2. Architecture

The PRS28.4G incorporates two 888 Mb/s, per-port, self-routing sub-switch elements and a control section that is common to both.

Each 1.77 Gb/s port therefore carries two data streams, one master and one slave, each at 888 Mb/s. The master stream carries the data packet header bytes, followed by some packet payload bytes. The slave stream carries only payload bytes.

The input controllers examine the headers of incoming Data Packets and check the data integrity, using a parity bit on the header bytes. Valid Data Packets are then stored in the shared memory, and their storage addresses, along with the packet priority and bit map, are further processed by a centralized output queue access manager. These addresses are enqueued into FIFO queues, one per output port and per priority, according to the packet priority and bit-map field. Data Packets are then transmitted, one at a time according to their place in the output queues, with the restriction that high priority packets always overtake lower priority packets.

Multicast packets are processed the same way. A multicast packet is stored only once in the shared buffer, while its address is enqueued in all output queues indicated by its bit map field. A multicast packet is transmitted on the indicated outputs according to its position in each output queue, not necessarily at the same time on all outputs.

A central address manager maintains a pool of free shared-buffer addresses and provides new store addresses to the input controllers. Once a packet is transmitted, its address is returned to the address manager. The address manager also keeps track of the number of outputs still holding each address, since one address can be copied multiple times for multicast packets. Once this reaches zero, the address is returned to the free address pool.

The shared memory is organized as two banks, one master and one slave, each consisting of 512 rows of 20 bytes, with one write port and one read port. Access to the shared memory is performed one input and output port at a time. 16 to 20 bytes are transferred at each access, depending on the packet length. A central sequencer grants shared memory access to the input and output ports, in round robin. This sequencer cycle is equal, in byte cycles, to the number of data bytes stored at every access in one memory row. It is defined as an integer between 16 and 20, such that packet length is a multiple of this integer. All cycles have equal length. Without speed expansion or with speed expansion and packet length greater than 128 bytes, an LU is received in two cycles of equal length. In speed expansion and packet length smaller than 128 bytes, it takes only one cycle to receive an LU.

Data flow is controlled using a grant mechanism. Grants are given to the input interface of the attached device to allow packets to be transmitted. Similarly, the output interface of the attached device provides grants to each output port to enable packet transmission. On the input side of the switch, output queue grants, which reflect the status of the output queues, and memory grants, for the status of the shared memory, are provided. One output queue grant is provided per output and per priority. The output queue manager maintains a counter for each output queue, which indicates the total number of packets enqueued for that output, regardless of priority. Four programmable output queue thresholds are also provided, one for each priority. All output counters are compared to those four thresholds once per sequencer cycle. If an output counter value is less than the threshold, the corresponding grant is set. Otherwise, it is cleared. Similarly, a counter keeps track of the total number of packets in the shared memory. Four programmable shared memory thresholds are also provided, one for each priority. This counter is compared once per sequencer cycle to those four thresholds to generate the memory grants. An input interface island is only allowed to

transmit a packet when it has received the output queue grants for the packet's destination, in addition to the memory grant for the packet priority. On the output side, a send grant is provided to each output port, regardless of priority.

Control Packets can be received on any input ports and are passed one at a time to the local processor. A control packet address queue allows buffering of up to 16 control addresses. Also, control packets can be transmitted by the local processor on any set of output ports. Control Packets do not carry a priority and are always transmitted on one output before any other enqueued Data Packets. Due to the slow nature of the local processor access compared to the packet data traffic rate, Control Packet transmission is infrequent and does not impact the performance of high priority traffic.

An On-Chip Monitor (OCM) provides a serial interface to a local processor for programming application registers and accessing control packets.

A high speed serial interface is used to minimize the number of pins and to provide direct access over an extended distance. Two pairs of differential lines running at 444 Mb/s are provided for each master and slave byte stream. Therefore, each port is composed of four differential lines. On the input side, the serial interface provides deserialization of one 2.25 ns bit stream into a 9ns nibble stream of four bits. On the output side, a 9ns nibble stream is serialized into a 2.25 bit stream. For each stream, two nibbles are grouped to form a byte. Data is transmitted with a known clock, such that only bit-phase alignment and packet alignment have to be performed. There is a picocode mechanism that compensates for a skew between nimble of ± 1 clock cycle between serial links belonging to the same port within the same device. The hardware scheduler compensates for up to ± 2 clock cycles of skew between two devices in external speed expansion.

The following sections describe the architecture and features of the PRS28.4G from a black box perspective. The internal structure of the device is not described. The first part describes the functional island of the PRS28.4G architecture, its elementary building block. The second section describes the PRS28.4G speed expansion mode.

2.1 Functional Island

2.1.1 Sizing

The PRS28.4G basic functional island is 16 input ports by 16 output ports. Each port runs at 0.8 Gb/s. The PRS28.4G is a self-routing switch element with fixed packet length shared memory. Its shared memory has a buffering capacity of 512 rows of 20 bytes.

The internal controller is managed by a sequencer, with a cycle value of 16 to 20 byte clocks (boundaries included). The lower bound is given by the number of supported ports, and the upper bound by the maximum row length of the shared memory. The island controller allows the handling of logical units (LU) of 16 to 20 bytes (in steps of 1 byte), or 32 to 40 bytes (in steps of 2 bytes). An LU is the part of a packet that one island processes. The shared memory organization allows storage of 512 LUs of 16 to 20 bytes, or 256 LUs of 32 to 40 bytes.

2.1.2 Output Queuing and Priorities

Queuing is provided for each output port. Packets from each output are organized into four logical queues of different priority. For each logical queue, packets are organized into a First In First Out (FIFO) queuing structure.

Incoming packets are sorted by priority when stored, according to a priority flag they carry. The highest priority is represented by 0 and the lowest by 3. Packets are transmitted on a given output with the highest available priority, always overtaking the lower priorities.

2.1.3 Flow Control

Flow control is provided by the output queue, as well as for the entire shared memory.

One threshold value is associated with all logical queues (of each output). Each output queue has one unique counter. The total number of packets in all four logical queues of one output is compared to the threshold value of a given priority, in order to provide flow control for that output priority.

In addition, one counter keeps track of the total number of packets in shared memory. The shared memory also has four thresholds, one per priority. The total number of packets in shared memory is compared to these threshold values for each priority, regardless of the output destination of the packets.

2.1.4 Multicast

The internal architecture of the island allows for packets, physically stored once in shared memory, to be multicasted to multiple outputs. A multicast packet is transmitted on the output ports according to the FIFO structure of each destination output queue (not necessarily at the same time on all ports). Multicast packets can only have one priority for all of its destinations.

2.1.5 Control Packets

Support is provided for receiving packets destined to a local processor, and for transmitting packets constructed by a local processor. These packets are known as Control Packets.

A 16-position FIFO queue is provided for incoming control packets (no priority is involved).

2.1.6 Incoming Flow Process

Each incoming packet carries information about the physical output addresses (output port) of its destinations, the logical address (priority) per output, or all zero (identification as a control packet).

The island controller allows one packet, corresponding to one input, to be processed and stored at a time. Inputs are visited once per sequencer cycle. When the input on which a packet arrives is visited by the island controller, the packet data is stored once in the shared memory. The address of this location is placed in the logical queues (specified by its priority) of all of its destination outputs according to its priority. At the same time, the shared memory counter and the output queue counters of its destination are incremented.

If an incoming packet is marked as a control packet, it is also stored in shared memory. Its address is then placed in a control packet queue, and an interrupt is sent to the local processor. An incoming control packet can only be received if fewer than 16 control packets are present in the control packet queue. Otherwise, the packet is discarded and a flag is raised.

2.1.7 Incoming Flow Control

Flow control of incoming packets is provided by grants which are authorizations for the attached adapter to transmit a packet. Grants are provided separately for each output port and for each priority of a port. An output queue grant for a priority is provided whenever the total packet count for an output (regardless of

priority) is below the output priority threshold. It is removed whenever this count exceeds the threshold value (no hysteresis). Grants are also provided for the shared memory for each priority. The shared memory grant (memory grant) for a given priority is provided whenever the total packet count in shared memory is below the shared memory priority threshold. It is removed whenever this count exceeds the threshold value (no hysteresis).

An adapter is only allowed to transmit a packet when it has the memory grant for the packet priority as well as the output queue grants for the destination logical outputs. For multicast packets, the adapter is allowed to transmit a packet if it has the memory grant for the packet priority, regardless of output queue grants.

Incoming packets also carry a drop flag. This flag allows packet discard at the input of the island whenever the memory grant and/or output queue grants are removed before the packet is received from the attached adapter (due to the latency in grant update). The grant information used by the input controllers to decide to drop a packet is updated once every sequencer cycle, providing fairness among all inputs.

Finally, an anti-streaming function is provided at the input controllers to detect badly behaving adapters. When an adapter sends a packet to an output priority for which the output queue grant or memory grant have not been given in the past eight packet cycles, the packet is discarded and an interrupt is raised. For multicast packets, the same mechanism is applied, but it takes only the memory grants into consideration.

2.1.8 Outgoing Flow Process

In each of the four logical output queues, control packets and Data Packets are transmitted in the following order:

- 1. Control Packets
- 2. Priority 0 packets
- 3. Priority 1 packets
- 4. Priority 2 packets
- 5. Priority 3 packets

This order cannot be changed. Packets of higher priority overtake packets of lower priority.

Control Packets are constructed by the local processor and can be transmitted one at a time to multiple outputs The control packets take precedence over any other packet present in the shared memory.

2.1.9 Outgoing Flow Control

Flow control at the output is also provided by send grants (one per output), regardless of priority. A packet on a given output can only be transmitted if the send grant is provided for that output.

2.1.10 Signaling

LU data is passed in and out of the island, one byte per clock cycle, for each input and output port, at a rate of 0.88 Gb/s.

The first byte of a packet, either incoming or outgoing, is called the Qualifier byte and carries information about:

- Packet priority
- Packet identification
- Packet filtering support
- · Drop flag
- · Parity bit over the three byte header

2.1.10.1 Idle Packets

When no Data Packets are available on a port, fill-up (empty) packets, called Idle Packets, are transmitted. The inputs recognize these packets by their packet identification, and they are not stored. Outputs automatically generate Idle Packets also, when no Control Packets or Data Packets of any priority are available.

2.1.10.2 Input

For incoming Data Packets, the second and third bytes provide the address of the packet destination, in the form of a bit map. Each bit of these two bytes is associated with an output port. A bit set to 1 in the bit map indicates that the packet is to be routed to the corresponding port. This bit map field can point to multiple outputs.

An incoming packet is interpreted as a Control Packet when the entire bit map field is set to 0.

2.1.10.3 Output

The second and third bytes of outgoing packets carry the grant status of all output ports. This grant status is used by the receiver of the other adapter to make a decision on Data Packet transmission, according to the incoming flow control scheme presented above. This grant status is referred to as an output queue grant.

On a given packet, the output queue grant field carries the status of all logical queues of the same priority. Consecutive packets carry the grant status for the different priorities, in a cyclic order. The synchronization of this cycle is provided by the packet numbering field contained in the outgoing Idle Packets.

2.1.11 Internal Features

2.1.11.1 Packet Filtering

A packet filtering function is provided on the switch island inputs in order to decide whether or not to receive packets for certain destinations. According to the packet filtering field in the qualifier byte, the incoming packet bit map is either logically ORed with a specified mask (its complement value) or not masked at all. There is one mask for all 16 inputs.

2.1.11.2 Line Interface and Synchronization

Data are transmitted on the physical lines two bits at a time, at a rate four times that of the internal byte clock. Each bit is carried by a differential pair at a speed of 444 Mb/s. Both the transmitting and receiving devices run with the same byte clock.

Link synchronization is provided by a training sequence of special Idle Packets, called Sync Packets. When sync packets are transmitted on a port, the receiving port can perform bit phase alignment of the incoming data, as well as packet alignment. The format of these sync packets is such that they are recognized by the receiving end as valid packets, and provide bit transitions on the physical line to allow for phase recovery. A sync packet LU is entirely composed of 'CC' bytes, except for the last byte which is '33'.

One data byte is carried over two differential pairs. One pair carries all even numbered bits, and the other one all odd numbered bits. This converts the 'CC' sync packet bytes into 0 and 1 bit transitions on the physical lines.

2.1.11.3 Link Integrity

Link integrity is provided by a CRC field, placed in the last byte of all Idle Packet LUs. The 8-bit CRC is the checksum of all bits carried over a port since the previous Idle Packet ended. Thus, when multiple Data Packets are transmitted, followed at some time by an Idle Packet, the CRC of this Idle Packet covers all previous Data Packets. This provides a measure of the link quality for fault isolation.

2.1.11.4 Packet Numbering

In order to extract the output queue grant information that is multiplexed in the second and third bytes of outgoing packets, Idle Packets carry a packet numbering field. This field is equal to the value of the priority of the grant status being carried by the current Idle Packets.

The number of packet cycles required to carry the output queue grant for all priorities is equal to the number of priorities. This output queue grant cycle repeats itself as long as non-sync packets are transmitted. The output queue grant cycle always starts with the lowest priority number and ends with the highest.

2.1.12 Miscellaneous

2.1.12.1 Receive Grants

A receive grant function is provided on device pins as a means to block packet reception for specific outputs. This function allows the implementation of packet lossless switchover for simple switch systems. It cannot be combined with the packet lossless switchover mechanism provided by colored packets. When a receive grant is asserted, reception of Data Packets in the corresponding output queue is enabled. When a receive grant is disasserted no incoming packets are stored in the corresponding output queue, regardless of their bit map.

2.1.12.2 Send Grants

Send grant pins are provided to control the outgoing flow. They indicate to the output controllers when packets are allowed to be transmitted.

Architecture prs28.04.fm
Page 20 of 131 February 6, 2001

2.1.12.3 Colored Packet

Idle Packets and Data Packets also carry a color, either blue or red. Color packets are used to provide support for packet lossless switchover.

Some Idle Packets carry a yellow color. The reception of a yellow Idle Packet on a given input is logged into a register accessible by the local processor. Yellow packets can only be transmitted by the local processor. Yellow packets are used as link liveness messages.

2.1.12.4 Control Packets

Data Packets for which the bit map field is 0 are detected as control packets and are passed to the local processor via a dedicated queue. The first bit map byte of an incoming packet is overwritten by the input port number on which the packet is received.

2.1.12.5 Queue Full

Queue-full information is also provided directly by the island. Sixteen bits carry all logical port full statuses, by multiplexing the information of all priorities of a given port over one bit. At a given time, all 16 bits carry the full status for the same priority, for all output queues. All priorities rotate, from the lowest number to the highest, in a cyclic manner, while the change from one priority to the next only occurs after four byte cycles. An extra bit indicates when all 16 queue-full bits carry priority 0, and is used to synchronize to this cycle.

2.1.12.6 Queue Empty

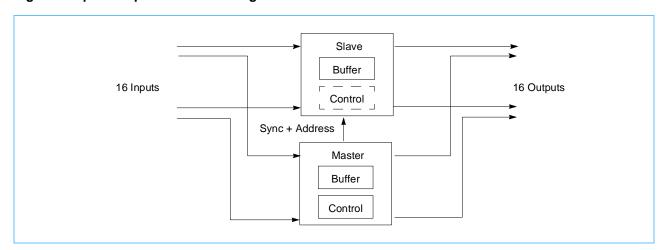
Queue-empty information is also provided by a 16-bit bus, for all logical output queues. The information multiplexing and timing is identical to the queue-full bits.

2.1.12.7 Look-Up Table

The lookup table is a facility that allows permutation of the bytes of outgoing packets. Only the first 16 bytes can be permuted among each other or overwritten by one of the 16 bytes. One table is provided for all output ports.

2.2 Expansion Modes

2.2.1 Speed Expansion


The PRS28.4G device is internally composed of two islands operating in speed expansion. It is a 16 x 16 shared-buffer device, with port speed of 1.77Gb/s. Each port is composed of two byte streams, one corresponding to the master island, one to the slave island.

The device supports two-way speed expansion, that is, two devices can be combined to increase the port speed to 3.2Gb/s. Supported packet lengths range from 64 to 80 bytes, in increments of four. However, when two devices operate in speed expansion, packets of length 128 to 160, in increments of eight, are also supported.

Note: The PRS28.4G implementation allows for only two (2) devices to be combined in external speed expansion.

Speed expansion allows multiple devices to be connected in parallel to increase the port speed while keeping the number of ports constant, as shown in the *Speed Expansion Block Diagram*.

Figure 3: Speed Expansion Block Diagram

Table 1: Speed Expansion Shared Memory Buffering Capacities

Speed Expansion Mode	Switch Configuration	Gb/s per port	Packet Length (bytes)	LU Size (bytes)	Buffering (packets)	Speed Expansion Factor
Single device, no internal speed expansion	16 x 16	1.77	64 - 80	32 - 40	256	2
Single device, with internal speed expansion	8 x 8	3.54	64 - 80	16 - 20	256	4
Two devices speed expanded, no internal speed expansion	16 x 16	3.54	64 - 80	16 - 20	512	4
Two devices speed expanded, no internal speed expansion	16 x 16	3.54	128 - 160	32 - 40	256	4

In each case, the LU size seen by one island (either the master or the slave island of one device) is equal to the packet length divided by the speed expansion factor (port speed divided by the island port speed of 0.88 Gb/s)

Architecture prs28.04.fm
Page 22 of 131 February 6, 2001

2.2.1.1 External Speed Expansion

When multiple islands are running in speed expansion, one is master and the others are slaves. The master device is the one which receives the byte stream containing the qualifier byte, bit map, and output queue grant. The master device also performs packet routing and queuing. The slave devices only receive data bytes, and do not perform any packet routing and queuing. The address of packets in shared memory is provided by the master, and is the same for all devices. Furthermore, the slave devices' internal sequencers are all synchronized on the master sequencer in order to transmit the LUsat the same time on a given port.

LUs of a packet incoming on a port have to arrive at all devices within a two-byte interval.

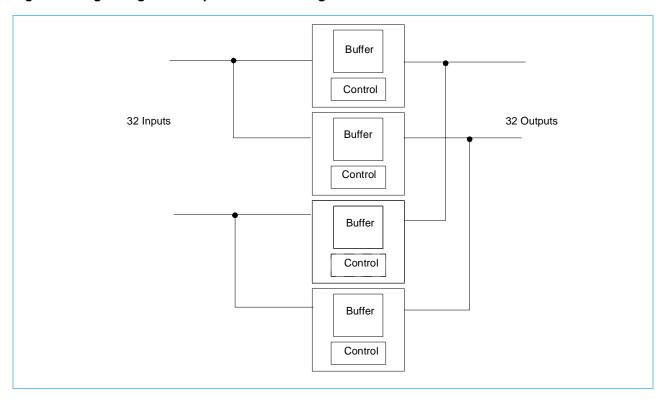
2.2.1.2 Internal Speed Expansion

Ports of one island can also be paired to double the port speed while reducing the number of input and output ports to eight. Each pair of ports is built of one master port and one slave port, which have exactly the same functions as the ports of master or slave islands in external speed expansion.

2.2.2 Port Expansion

Port expansion allows multiple islands to be interconnected in parallel, in a single stage, in order to increase the number of physical ports, while keeping the port speed constant.

An external function must be provided to:


- Duplicate incoming packets and insert the correct bit map used by each island
- · Merge traffic from different islands

The same external function can also instruct an island to transmit by controlling the send grants, according to the queue-empty status, for instance.

Port expansion can be combined with speed expansion (internal and/or external) to increase port speed and the number of ports at the same time.

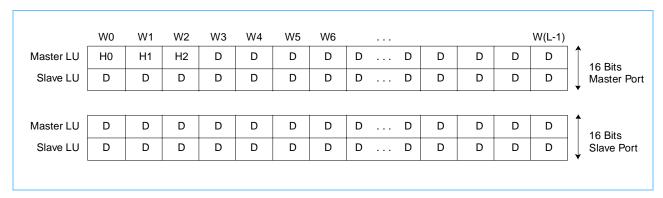
Figure 4: Single Stage Port Expansion Block Diagram

3. Functional Description

3.1 Logical Interface

As described in *Expansion Modes* on page 22, an PRS28.4G device consists of two switch islands running in speed expansion. This leads to packet data being carried over an input or output port in two byte streams of 888 Mb/s, one related to the master island, and the other one to the slave island. Each byte stream carries Logical Units (LU). An LU is a set of bytes belonging to the same packet and which are sent over one stream. Depending on the expansion mode and packet length, an LU has a length L of 16 to 20 bytes or 32 to 40 (in step of 2) bytes.

As represented in the figure below, the master LU always carries the packet routing information, or header bytes, indicated by H0, H1 and H2.


Figure 5: Packet Format 1.77 Gb/s Port

	W0	W1	W2	W3	W4	W5	W6						W(L-1)		
Master LU	H0	H1	H2	D	D	D	D	D	 D	D	D	D	D	↑ 16 Bit	ite
Slave LU	D	D	D	D	D	D	D	D	 D	D	D	D	D	10	
'			•			•		•						, .	

When running in either internal or external speed expansion, two ports are grouped to form a 3.54Gb/s port. Depending on the port and chip configuration, a 1.77Gb/s port can run either as a master port or a slave port:

- The master port is composed of two streams, one master, which carries the packet header information and data bytes, and one slave, which carries data bytes only.
- The slave port is composed of two slave streams, which carry data bytes only.

Figure 6: Packet Format for 3.54 Gb/s Port

The LUs of a packet are always transmitted or received at the same time on both streams of a port. Furthermore, the LUs of successive packets are transported one after the other, with no gap between packets.

3.1.1 Physical Interface

Within the device, an LU is transported in a stream of bytes at 111.1 MB/s. Externally, it is transported over two bit streams of 444 Mb/s each. At chip-pin level, each bit stream interface is differential and complies with the JEDEC JESD8-6 standard (HSTL).

Data bits are transferred across devices at a known frequency, and no companion clock is required. However, bit-phase alignment is performed during the link synchronization phase.

The interface between the 9 ns and the 2.25 ns domains is handled by a data line interface, the Data Aligned Serial Link (DASL).

- On the input side, the DASL deserializes the two bit streams into one byte stream. It also performs the link synchronization to allow bit phase alignment and packet alignment.
- On the output side, the DASL serializes the byte stream into two bit streams.

An internal pico-processor (M3) performs the synchronization of all lines on all ports. A synchronization algorithm running on the pico-processor performs the bit-phase alignment and packet alignment of all ports during the synchronization phase (see *DASL Specification and Pico-Processor* on page 124). The synchronization algorithm is downloaded into an internal instruction memory and is delivered along with the module. See *DASL Specification and Pico-Processor* on page 124 for more information.

During serialization and deserialization, a one byte stream is split into two bit streams, one carrying the even bits, and the other the odd bits. Thus, a port consists of four differential pairs. The information and bit order that each pair carries is given in the table below.

Note: The MASTER stream is carried by bits 2 and 3, and the SLAVE stream by bits 0 and 1.

Table 2: Physical Bit Organization of a Port

Differential Pair	Information Carried	Bit Order
Data_0_Q and Data_0_QN	even number bits of the slave byte stream	b0 b2 b4 b6 of slave byte
Data_1_Q and Data_1_QN	odd number bits of the slave byte stream	b1 b3 b5 b7 of slave byte
Data_2_Q and Data_2_QN	even number bits of the master byte stream	b0 b2 b4 b6 of master byte
Data_3_Q and Data_3_QN	odd number bits of the master byte stream	b1 b3 b5 b7 of master byte

This bit grouping guarantees bit transitions to perform the phase alignment during synchronization on SYNC packets.

3.1.2 Packet Type

A packet can be one of the following types:

- · A Data Packet that contains user data to be switched from input to output.
- A Control Packet that is used to communicate with the local processor.
- An Idle Packet that does not contain user data. Idle Packets are sent on a link when no data packet are available, or to perform link synchronization.

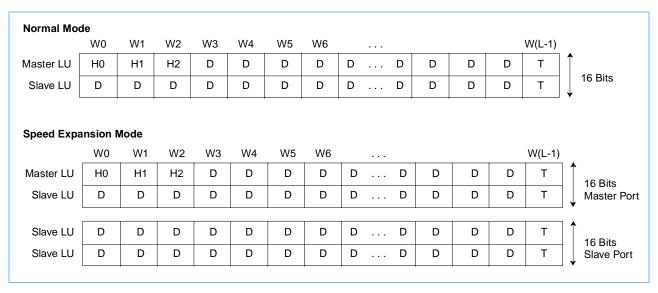
3.1.2.1 Data Packets and Control Packets

Data Packets carry user data and Control Packets carry information for local processor communication. The figure *Packet Format 1.77 Gb/s Port* on page 25 shows the format of a data and control packet without speed expansion. A packet consists of 16-bit words, divided into a master stream and a slave stream.

The figure *Packet Format for 3.54 Gb/s Port* on page 25 shows the Data and Control Packet format with speed expansion, either internal or external. In those configurations, the packet is transported over two different ports, either in the same device or in separate devices, in four LUs. The master port receives the master LU and a slave LU, and the slave port receives two slave LUs.

Data Packets have a priority that ranges from 0 (highest) to 3 (lowest). In addition, they also carry filtering (color) information used for switchover support.

Control Packets do not have priority, but they carry filtering (color) information.



3.1.2.2 Idle Packets

The format of an Idle Packet without speed expansion (normal mode) is identical to data packet formats, except that an Idle Packet contains two trailer-bytes in the last word of the packet.

Idle Packet format with speed expansion is similar to the data packet format for a 3.54 Gb/s port, except for the trailer-bytes at the end of the packet.

Figure 7: Idle Packet Format

Like Data Packets, Idle Packets also carry color information. However, in this case the color information is for signaling (such as liveness messages, or to identify link synchronization packets, called Sync packets), in addition to switchover support.

The payload bytes of nonsync Idle Packets - shown as 'D' in the above two figures - are not processed and are therefore irrelevant. However, in order to allow for dynamic phase alignment for the link interface receiver, 6 payload bytes are 'CC'. All bytes of a non-sync Idle-packet LU transmitted by the PRS28.4G have the value '00', with the following exceptions:

- Bytes 6 to 11 are all 0x'CC'.
- Byte 5 of a slave LU is 0x'07'.
- The last byte contains the trailer CRC.
- For a master LU, the header is defined according to the following sections.

3.1.2.3 Sync Packet

Sync packets are special types of Idle Packets, which allow link synchronization by providing bit transition and packet delineation.

In accordance with the above definition of an Idle Packet, a Sync packet LU has all bytes equal to 'CC', except for the last byte, the trailer CRC byte, which is '33'.

The bit organization by the physical interface provides on a given differential pair, a sequence of 'A', followed by a '5'. This bit sequence provides the necessary bit transition while the 'A to 5' transition allows for packet delineation.

3.1.2.4 Logical Unit Lengths

As mentioned previously, an LU is the part of a packet transported over one 0.8Gb/s stream. The table below lists, for all speed expansion modes, all possible LU lengths and their corresponding packet lengths, as well as the total packet buffering provided.

All packets received and transmitted by the switch have the same length.

Table 3: Packet Length and Logical Unit Length

Speed Expansion Mode	Switch Configuration	Gb/s Per Port	Packet Length (Bytes)	LU Size (Bytes)	Total Buffering (packets)
Single device, no internal speed expansion	16 x 16	1.77	64 68 72 76 80	32 34 36 38 40	256
Single device, with internal speed expansion	8 x 8	3.54	64 68 72 76 80	16 17 18 19 20	256
Two devices speed expanded, no internal speed expansion	16 x 16	3.54	64 68 72 76 80	16 17 18 19 20	512
Two devices speed expanded, no internal speed expansion	16 x 16	3.54	128 136 144 152 160	32 34 36 38 40	256

3.2 Header Format

3.2.1 Header Byte H0 - Packet Qualifier

Table 4: Header Byte H0 for Idle Packets (Bits 2 and $3 \neq 0$)

	Bit Position										
Packet Type	0	1	2	3	4 and 5	6 and 7					
	Color bit (1)	Parity (1)	0	0	Color bits (2)	Grant Priority bits (2)					
Blue Idle Packet	0	r	0	0	0 0	g g					
Red Idle Packet	0	r	0	0	0 1	g g					
Yellow Idle Packet	0	r	0	0	1 0	хх					
Sync Packet	1	1	0	0	11	0 0					
Reserved	1 1 1 0	r r r	0 0 0 0	0 0 0 0	0 0 0 1 1 0 1 1	x x x x x x x x					

Key:

x value = 0 or 1

r even parity bit on entire header (H0, H1, H2)

gg value of grant sync bits (ignored for received packets - value = '00'

Table 5: Header Byte H0 for Data Packet (Bits 2 and/or $3 \neq 0$), and Control Packet (Bits 2 and/or $3 \neq 0$; H1 and H2 $\neq 0$)

Packet Type	Bit Position									
	0	1	2	3	4	5 and 6	7 and 8			
	Reserved (1)	Parity (1)	Active Bit (1)	Backup Bit (1)	Drop Bit (1)	Reserved (1)	Priority (2)			
Red Data/Control Packet	Х	r	0	1	d	х	рр			
Yellow Data/Control Packet	х	r	1	0	d	х	рр			
Blue Data/Control Packet	Х	r	1	1	d	х	рр			

Key:

x value = 0 or 1

r even parity bit on entire header (H0, H1, H2)

gg value of grant sync bits (ignored for received packets - value = '00'

3.2.1.1 Parity Bit

The parity bit is an even parity calculated on the first three bytes of the header. Even parity assures that the resulting number of '1' in the three byte header is even. This ensures that the SYNC cell has a valid header.

3.2.1.2 Reserved Bits

Reserved bits pass through the device unmodified.

Table 6: Data Packet Priority	(Ignored for Control Packets)
--------------------------------------	-------------------------------

Priority Bits (p p)	Priority Level
0 0	Highest
01	Medium-high
1 0	Medium-low
11	Lowest

Data Packets will be transmitted in order of priority. A Control Packet is always transmitted before Data Packets.

3.2.1.3 Active and Backup Bits

The Active and Backup bits are used to determine how the Bit Map Filter Mask is applied to the Bit Map Destination Address (header bytes H1 and H2) and to determine the traffic type (Red or Blue) of Data Packets.

Table 7: Bit Map Filter

Active Bits	Backup Bits	Bit Map Filter	Data/Control Packet Color
0	0	Idle Packet.	n/a
0	1	Packet bit map is bit wise ANDed with bit wise complement of bit map filter.	red
1	0	Packet bit map is bit wise ANDed with bit map filter.	red
1	1	Packet bit map is used unfiltered.	blue

The Bit Map Filter is a programmable register. The resulting masked destination bit map is used by the PRS28.4G to route the packets to the appropriate destination(s), or to ignore the packet if the resulting bit map is all zeros. Control Packet detection is performed before the Bit Map Filter is applied to the bit map contained in the packet header.

3.2.1.4 Drop Bit

Incoming packets with the drop bit set will be dropped by the PRS28.4G when the number of packets in the destination output queue and/or the shared memory has exceeded the programmable thresholds for the corresponding priority. For multicast packets, the packet is dropped only if the shared memory threshold is crossed. The output queue full information is updated once every sequencer cycle, so all input controllers see the same output queue status in within a cycle.

When the drop bit is clear, the packet will not be dropped by the PRS28.4G due to either output queue or shared memory thresholds.

3.2.1.5 Grant Priority Bits

The grant priority bits are defined only for Idle Packets transmitted by the PRS28.4G. For received packets, this field is not examined (its value is 'xx'). For transmitted packets, these bits encode the content of a fly wheel counter, which characterize the priority of the inband output queue grant information (see next section) stored in header bytes H1 and H2. The coding of bits gg is identical to the Data Packet priority listed in s above.

Yellow Idle Packets at the egress are considered as Data Packets and therefore do not carry grant priority bits.

3.2.2 Header Byte H1 and H2

3.2.2.1 Received Packet: Bitmap

Header Bytes H1 and H2 of a received packet carry the destination bit map of the packet. Header Byte H1 carries destination information for output ports 0 through 7, and Header Byte H2 caries destination information for output ports 8 through 15.

For Control Packets, the entire bit map field is set to '0'. Header Byte H2 is ignored for internal speed expansion.

Table 8: Header Byte 1 and 2 and Incoming Packet Bitmap

	Bit:	0	1	2	3	4	5	6	7
Header Byte H1	Port:	0	1	2	3	4	5	6	7
Header Byte H2	Port:	8	9	10	11	12	13	14	15

3.2.2.2 Transmitted Packet: Inband Output Queue Grant Information

Depending on the setting of the Flow Control Enable bit in Configuration Register 0, Header Bytes H1 and H2 provide inband access to the output queue grant information (this access is also provided on device pins). Using the inband information assumes that it is the same device that transmits and receives packets on the port.

When flow control is enabled, Header Bytes H1 and H2 carry the output queue grant. The output queue grant is the grant information given to devices connected to the input ports. This information indicates the status of the output queues and controls whether or not to transmit packets to the PRS28.4G. This information is carried for all 16 output ports at the same time for a given priority. Consecutive packets, either idle or data packet, carry a different priority, cycling from 0 to the highest priority value enabled. For instance, when two priorities are enabled, it takes two packets to transmit the output queue grant information.

Table 9: Header Byte 0 and 1 and Output queue grant

	Bit	0	1	2	3	4	5	6	7
Header Byte H1	Output Queue:	0	1	2	3	4	5	6	7
Header Byte H2	Output Queue:	8	9	10	11	12	13	14	15

When all four priorities are enabled, the output queue grant information is transmitted in a cycle of four packets. However, if the Three Threshold Enable bit is set in Configuration Register 0, the cycle is reduced to 3, and grants for priorities 0, 1, and 2 only are sent. It is then assumed that thresholds 2 and 3 are programmed with the same value.

To synchronize the input interface device fly wheel counter with the inband output queue grant, the priority value for which the output queue grant is transmitted is carried in the Priority Grant bits of the H0 Packet Qualifier Byte of Idle Packets. Since inband grant priority is transmitted in cycles of consecutive packets, priority synchronization is performed on Idle Packets only, and this information is not provided for Data Packets. However, grant information is always transmitted.

H2 is set to 0x'FF' for internal speed expansion.

When the Flow Control Enable bit of Configuration Register 0 is not set, bytes H1 and H2 are identical to bytes H1 and H2 of the received header.

3.2.3 Idle Packet Trailer Byte T

The Trailer Byte is only defined for Idle Packets. For the other packet types, the Trailer Byte contains user data. The Trailer Byte contains an eight-bit CRC checksum value. The trailer CRC of a byte stream is calculated over all the bytes sent over that stream since the last Idle Packet CRC byte.

The CRC encoding is defined by the generating polynomial X8+X4+X3+X2+1. The initial value for CRC calculation is programmable via an 8-bit CRC Init field in Configuration Register 1. The initial CRC value is chosen so that the resulting trailer CRC of a Sync packet equals 0x'33' for all LU lengths. The CRC Init values are given in the chapter describing Configuration Register 1.

When an Idle Packet is received, the CRC is verified. In case of an error, it is reported via an interrupt, when not masked.

3.3 Packet Reception

3.3.1 Master Input Port Operation

Packets are received on an input asynchronously with the packets on the other inputs. When a start of packet is expected, a master input port performs the following actions:

- The packet header is analyzed and the various fields are extracted from the header. The entire packet is ignored if the header parity is incorrect. The error is reported via CRC Error interrupt and, if not masked, the main interrupt is asserted. Also, the global CRC Error counter is incremented.
- If the header parity is correct and the received packet is not a sync packet, the packet color is extracted. When the packet type is yellow (which is only possible for Idle Packets), bit n in the Yellow Register is set (where n is the number of the input port).

Further actions depend on the packet type and are described in the following sections.

3.3.1.1 Idle Packet

In external speed expansion, the slave is informed that an Idle Packet has arrived. The Trailer Byte is verified. If there is a CRC error, it is reported via the CRC Error interrupt and, if not masked, the main interrupt is asserted. The global CRC Error counter is also incremented. No further action is taken for Idle Packets (not stored in shared memory).

3.3.1.2 Data Packet

- The packet is ignored if:
 - The packet destination output ports are all disabled, or
 - The packet cannot be stored in the packet memory. This is a flow control error and will be reported via the Flow Control Violation interrupt. This error can only occur if the adapter does not follow the memory grant information. If the interrupt is not masked, the main interrupt is asserted.
- With speed expansion, if the packet is discarded, the slave input is informed that the incoming packet is invalid. If the packet is accepted, the slave port receives the packet address from the master port.

3.3.1.3 Control Packet

- The packet is only received if the number of currently enqueued control packets does not exceed the fixed threshold of 16; otherwise the control packet is ignored. With speed expansion, if the packet is not received, the slave port is informed that the incoming packet is invalid. If the packet is received, the slave port receives the packet address from the master port.
- When 16 control packets are already enqueued, the next control packet is discarded.

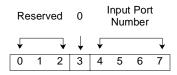
3.3.2 Slave Input Port Operation

When a start of packet is expected, a slave input port receives control information from the master port. For each received packet this can be one of the following:

- An Idle Packet is received. The Trailer Byte is then verified. If a CRC error is detected, it is reported via the CRC Error interrupt. The CRC Error Counter is also incremented. If the error is not masked, the main interrupt is asserted.
- The incoming data packet is invalid. The packet is then ignored.
- The incoming data packet is valid. The packet is then stored in the packet memory at the address received from the master port.

If both the slave and master port receive an Idle Packet, and the master port informs the slave port to ignore the Idle Packet as a result of a header parity error, the slave will ignore the Trailer Byte in the Idle Packet.

3.3.3 Parity and CRC Errors


The detection of header parity errors and trailer CRC errors is reported via the CRC Error interrupt, and if not masked, generates a main interrupt. Both type of errors also cause the CRC Error Counter to increment.

These interrupts are generated by the device that detects the error. In external speed expansion, the master device reports header parity errors and trailer CRC errors for data on its input ports, and the slave device reports trailer CRC errors for data on its input ports.

3.3.4 Address Insertion

The input port number is inserted in header byte H1 of incoming Control Packets as follows:

The address insertion field is defined as a 5 bit field. However, in the PRS28.4G bit 3 is forced to 0.

3.4 Input Flow Control

The PRS28.4G continuously maintains shared memory and output queue status information. This status information is periodically transmitted via the memory grants and output queue grants for flow control to adapters which are connected to the PRS28.4G inputs.

Flow control is used to signal the adapter that it should stop transmitting packets when the packet memory threshold is exceeded for the packet-priority or when an output queue threshold is exceeded for the packet priority.

3.4.1 Memory Threshold Exceeded Condition

There are four programmable memory-full thresholds, one for each packet priority. These thresholds can be used to prevent packets of a specific priority from using the entire packet memory. When the total number of allocated memory locations exceeds the threshold value, the corresponding memory grant signal is cleared. It is set whenever the total number of allocated locations is less than the threshold value.

The four memory-full thresholds must be programmed in decreasing order. That is, the memory-full threshold for priority 0 must be greater than or equal to the memory-full threshold for priority 1, which in turn must be greater than or equal to memory-full threshold for priority 2. Consequently, when memory-full threshold 0 is exceeded, the other memory-full thresholds are also exceeded.

The memory-full information is available on device pins (MEM_GRANT).

3.4.2 Programming the Memory Full Thresholds

The memory-full threshold 0 should be programmed to:

NumberOfPackets - (16 * MasterGrantDelay) - ControlPacketLocations - 32.

32 addresses are reserved by the Input Controller and should be subtracted from the total number of packets (either 256 or 512 depending whether speed expansion is off or on).

NumberOfPackets is the total packet storage available in shared memory, given in *Speed Expansion Shared Memory Buffering Capacities* on page 22.

MasterGrantDelay is the reaction delay endured by the Memory grant pin information, calculated in LUs. The PRS28.4G component of this delay is one LU time. The transmission and processing time of the Memory Grant by the adapter must be added to this value.

ControlPacketLocations represents the 16 locations that are reserved for Control Packet reception, if necessary.

3.4.3 Output Queue Threshold Exceeded Condition

There are four programmable output queue-full thresholds, one for each packet priority. All output queues use the same threshold per priority. These thresholds can be used to:

- Prevent packets of a certain priority and destined to a specific output from using the entire packet memory.
- Prevent packets of a certain priority from consuming too much output queue memory space (in relation to packets of a higher priority).

When the total number of addresses, regardless of priorities, in an output queue exceeds a priority threshold, the corresponding output queue grant is cleared. It is set whenever the total number of addresses in the output queue is below the threshold value.

3.4.4 Packet Reception Fairness

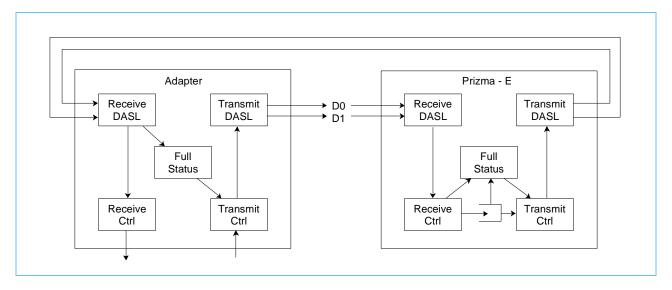
Two fairness mechanisms are implemented to guarantee that, on the average, each input has an equal chance of receiving a packet:

- Output queue-full fairness. When multiple inputs receive packets destined for the same set of outputs, then on the average, each input has the same chance to receive its packet.
- **Memory-full fairness**. When multiple inputs receive packets with the same priority and the output queue(s) are not full, then on the average, each input has the same chance to receive its packet.

This is accomplished by updating the memory grant and output queue grant values once per sequencer cycle.

3.5 Output Queue Grant Signaling

This section describes how the output queue grant flow-control status information described in the previous section is transmitted to the adapters that are connected to the PRS28.4G inputs, and how these adapters should use the flow control information.


The memory grants are directly available on device pins. However, the output queue-full information is available in two ways:

- On device pins, via the Q_FULL bus,
- Inband in the header of packets transmitted to the adapters, if Grant Enable bit is set in Configuration Register 0.

It is the responsibility of the adapter that transmits packets to the PRS28.4G to determine if the packet can be accepted by the PRS28.4G. The figure below shows the use of the inband output queue grant information. Inside the PRS28.4G, only one input port and one output port are shown. The adapter maintains an output queue grant status, which is a copy of the PRS28.4G output queue grant status. Due to the multiplexing of the inband output queue grant of all priorities, this copy can be old by P * LU time, where P is the number of enabled priorities. See *Header Byte H1 and H2* on page 32 for a description of the inband output queue grant transmission.

Figure 8: Input-side Grant Operation

3.5.1 Adapter Transmission Rules

The adapter maintains output gueue grant status, which contains the following information:

- An output queue grant bit for each PRS28.4G output i and for each priority p, that is set when the adapter
 is allowed to transmit packets of priority p to output i. When the adapter receives a packet from the
 PRS28.4G, it copies the 16 bits of header bytes 1 and 2 into its internal status table.
- · Four Memory grant bits, which override all output queue grant bits.

A simple rule to determine when an adapter may transmit a packet destined to a set of outputs with priority p is:

- The memory grant bit of the appropriate priority in the adapter must be set, and
- If the packet is monocast, the output queue grant bits in the adapter must be set for the destination output.

For multicast cells, it is recommended that only the memory grant bits be examined.

3.5.2 Flow Control Error

3.5.2.1 Shared Memory Overrun

As mentioned above, an PRS28.4G input can always receive a packet, with a packet storage address, regardless of the full status of the output queues and shared memory. However, if a packet is received when the input does not have an address, the packet is discarded and a Flow Control Violation interrupt is set. If not masked, the main interrupt is asserted. This error can only occur if the Shared Memory Threshold bits have not been programmed correctly, or if the adapter does not respond to the memory grant pin information.

3.5.2.2 Anti Streaming

An error can also occur if an adapter transmits packets regardless of the output queue grant and/or memory grant being deasserted. When an input receives a packet destined to an output for which the output queue grant or memory grant have not been given in the past 8 LU cycles, a Flow Control Violation interrupt is set and, if not masked, the main interrupt is asserted and the packet is discarded.

When the incoming packet is multicast, this anti streaming mechanism is only based on the memory grant, and does not take the output queue grants into considerations.

3.6 Output Queues and Output Queue Priorities

The addresses of packets in the packet memory are stored in one output queue (or in multiple output queues when the packet is a multicast packet). There are sixteen output queues, one queue for each output. Each output queue can store the maximum number of addresses.

In addition, each output queue is logically divided into four independent queues, one queue for each packet priority. When reading the output queue, addresses in a higher priority queue have precedence over addresses in a lower priority queue. Consequently, higher priority packets will overtake lower priority packets that are stored in the PRS28.4G.

When the output SND_GRANT is active, the corresponding output queue is emptied at the rate at which packets are transmitted. This operation is also performed when the output port is disabled or when Sync Packets are transmitted on that output (slow flush), regardless of the SND_GRANT value.

3.7 Shared Memory

3.7.1 Organization

The shared memory is organized as two dual port large RAMs, each containing 512 rows of 20 bytes. The two RAMs operate in parallel. The first RAM stores all the bytes in the master stream and the second RAM stores all the bytes in the slave stream.

Each input collects two rows of a packet, and then passes these rows to the packet memory. Similarly, each output reads two rows from the packet memory and transmits it to the output.

3.7.2 Shared Memory Access by Local Processor

The local processor has full read and write access to the entire packet memory through the application registers, via the Memory Row register and the Table Pointer and Data Register. For example, this function is used when creating or reading control packets. The access of the local processor to the shared memory has the lowest priority and will only occur when there is at least one idle input (for write access) or one idle output (for read access), or when the sequencer has an idle slot (for LU of 17 to 20, or 34 to 40).

For LU of length 17 to 20 and 34 to 40, the access time to the shared memory is guarantee to be at the most one LU cycle. For LU of length 16 and 32, the access time can only be guaranteed if the Control Packet Access Priority bit is set in the Configuration Register 0. In this case, the access time is guaranteed to be no greater than 3 LU cycles.

3.8 Packet Transmission

The data stream format at the PRS28.4G output side is identical to the format at the input side. However, packet transmit start times are synchronized with an internal PRS28.4G packet sync clock, via the SEQ_CLK. The internal PRS28.4G packet sync clock is either generated internally or can be synchronized with an external packet sync clock. This is required for a slave device in external speed expansion mode, where the sync clock of the slaves must be synchronized with the sync clock of the master. The programming of the SEQ_CLK usage is performed via the Sequencer Sync Pin Mode bit in the Configuration Register 0.

3.8.1 Output Port Servicing

The transmission of a packet on a certain output starts at a fixed time-point, as defined in the table below.

Output Port Number	Time Relationship with SEQ_CLK [byte cycle] ¹	Transmission Time without Internal Speed Expansion [byte cycle]	Transmission Time with Internal Speed Expansior [byte cycle]	
0 (reference)	21	0	0	
1	25	4	4	
2	29	8	8	
3	33	12	12	
4	22	1	1	
5	26	5	5	
6	30	9	9	
7	34	13	13	
8	23	2	-	
9	27	6	-	
10	31	10	-	
11	35	14	-	
12	24	3	-	
13	28	7	-	
14	32	11	-	
15	36	15	-	

^{1.} The time relationship with SEQ_CLK is the number of clock cycles between a low to high transition on the SEQ_CLK pin and the start of transmission of the first byte of a packet.

An PRS28.4G output will always transmit a packet. If no Control Packet or Data packet is available to transmit, or no packet has a transmission grant, then the output will transmit an Idle Packet. Otherwise the PRS28.4G will transmit the packet.

In external speed expansion, slave outputs start to transmit packets at the same time as master outputs.

3.8.1.1 Look-Up Table

Byte ordering of the outgoing packets can be modified via the lookup tables. These tables, one for the master stream; one for the slave stream, identify which data byte of the packet to send at a specific byte time. Only the first 16 data bytes of each stream can be rearranged, and master and slave bytes can not be mixed. These tables are common for all output ports.

byte reordering via the Look-Up table.

Table 10: Byte Reordering via the Look-Up Table

Table Entry	3	4	5	3	4	5	15	14	13	12	11	10	9	8	7	6	-
Byte Row before Ordering (Byte #)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Byte Row after Order- ing (Byte #)	3	4	5	3	4	5	15	14	13	12	11	10	9	8	7	6	16

3.8.2 Idle Packet Transmission

3.8.2.1 SYNC IDLE Packet

When Sync packets are transmitted on an output port, the corresponding output queue is flushed (slow flush) at the speed at which Data Packets are transmitted, regardless of the SND_GRANT value. The input ports do not discard packets for that output, and the output queue grants corresponding to that output port are still generated by comparing the level to occupancy of the queue with the threshold values.

3.8.2.2 Normal IDLE Packet

Other Idle Packets are transmitted when no Data Packets are available or when the SND_GRANT is low, according to the following rules:

- If the Color Force bit is '1' in the Mode Register, a Idle Packet of the color equal to the Color bit of the Mode Register is sent.
- If the Color Force bit is '0', a Idle Packet of color equal to the Expected Color bit of the Mode Register is sent. if
 - A packet of color equal to the Expected Color has been received on all inputs since the Color Clear command was last sent via the Command Register, and
 - The corresponding output queue is empty

If the two conditions mentioned above are not met, an Idle Packet of color opposite to the Expected Color is sent.

3.8.2.3 Yellow IDLE Packet

Yellow IDLE packets can only be transmitted as control packets. The local processor has to build the yellow Idle Packet in shared memory and transmit it to the desired outputs as any other control packet. Therefore on the output port the yellow idle carries the output queue grant (H1 and H2) information, but not the LU CRC or synchronization bits for the fly wheel counter.

3.9 Send Grant

Flow control is provided to the output ports via 16 send grant SND_GRANT pins. Data or control packets are only transmitted on a given output if its SND_GRANT is active high. Otherwise, Idle Packets are transmitted as long as the SND_GRANT is low.

These signals are treated asynchronously to the internal device logic. Therefore, if the transitions on the SND_GRANT pins are not synchronized with the output packet flow, an exact control of the number of data, or control, packets transmitted when SND_GRANT is high cannot be guaranteed. I.E., when SND_GRANT is high for N * LU cycles, N-1 to N+1 data or control packets will be transmitted (if available). Similarly, when SND_GRANT is low for N * LU, N-1 to N+1 Idle Packets will be transmitted.

However, if the SND_GRANT transitions are synchronized with the output packet flow, it is guaranteed that exactly N data or control packets (if available) will be transmitted if SND_GRANT is high for N * LU, and that N Idle Packets will be transmitted when SND_GRANT is low for N * LU. In order to achieve this, the synchronization requirement is that the SND_GRANT signal should be stable at the device pin during its sampling window, defined in relationship with the beginning of the transmission of the corresponding packet on device pins (See IO Timing section).

This SND_GRANT sampling window also defines the latency of the packet transmission to react to the changes of the SND_GRANT signal both when it is asserted or deasserted.

3.10 Receive Filter

The receive grant permits the filtering of incoming packets based on their destination. It prevents the reception of Data Packets by selected outputs. The 16 RCV_GRANT bits act as a filter of the incoming packet bit map:

- When RCV GRANT(i) is high, reception of Data Packets in the output gueue i is enabled,
- When RCV_GRANT(i) is low, no incoming packets are stored in output queue i, regardless of their bit map setting.

For the SND_GRANT, the RCV_GRANT signals are treated asynchronously to the internal logic. However, it is possible to synchronize all 16 RCV_GRANT with the input packet flows in order to guarantee reception, or rejection, of specific packets. To this end, the RCV_GRANT signals have to be stable on the device pins during the sampling window, defined in relationship with the beginning of the reception of the corresponding packet on device pins (See IO Timing section).

It is important to realize that to achieve this synchronization, all input adapters have to transmit packets at the same time, since RCV_GRANT(n) is related to packet reception in output n for packets on all inputs.

The RCV_GRANT function is actually implemented as an extension of the Bit Map Filter on device pins (RCV_GRANT are ANDed with the Bit Map Filter) and therefore has the exact same effect. When using the RCV_GRANT function, the Color mechanism and the Bit Map Filter function should not used:

- Only Data Packets with header Active bit set to '1'b and Backup bit set to '0'b can be transmitted, and
- The Bit Map Filter has to be set to 0x'FFFF'

3.11 Port Disabling

A port (meaning an input port and the corresponding output port) can only be disabled by programming the Port Enable register.

The output queues of disabled ports are flushed (slow flush) at the speed at which Data Packets are transmitted, regardless of the SND GRANT of those outputs.

3.12 Address Manager and Address Corruption

The address manager controls packet addresses by maintaining a pool of free addresses and occupancy counters for each address. It provides the input controllers with addresses from the free address pool. When an address is used, the occupancy counters are initialized to the number of destinations of the corresponding packet. Each time a packet is transmitted, the occupancy counter of its address is decremented by one. Finally, when the counter reaches zero, the address is returned to the free address pool.

Since addresses are continuously used as packets are being received and transmitted, it is important to detect address corruption scenarios. Address corruption can lead not only to corruption of packets, but also to a loss of available addresses, which can decrease performance.

Therefore, two error detection mechanisms are in place to detect corruption:

- Each output queue is protected by parity. When an address is written to an output queue, parity is generated and stored with the address, and it is checked upon reading this location.
- The address manager detects the following error scenarios:
 - A counter is initialized to a value, while it is not zero,
 - An address is freed by an output controller when its counter is zero.

Each of these errors sets the Address Corruption interrupt and, if not masked, the main interrupt is asserted.

3.13 Control Packets

It is possible to address a local processor attached to an PRS28.4G by means of Control Packets. A Control Packet is like a normal Data Packet, except that its memory addresses are stored in a special Control Packet queue.

3.13.1 Control Packet Reception

When a Control Packet is received, it is enqueued into the Control Packet queue if room is available. The Control Packet queue has 16 locations. This allows fairness among all inputs. Indeed, each input can receive a Control Packet at the same time and all packets can be processed.

If the queue is full when a Control Packet arrives, it is discarded. When a Control Packet is accepted, a Control Packet Received interrupt is generated and, if not masked, the main interrupt is asserted. The local processor can then access the Control Packets via the Table Pointer and Data registers and the Memory Address register. The complete Control Packet access is described in *Control Packet Reception and Transmission* on page 92.

Note: The reference of the input port which received the Control Packet, is inserted in the packet.

3.13.2 Control Packet Transmission

The local processor has write access to the entire packet memory. The memory locations with address 0, 1 and 256 are special (see table below). The contents of these rows can be transmitted upon command from the local processor.

Table 11: Shared Memory Reserved Address for Control Packets

External Speed Expansion	Internal Speed Expansion	Packet Size (No. of Bytes)	Shared Memory Reserved Address
0	0	64 to 80	0 and 1
0	1	64 to 80	0 and 256
1	0	64 to 80	0
1	0	128 to 160	0 and 1

3.14 Speed Expansion

The purpose of speed expansion is to increase the physical port speed of a switch. Two methods, external speed expansion and internal speed expansion, are supported. Internal and external speed expansion may not be combined together.

3.14.1 External Speed Expansion

Two devices, one master and one slave, can be used in external speed expansion mode. The master device performs all the address handling. It maintains the output queues and the address manager. These components are idle in the slave device. Packet addresses, used by the inputs, are sent from the master device to the slave device on a special input address bus. The timing in a master device enables master inputs to receive new addresses at the same time as all the slave inputs.

Packet addresses used by the outputs are sent in a similar fashion from the master device to the slave device. The timing in the master device enables a master output to receive a new retrieve address at the same time as the slave output. A master output and the corresponding slave output always start the transmission of a packet simultaneously.

When two devices are in external speed expansion, ports of the same number are grouped together.

3.14.2 Internal Speed Expansion

It is also possible to connect two ports on the same device together in speed expansion. This allows for a 1.77 Gb/s per port 16x16 switch or a 3.54 Gb/s 8x8 switch. The table below shows which inputs and outputs are combined.

Table 12: Port Combinatio	n in Internal	Port Expansion
----------------------------------	---------------	----------------

Internal Speed Expansion Mode (configuration 0 register)	Configuration	Port Speed	Port Combination	
0	16 x 16	1.77 Gb/s	none	
1	8 x 8	3.54 Gb/s	0 and 8, 1 and 9, 7 and 15	

3.14.3 Packet Reception Window for Speed Expansion

Packets belonging to a group of related speed-expanded inputs must arrive within a specific window. The reference point, the input that defines the packet arrival time Ta, is the master in a speed expanded configuration. All other related inputs must receive packets between Ta - 1 byte clock and Ta + 1 byte clock.

3.14.4 Synchronization of Slave Device with Master Device

The master device and the slave device in an external speed expansion configuration must be synchronized. This is done with SEQ_CLK sync pin, which can operate in one of the following modes:

• When the PRS28.4G is configured as a master device in external speed expansion, or in single device operation, the SEQ_CLK pin is programmed as an output. The device generates an internal sync signal that is used for its internal timing. This internal sync signal appears on the SEQ_CLK output.

Note: It is possible to configure the SEQ_CLK of the master as an input and to externally generate this signal. However, this signal must be distributed to the master and the slave synchronously to the device internal byte clocks.

When the PRS28.4G is configured as a slave device in external speed expansion, the SEQ_CLK must be
programmed as input. The sync signal that is used for the internal timing is taken from the SEQ_CLK
sync clock from the master.

Each PRS28.4G contains a sequencer. The SEQ_CLK sync signal is used to synchronize the sequencer in the slave device with the sequencer in the master device. Both the master and slave sequencer are fully synchronized. Therefore the SEQ_CLK is fully synchronous to the device internal logic.

3.14.5 Master Slave Address Communication

Two busses, one for the input section and one for the output section, are used to transfer addresses from the master to the slave:

- Each bus is synchronous with the internal byte clock.
- When external speed expansion is disabled, the busses are tri-state.
- When external speed expansion is enabled, and the device is programmed as a master, the busses are configured as output.
- When external speed expansion is enabled, and the device is programmed as a slave, the busses are configured as input.

- Each bus has a parity signal:
 - When the slave detects a parity error on the input bus, the address is ignored, the packet is not be stored, and an input speed expansion error interrupt is generated.
 - When the slave detects a parity error on the output bus, the address is ignored, the slave transmits Idle Packet LUs, and an output speed expansion error interrupt is generated.

Therefore, the slave does not report parity errors directly to the master, but does interrupt the local processor.

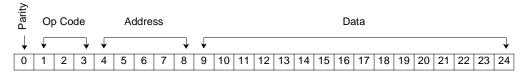
• The maximum external speed expansion factor is two (which logically represents four-way speed expansion). That is, there can be one master and one slave.

Address information is multiplexed on the input section bus and the output section bus, controlled by an internal sequencer. It takes 16 clock cycles to transmit all addresses from all input and output controllers from the master to the slave.

When a parity error is detected on any speed expansion bus, an interrupt is generated by the OCM. (Thus, there is only one interrupt for all speed expansion communication). Such a parity error causes limited data corruption.

4. Programming Interface and Internal Registers

The programming interface is provided by the On Chip Monitor (OCM), a serial interface. The OCM provides access to all internal registers and executes specific commands (such as Flush-Reset, OCD enable, perform Built In Self Test (BIST), release the PLL reset, and scan data into the internal scan chains). The commands executed by the OCM include the reading and writing of the internal registers of the PRS28.4G device.


The OCM internal logic and external interface are synchronized to the External Monitor Bus (EMB) clocks, EMB_A_CLK and EMB_B_CLK. These clocks operate at a frequency no higher than 50% of the system clock frequency.

4.1 OCM Instruction/Status Mode

There are two modes of operation possible in the OCM: instruction/status operation and scan string operation. The mode is determined by the level of the EMB_MODE line, as specified below. When the OCM is in the instruction/status mode then scan operations into or out of the device through the EMB interface involve only those internal latches which represent the OCM instruction register.

4.1.1 OCM Instruction Register

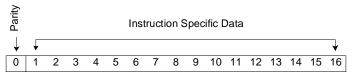
The instruction scanned into the OCM will be decoded into fields as shown in *Address Insertion* on page 35. The Instruction Register is designed to check odd parity for incoming instructions. This odd parity bit is contained in the MSB (bit 0) of the instruction register and is the last bit scanned into the Instruction Register.

4.1.2 OCM Instruction Set

The 3-bit Op Code field of the instruction register is decoded as shown in the list below. The list contains each of eight OCM commands along with its associated opcode, command description, and response. The opcode bits in the following table are listed in order from MSB to LSB. In addition the subsequent decoding of the data field for the EVENT instruction is outlined.

Table 13: OCM Instruction Set Definitions (Page 1 of 2)

Op Code	Command	Command Description
000	NOOP	Execute no operation. The Status Register contents are loaded into the response register when SELECT is deactivated. The response to this command is the current contents of the Status Register. This command differs from the "Read Status" command in that the status bits are not cleared. The values in the 'ADDR' and 'DATA' fields must be set to 0.
001	ECHO	Executes no operation, data in the data field of the instruction word is 'echoed' back into the same bit positions of the response register.
010	WRITE REGISTER	Data contained in the 'DATA' field of the instruction is written into the Application Register specified by the 'ADDR' field of the instruction. The response of this command is the data written by this instruction (the 'DATA' field).


Table 13: OCM Instruction Set Definitions (Page 2 of 2)

Op Code	Command	Command Description
011	READ REGISTER	16-bits of data from the Application Register specified by the 'ADDR' field of the instruction are loaded into the response register. The response to this command is the data read from the specified Application Register.
100	EVENT	This instruction provides control of four functions: Start of the internal clock logic. Initialization of Built In Self Test (BIST). Bypass of the internal scan chain when the a scan operation is performed via the OCM. Control of clock (stop, run). The response to this instruction is 'DATA' field. 'ADDR' Field Bit Function 0 to 4: Reserved. 'DATA' Field Bit Function 0 to 2: Reserved 3: Start BIST: A '1'b in this position causes the BIST to start. Returns programmed value in response. If this bit is set to '1'b all other bits within this command are ignored. When this bit is set, bit 4 also has to be programmed. 4: Scan/BIST Select: ' (With bit 3 set to '0'b.) When set to '1'b the internal scan string receives scan data. Scan mode must be entered immediately after this command. When set to '0'b the scan data passes through the one bit scan bypass register. Returns programmed value in response. ' (With bit 3 set to '1'b.) When set to '0'b for Default BIST. When set to '1'b runs the User Controlled BIST. 5: Clock Start: When this bit is set to '1'b, the internal clock logic is enabled. When using the internal PLL, the PLL Register must be programmed before sending the Clock Start Event, in order to enable the PLL. Once the Clock Start Event is sent, the PLL Reset is released, and the 400 MHz logic reset is triggered, followed by flush reset of the entire core logic. See the Chapter on Reset for details. When using an external PLL, the PLL Register should not be programmed, and the Clock Start Event is sent, the 400 MHz logic reset is triggered, followed by flush reset of the entire core logic. See the Chapter on Reset for details. Returns programmed value in response. 6: CLKCTL2 (Clk control bit 0): Reserved - always set to '0'b. 7: CLKCTL2 (Clk control bit 0): Reserved - always set to '0'b. 7: CLKCTL2 (Clk control bit 1): When set to '1'b, causes the internal 100 MHz clock to stop. When set to '0'b, allows the internal 100 Mhz to run freely. Returns programmed value in response.
101	RESET	This command initiates a Flush Reset of the entire core logic, not including the OCM, Clock generation, Reset and BIST island. The values in the 'ADDR' and 'DATA' fields are ignored. This command does not have a "response". It must be followed by an 'ECHO' command.
110	READ STATUS	This command allows the reading of the internal Status Register. The Status Register content is loaded into the response register when SELECT is deactivated. The response to this command is the current contents of the Status Register. The Status Register is cleared after its contents are loaded into the response register. The values in the 'ADDR' and 'DATA' fields are ignored.
111	OCD ENABLE/ DISABLE	This command is used to enable and disable the functional drivers. The enable signal generated by this command is logically ANDed with all of the functional driver enables except B_CLK_OUT, C_CLK_OUT, PLL_LOCK, PLL_TESTOUT, SCAN_OUT, TDO. The 'ADDR' field bits are reserved. All of the 'DATA' field bits are reserved except 'DATA' bit 15. This bit is the enable bit. When set to '1'b the PRS28.4G drivers are enabled, and when set to '0'b the PRS28.4G drivers are set to a high impedance state. The 'DATA' field is returned in the response.

4.1.3 OCM Response Register

The OCM Response Register is a 17 bit register. The Response Register is physically the same register as the Instruction Register, except that the Response Register uses only the 17 least significant bits of the Instruction Register. Each OCM instruction causes the Response Register(1:16) to be loaded with 16 bits of instruction specific data. The Response register logic generates odd parity over the 16 bits of instruction specific data and loads this into Response Register(0).

The Response Register is shifted out the EMB_DATA_OUT pin during the following instruction operation, beginning with bit 16 (LSB).

4.1.4 OCM Error Checking

OCM error checking consists of one bit of parity protection for each instruction scanned into the Instruction Register. If a parity error is detected on a received instruction, the execution of that instruction is inhibited and bit 0 is set in the Status Register. The Response Register is not loaded when a parity error is detected in the Instruction Register.

The number of bits in the instruction protected by the parity bit depends on the contents of the Op Code field of the Instruction Register. When the number of instruction bits protected by the parity bit is less than 24, the bits protected by the parity bit are always the most significant bits. The table below shows the number of instruction bits protected by the parity bits given the Op Code.

Table 14: Number of Instruction Bits Protected by Parity Bit

Op Code	Number of Bits Protected
NOOP	16
ECHO	24
WRITE REGISTER	24
READ REGISTER	8
EVENT	24
RESET	8
READ STATUS	8
OCD ENABLE/DISABLE	24

Note that only the number of protected bits has to be shifted into the Instruction Register. This mean, for instance, that a Read command will shift 8 bits, and the response is shifted out by a NOOP command that takes 16 bits.

4.1.5 Operational Protocol

OCM Instruction operations are invoked when the EMB_MODE input is `0' and the EMB_SELECT input is `0'. Data transferred over EMB_DATA_IN is shifted into the OCM instruction register. Serial data shifted in must begin with the least significant bit of the instruction and end with the most significant bit of the instruction to be executed. This scan operation is synchronized with the EMB CLOCK lines. Instructions always execute one cycle after the EMB_SELECT changes from an active to an inactive state. "OCM Instruction Mode Sequence," table describes the sequence of events required to load and execute an OCM instruction.

When configured in a daisy chain (ring) structure, targeted OCMs (that is those with no instruction to execute) must be loaded with NOOP instructions.

Table 15: OCM Instruction Mode Sequence

Controller Action	OCM Action/Response
Set EMB_MODE = 0; EMB_SELECT = 0 (Active)	Instruction/status operation specified
Serially shift instructions to all OCMs - NOOPs must be loaded into all non-targeted OCMs	As instructions are serially shifted in through the EMB_DATA_IN pin. The response word (that is, the results of the previous instruction) is shifted out through the EMB_DATA_OUT pin.
Set EMB_SELECT = 1 (Inactive)	Instruction shifted mode is terminated and the currently load instruction is executed. The contents of the OCM response register are instruction dependent. Refer to "OCM Instruction Set definition" table for a description of the individual instructions and a definition of the response register contents following instruction execution.

4.2 OCM Scan Mode

Note: This mode is for system bring-up only.

4.2.1 Operational Protocol

Before a scan operation can occur, the system clock must be stopped and a scan string must be selected using the OCM EVENT command. The clocks can be stopped and a scan string selected by issuing either one or two EVENT instruction. Or, two separate EVENT instructions can be issued.

Scan operations are invoked when the EMB_MODE input is `1'b and the EMB_SELECT input is `0'b. Data transferred over EMB DATA IN is serially shifted into the selected scan string. The logic values located within the scan string are serially shifted out of the scan string over the EMB_DATA_OUT primary output. One bit of data is shifted with each EMB A/B clock sequence.

The table below is a summary of the sequence of operations required to perform a scan write operation to an OCM in a ring structure.

Table 16: OCM Scan Mode Sequence

Controller Action	OCM Action/Response
Send EVENT instructions to all OCMs to stop system clocks (if needed) and select one of two scan strings.	The OCMs will execute the EVENT instruction. The system clock control command will be executed first, and then the selected scan string will be placed between EMB_DATA_IN and EMB_DATA_OUT.
Set EMB_MODE = 1; EMB_SELECT = 0 (Active).	

Table 16:	OCM	Scan	Mode	Sequ	ence
-----------	-----	------	------	------	------

Controller Action	OCM Action/Response
Write scan data to OCMs. One bit of scan data must be sent for each latch in the selected scan chains.	OCMs receive data from EMB_DATA_IN which is shifted into the selected scan string. Old scan data shifts out of the EMB_DATA_OUT.
Set EMB_SELECT = 1 (Inactive).	Scan operation ends. Targeted OCM maintains EVENT instruction in the instruction register.

4.2.2 Scan String Access from OCM

The scan chain that is accessible via the OCM is all internal latches, except the boundary latches. The boundary latch scan chain is only accessible via the JTAG interface. Also, the bypass latch is selectable for OCM scan mode.

The Internal Scan String is used to access the internal latches (including GRAs) except the Boundary latches, the OCM logic block latches, the IEEE 1149.1 logic block latches, and the Clock, BIST, Reset logic block latches.

The Bypass Scan String contains a single bit latch. This scan string is selected when multiple PRS28.4G devices are connected in a "ring-bus" configuration. By selecting the Bypass Scan String, scan data can move quickly to another PRS28.4G device.

4.3 Built In Self Test (BIST)

The Built In Self Test (BIST) function is a means of testing the internal logic of the device via the OCM. BIST is initiated by issuing an OCM EVENT command.

BIST is accomplished with a BIST state machine which interfaces with the Pseudo-Random Pattern Generator (PRPG), the Multiple Input Signature Register (MISR), clock control logic, and the flush reset function.

4.3.1 Pseudo-Random Pattern Generator (PRPG)

The on-chip PRPG is based on a Linear Feedback Shift Register which has a characteristic length of 32 bits. This size was chosen to support up to sixteen scan chains where each scan chain was subdivided into two separate chains during BIST. This subdividing of scan chains reduces the total length of the chain and hence the scan time required to load and unload the random patterns during the BIST operation. The characteristic polynomial implemented in the PRS28.4G PRPG:

$$X^{32} + X^{31} + X^{30} + X^{10} + 1$$

4.3.2 Multiple Input Signature Register (MISR)

Like the PRPG, the MISR is based on a Linear Feedback Shift register with the characteristic length of 32. The characteristic polynomial is identical to that used in the PRPG. It also is implemented using scan-only latches and XOR logic to generate the feedback terms. Each MISR bit input, scan chain output, is XORed with the previous bit of the MISR to produce a compressed MISR value.

4.3.3 BIST Execution

Built In Self Test (BIST) is initiated via an OCM EVENT command. The system clocks do not need to be stopped via an OCM EVENT clock control command before BIST is initiated. Two types of BIST may be executed. An "Auto BIST" which is performed completely by an internal state machine, or a "User Defined BIST" which lets the user program the BIST cycle count, PRPG seed, and MISR seed.

4.3.3.1 Default BIST

Once Default BIST is initiated the following events occur automatically:

- 1. The BIST ACTIVE bit in the Status Register is asserted ('1'b).
- 2. The primary inputs are forced to a known value and the primary outputs are placed in a high impedance state (I/O isolation).
- 3. A Flush Reset occurs. This places the device into a known state.
- 4. The BIST Cycle Count, PRPG and MISR registers are initialized to a known value (starting seeds).
- 5. BIST is performed.
- 6. A second Flush Reset occurs.
- 7. The BIST ACTIVE bit in the Status Register is deasserted ('0'b).

During BIST, the OCM READ STATUS command should be used to read the Status Register. If the BIST or Reset active bit is active ('1'b), the other status bits as well as the parity bit are invalid and should be ignored. Once BIST is complete, the BIST or Reset Active bit will be inactive '0'b. An interrupt will not occur. Therefore, the BIST or Reset active bit must be polled using the OCM READ STATUS command to determine when BIST is complete. While BIST is running, the OCM READ STATUS command will not clear the Status Register. This prevents the BIST signature from being corrupted.

After BIST is completed, the MISR value can be accessed via the Application Registers.

The Default BIST execution time is 4.165 sec (cycle time of 10 ns). This represents a total of 83264 BIST cycles.

4.3.3.2 User Defined BIST

The BIST Cycle Count register is a count down counter with a completion value of 0. To perform one cycle of BIST, load the BIST Cycle Count register with a (typical) value of 30 or 100. Before User Defined BIST is initiated the following events must occur:

1. The BIST Cycle Count, PRPG, and MISR registers must be set to a starting value via the Application Registers 30 and 31.

The User Defined BIST is initiated via an OCM EVENT command. Once User Defined BIST is initiated, the following events occur automatically:

- 2. The BIST ACTIVE bit in the Status Register is asserted ('1'b).
- 3. The primary inputs are isolated from the core logic and the primary outputs are placed in a high impedance state (I/O isolation).
- 4. A Flush Reset occurs, placing the device into a known state.
- 5. BIST is performed using the user defined values in the BIST Cycle Count, PRPG, and MISR registers.

- 6. A second Flush Reset occurs.
- 7. The BIST ACTIVE bit in the Status Register is deasserted ('0'b).

During BIST the OCM READ STATUS command should be used to read the Status Register. If the BIST or Reset active bit is active ('1'b), the other status bits as well as the parity bit are invalid and should be ignored. Once BIST is complete the BIST or Reset Active bit will be inactive ('0'b). An interrupt will not occur. Therefore, the BIST or Reset active bit must be polled using the OCM READ STATUS command to determine when BIST is complete. While BIST is running, the OCM READ STATUS command will not clear the Status Register. This prevents the BIST signature from being corrupted.

After BIST is completed, the MISR value can be accessed via the Application Registers.

The User BIST execution time is 30040 ns + (BIST Cycle Count value) X 50020 ns (for clock cycle of 10 ns).

The User Defined BIST was run against the final chip net list in simulation. The initial and final register values were:

Table 17: Simulated BIST Signatures

Initial BCCOUNT	Initial PRPG	Initial MISR	Final PRPG	Final MISR (signature)
Default Bist			0x"F880 CFAD"	0x"3215 7C0A"
User Bist: 30	0x"122 3344"	0x"556 67788"	0x"1A98 29ED"	0x"F49F 1415"
User Bist: 100	0x"5555 5555"	0x"CCCC CCCC"	0x"F8FE DD72"	0x"24A2 3D63"

5. Internal Registers

5.1 Status Register

The Status Register is accessed when an OCM READ STATUS or NOOP command is performed. It is not mapped into the OCM address space.

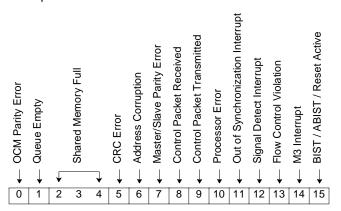


Table 18: Status Register Bit Definitions (Page 1 of 2)

Bits	Maskable	Description	
0	Y	OCM Parity Error. Set to '1'b when the OCM detects a parity error in the instruction.	
1	Y	Queue Empty. Set by an edge detection of all output queues being empty.	
2 - 4	Y	Shared Memory Full. Indicates which priority the total number of packets in shared memory has crossed the threshold value: 000: None 100: Priority 3 full 101: Priorities 2 and 3 full 110: Priorities 1, 2 and 3 full 111: Priorities 0, 1, 2 and 3 full others: Reserved Note: This is an event (not a status) which occurs when the threshold is exceeded, and therefore it does not indicate when the shared memory goes below the threshold.	
5	Y	CRC Error . Set every time a data error is detected on one input port, either in the packet header parity or in the trailer CRC. The ports are identified via the Input CRC Port ID register. The number of CRC errors for all ports is reported via the Input CRC Error Counter.	
6	Y	Address Corruption. Set every time an address corruption is detected. When an address is corrupted, one or more addresses are actually lost from the address space available to store packets.	
7	Y	Master/Slave Parity Error. Set when a parity error has been detected on an input address, output address, or DASL sync bus between master and slave devices.	
8	Y	Control Packet Received. Set whenever a new Control Packet is received. The number of received control packets left to be read by the local processor is given via the Control Packet Counter.	
9	Y	Control Packet Transmitted. Set when a Control Packet has been successfully transmitted.	

Internal Registers prs28.04.fm
Page 54 of 131 February 6, 2001

Table 18: Status Register Bit Definitions (Page 2 of 2)

Bits	Maskable	Description		
10	Y	 Processor Error: Interrupt generated when the local processor initiates a new command or operation while the chip internal logic is not ready. This interrupt can be generated in four different situations: Row Read Error. Generated when the local processor has issued a Memory Row Read command, and tries to actually read the Memory Row Register when the new row value is not available yet. Row Write Error. Generated when the local processor tries to write to the Memory Row Register just after a Memory Row Write command, and the data in the row register has not be written to memory yet. The Memory Row register is not overwritten by the new value when this interrupt is generated. Transmit Error. Generated when the local processor initiates a Control Packet Transmit command while Memory Row Register has not been written to the shared memory yet. Address Write Error. Generated when the Memory Row Address register is written to after a Memory Row Write command, and the memory data has not been written yet. The Address value is not overwritten by the new value when this interrupt is generated. 		
11	Υ	Out of Synchronization Interrupt, due to 8 CRC errors received in row or 8 parity bit errors received in row.		
12	Y	Signal Detect Interrupt . Interrupt generated whenever a bit in the Signal Detect register changes, either from high to low, or from low to high.		
13	Y	Flow Control Violation. Interrupt generated whenever a packet is received on an input port while no store addresses are available. Also, if the Flow Control Check Enable is set in the Mode Register, this interrupt is generated when a packet is destined to outputs for which no grant has been given in the past 8 packet cycles (see description of the Flow Control Check Enable bit). The ports are identified via the Flow Control Violation Port ID register.		
14	Y	M3 Interrupt: When set to '1'b, it indicates that the internal picoprocessor (M3) has generated an interrupt.		
15	N	BIST / ABIST / Reset Active: Set to '1'b when either BIST, ABIST or Flush Reset is executing. All other bits as well as the OCM parity bit within this register are invalid when this bit is set to '1'b. This bit automatically resets itself when BIST, ABIST, or Flush Reset is completed. This bit does not generate an interrupt.		

A "Y" in the maskable column indicates that a particular event can be masked out by setting the appropriate bit in the Mask Register. When the mask bit is enabled, these events will set the appropriate bit in the status register but will not result in the activation of the EMB_SIGNAL_OUT (if enabled), which is used as an interrupt to the microprocessor.

Bit 15 is a status bit and does not reflect the occurrence of an event. It is not maskable.

For an interrupt to occur (EMB_SIGNAL_OUT set to '0'b), the status bit must not be masked (if maskable) and the EMB_SIGNAL_OUT primary output must be enabled via the Mode Register. After a power on reset occurs, none of the mask bits are set, and the EMB_SIGNAL_OUT primary output is disabled. It is enabled after an OCM OCD Enable command.

5.2 Application Register Definitions

The 32 Internal Application Registers provide the means to configure the device and report status information.

All non-reserved bits in the Application Registers reset to zero during a flush reset operation, unless otherwise specified. All reserved bits are set to '0'b. When a register containing reserved bits is written, '0'b must be written to the reserved bit positions.

Table 19: Application Register List

Register Address (dec)	Register Address (hex)	Access	Functional Description
0	0	R/W	Mode Register
1	1	R/W	Configuration Register 0
2	2	R/W	Configuration Register 1
3	3	R/W	Port Enable Register
4	4	R/W	Output Queue Threshold Register
5	5	R/W	Shared Memory Threshold Register 0: priority 0 and 1
6	6	R/W	Shared Memory Threshold Register 1: priority 2 and 3
7	7	R/W	Mask Register
8	8	R/W	Synchronization Status and Hunt Register
9	9	R/W	Sync Packet Transmit Register
10	A	R	CRC Port ID Register
11	В	R	CRC Error Counter Register
12	С	R	NoSignal Register
13	D	R	Flow Control Violation Port ID Register
14	Е	R	Miscellaneous Status Register
15	F	-	Reserved.
16	10	R	Output Queue Status Register 0
17	11	R	Output Queue Status Register 1
18	12	R	Output Queue Status Register 2
19	13	R	Output Queue Status Register 3
20	14	R/W	Table Pointer Register
21	15	R/W	Table Data Register
22	16	R/W	Memory Row Address Register
23	17	R/W	Command Register
24	18	R/W	Control Packet Destination Register
25	19	R/W	Bit Map Filter Register
26	1A	R	Yellow Idle Packet Received Register
27	1B	R/W	PLL Configuration Register
28	1C	R/W	Processor Address Register
29	1D	R/W	Processor Data Register
30	1E	R/W	BIST Data Register
31	1F	R/W	BIST Control Register

5.2.1 Indirect Access of Memory Data and Look-Up Table

5.2.1.1 Shared Memory Access

The internal shared packet memory can be accessed (for testing or to receive/transmit Control Packets) via the Memory Row Data Register, an internal 20-byte register. This register, together with the Memory Row Address Register and specific Row Read and Write commands in the Command Register, allow reading and writing of any location in the shared memory.

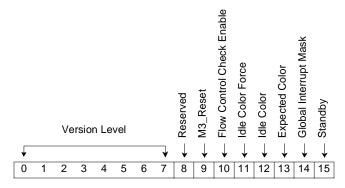
To Write to a Specific Row in the Shared Memory:

- 1. Specify the row address and select the bank (master or slave) in the Memory Row Address Register.
- 2. Build the data to be written in the Memory Row Data register via the Table Pointer and Table Data registers.
 - a. Set the Table Pointer register to '0'b
 - b. Write two data bytes to the Table Data register. After each write, the Table Pointer register is automatically incremented by two.
 - c. Repeat (b) until the desired row is built.
- 3. Trigger a Row Write Command via the Command Register.

To Read a Specific Row from the Shared Memory:

- 1. Specify the row address and select the bank (master or slave) in the Memory Row Address Register.
- 2. Trigger a Row Read Command via the Command Register.
- 3. Read the data from the Memory Row Data register via the Table Pointer and Table Data registers. Note that if the processor tries to read the Memory Row Data register before the data is available, a Processor Error interrupt will be asserted. To read the Memory Row Data register:
 - a. Set the Table Pointer register to '0'b.
 - b. Read two data bytes to the Table Data register. After each read, the Table Pointer register is automatically incremented by two.
 - c. Repeat (b) until the desired row is read.

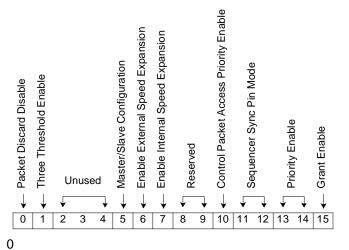
5.2.1.2 Look-Up Table Access


The lookup tables are accessed via the Table Pointer and Data registers in the same manner as the Memory Row Data register (see the two subsections above). Use the Table Select bit of the Table Pointer register to select between the Look-Up tables and the Memory Row Data Register.

5.2.2 Register Formats

The following section describes each of the individual application registers accessible through the OCM interface. These registers are used to provide initialization, programmability and status monitoring of the device. Upon a reset, all application registers are initialized to '0', except as noted in the individual register descriptions.

5.2.3 Mode Register


Reset Value '0000000101000001'b

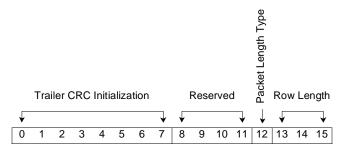
OCM Address 0

Bits	Description
0 - 7	Version Level = 1 - Read only. Returns chip version level when read.
8	Reserved.
9	M3_Reset . When set, the internal pico-processor is forced to reset state. This bit has to be kept asserted until the instruction memory is fully programmed.
10	Flow Control Check Enable. When set, flow control is checked by the input controllers. If a received packet is destined to an output for which no grant has been given in the past 8 packet cycles, a Flow Control Violation interrupt is asserted. (Note that this is not the only condition for which the Flow Control Violation is set). The packet is discarded. This delayed output queue grant bit map guarantees that a round trip delay of the in-band grant information from 0 to 8 packet cycles will not cause Flow Control Error.
11	Idle Color Force. When set, all Idle Packets will be transmitted with the color specified by the Idle Color bit, regardless of the Expected Color setting. When the color mechanism is not used, this bit must be set to '1'.
12	Idle Color. Specifies the color to give to all Idle Packets, when the Idle Color Force is set:0: Blue Idle Packets1: Red Idle Packets
13	Expected Color. Specifies the expected color of incoming packets after a Color Clear Command is initiated: 0: Blue packets 1: Red packets
14	Global Interrupt Mask . When asserted, no interrupt is generated to the local processor. The chip interrupt pin (active low) is tri-stated and is pulled-up externally. However, the status register bits are still asserted whenever the corresponding event or error occurs.
15	Standby . When high, the application registers can be programmed, while chip functional units are reset. This mode is entered automatically after reset. Can only be set by forcing a Flush Reset.

5.2.4 Configuration Register 0

Reset Value

OCM Address 1


Bits	Description
0	Header parity error Packet Discard Disable . When this bit is set to '1'b, incoming packets with invalid header parity are not discarded by the input controllers, and are received as normal packets. Also, when a CRC error is detected, a CRC interrupt is raised, and the CRC counter is incremented. Note that this bit should only be used in system bring-up. It also disables the interrupt reporting due to 8 consecutive CRC/parity errors.
1	Three Threshold Enable. When this bit is set to '1'b, the in-band output queue grant information (transmitted in the outgoing packets) is only passed for priorities 0, 1 and 2. This means that after grants of priority 2 have been transmitted, the grants for priority 0 are transmitted in the next packet. This allow a reduction of the update time of the output queue grant information with four priorities. Also, when this bit is set, the output queue thresholds for priority 2 and 3 have to be set equal, as well for the shared memory thresholds for priority 2 and 3. When set to '0'b, grants for all 4 priorities are transmitted.
2	Not used. Must be set to '0'b
3	Not used. Must be set to '1'b.
4	Not used. Must be set to '1'b.
5	Speed Expansion Master/Slave Configuration. 0: Slave 1: Master
6	Enable External Speed Expansion. Enables 2-way external speed expansion. This configuration bit has to be specified for both master and slave devices. Bits 6 and 7 are exclusive.
7	Enable Internal Speed Expansion. This bit enables 2-way internal speed expansion. Bits 6 and 7 are exclusive.
8 - 9	Reserved.

Bits	Description		
10	Control Packet Access Priority Enable. Guarantees access time to the shared memory by the local processor for read and write accesses. When set, a shared memory access by the local processor is performed within a maximum of three LU time units after the command has been issued. It only has to be set for LU length of 16 or 32 bytes. For other LU lengths, the sequencer operation guarantees local processor access time to the shared memory independently of the setting of this bit.		
11 - 12	Sequencer Sync Pin Mode. Specifies the operation of the SEQ_SYNC pin. Oo: SEQ_SYNC is tri-stated, and the chip sequencer runs on its own O1: SEQ_SYNC is an output signal generated by the internal sequencer, which is running on its own 10: SEQ_SYNC is an input signal on which the internal sequencer synchronizes 11: Reserved.		
13 - 14	Priority Enable. Controls the cycling process of Output Queue Grant information to the attached adapter. 00: Priority 0 only enabled 01: Priority 0 and 1 enabled 10: Priority 0, 1 and 2 enabled 11: Priority 0, 1, 2 and 3 enabled		
15	Grant Enable . When is asserted, the insertion of the output queue grant in the outgoing packet header byte is performed. When deasserted, output queue grant is not inserted, and the received header is transmitted unchanged.		

5.2.5 Configuration Register 1

Reset Value 0

OCM Address 2

Bits	Description
0 - 7	Trailer CRC Initialization. Specifies the initialization value to be used for the 8-bit Idle Packet trailer CRC check. LU LengthCRC Init Register in Hex 16 'D0' 17 'DD' 18 '04' 19 'FA' 20 '07' 32 '9B' 34 '67' 36 '2E' 38 '61' 40 '5A'
8 - 11	Reserved.
12	 Packet Length Type. Specifies two packet length ranges, standard (64 to 80 bytes) and extended (128 to 160 bytes). 0: Packet length = 4 x Row Length. 1: Packet length (extended) = 8 x Row Length. The extended packet length type (128 to 160 bytes) is only allowed with external speed expansion.
13 - 15	Row Length. Provides the length of a row in the shared memory, in data word size. 000: 16 words 001: 17 words 010: 18 words 011: 19 words 100: 20 words others: Reserved

5.2.6 Port Enable Register

Reset Value 0

OCM Address 3

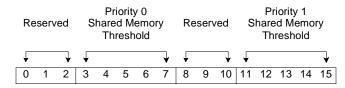
Bits	Description		
0 - 15	Port Enable. When set to 1, the corresponding input and output ports are enabled and packets can be received and transmitted after DASL synchronization. When set to 0, the port is disabled and no packet transits on that port. Bit n of the register corresponds to port n. If any packets are enqueued for a disabled output, they are flushed. The DASL lines of a port that is disabled are tri-stated. When the port is disabled the M3 doesn't perform dynamic phase alignment for temperature.		

5.2.7 Output Queue Threshold Register

The Output Queue Threshold register is composed of four 4-bit fields. Each field specifies the threshold value of a given priority for all output queues. These values have a range of 0 to 240, with a granularity of 16.

When the number of packets in a queue \geq the threshold value of a given priority, the corresponding output queue grant is low ('0'b).

Reset Value 0

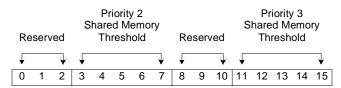

OCM Address 4

Bits	Description
0 - 3	Output Queue Threshold for priority 0.
4 - 7	Output Queue Threshold for priority 1.
8 - 11	Output Queue Threshold for priority 2.
12 - 15	Output Queue Threshold for priority 3.

5.2.8 Shared Memory Threshold Register 0

Shared Memory Threshold Register 0 provides the thresholds for priorities 0 and 1 in two 5-bit fields, and Register 1 provides for priorities 2 and 3. These values have a range of 0 to 496, with steps of 16. When the number of packets in shared memory becomes ≥ the threshold value of a given priority, the corresponding memory grant is low ('0'b). Otherwise, the memory grant bit is high ('1'b).

Reset Value 0

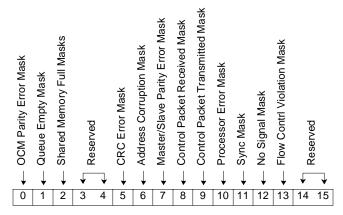

OCM Address 5

Bits	Description
0 - 2	Reserved.
3 - 7	Shared Memory Threshold for priority 0.
8 - 10	Reserved.
11 - 15	Shared Memory Threshold for priority 1.

5.2.9 Shared Memory Threshold Register 1

Shared Memory Threshold Register 1 provides the thresholds for priorities 2 and 3, in two 5-bit fields. These values have a range of 0 to 496, with steps of 16. When the number of packets in shared memory becomes ≥ the threshold value of a given priority, the corresponding memory grant is low ('0'b). Otherwise, the memory grant bit is high ('1'b).

Reset Value 0

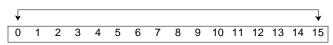

OCM Address 6

Bits	Description
0 - 2	Reserved.
3 - 7	Shared Memory Threshold for priority 2.
8 - 10	Reserved.
11 - 15	Shared Memory Threshold for priority 3.

5.2.10 Mask Register

This register sets masks for the Application Status register bits. When a mask bit is set, the corresponding status bit is still asserted whenever an event is detected. However, no interrupt is generated.

Reset Value 0

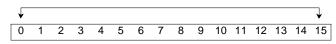

OCM Address 7

Bits	Description
0	OCM Parity Error Mask.
1	Queue Empty Mask.
2	Shared Memory Full Masks.
3 - 4	Reserved.
5	CRC Error Mask.
6	Address Corruption Mask.
7	Master/Slave Parity Error Mask.
8	Control Packet Received Mask.
9	Control Packet Transmitted Mask.
10	Processor Error Mask.
11	Sync Mask.
12	NoSignal Mask.
13	Flow Control Violation Mask.
14 - 15	Reserved.

5.2.11 Synchronization Status and Hunt Register

Synchronization

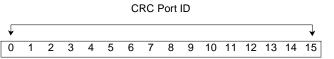
Reset Value 0


OCM Address 8

Bits	Description
0 - 15	Synchronization (Sync). This register carries two types of information depending on the access mode. On read, it provides the DASL synchronization status. On write, it allows software to force the DASL to resynchronize. When this register is read, it indicates the DASL sync status of each port: '0'b: No sync, slow flush is activated '1'b: Port synchronized. When written to, the input ports for which the bits are set to '1'b resynchronize (hunt). No action is taken for bits equal to '0'b. Note that a Sync Hunt will cause the corresponding Sync Status bit to change to '0'b.
	Bit n of the register corresponds to port n.

5.2.12 Sync Packet Transmit Register

Sync Packet Transmit


Reset Value 0

OCM Address 9

Bits	Description
0 - 15	Sync Packet Transmit. Specifies which output ports are to transmit Sync Packets. Bit n of the register corresponds to port n. When Sync packets are transmitted on an output port, the corresponding output queue is flushed (slow flush) at the speed at which Data Packets are transmitted, regardless of the SND_GRANT value. The input ports do not discard packets for that output, and the output queue grants are still generated by comparing the level to occupancy of the queue with the threshold values.

5.2.13 CRC Port ID Register

Reset Value 0

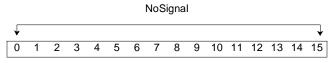
OCM Address A'x'

Access Type Read only

Bits	Description
() - 15	CRC Port ID. Indicates which port has generated a CRC error. This register is cleared on read. Bit n of the register corresponds to input port n.

5.2.14 CRC Error Counter

Reset Value 0


OCM Address B'x'

Access Type Read Only

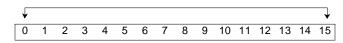
Bits	Description
0 - 7	Reserved.
8 - 15	CRC Error Counter . Provides the total number of CRC errors for all ports since the last read. This counter freezes once it reaches xFF, and is cleared when read.

5.2.15 NoSignal Register

Reset Value 0

OCM Address C'x'

Access Type Read only

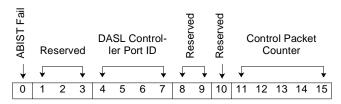

Bits	Description
0 - 15	NoSignal:Indicates, for each port, if an electrical signal is detected on all DASL lines of the port: '1'b: Indicates that no signal is detected on at least one DASL line of the port. In this case, the output queue grants (of all priorities) of that port are forced to '1'b, no data is transmitted on the corresponding output port, and the output queue corresponding to that port is flushed (slow flush). '0'b: Signal detected on all lines of the port, or port is disabled (Port Enable (n)=0). The NoSignal condition is detected whenever a positive (Q) input of a DASL receiver is high impedance. Bit n of the register corresponds to port n. Any change in any of those bits generates a NoSignal interrupt.

5.2.16 Flow Control Violation Port ID Register

0

Flow Control Violation

Reset Value


OCM Address D'x'

Access Type Read only

Bits	Description
0 - 15	Flow Control Violation . Indicates which port has generated a Flow Control Violation Interrupt. This register is cleared on read. Bit n of the register corresponds to port n.

5.2.17 Miscellaneous Status Register

Reset Value 0

OCM Address E'x'

Access Type Read Only

Bits	Description
0	ABIST Fail. Indicates that, after completion of the ABIST process, at least one ABIST check failed on one RAM.
1 - 3	Reserved.
4 - 7	DASL Controller Port ID . Identifies the port currently processed by the DASL shared controller. Number from 0 to 15.
8 - 9	Reserved.
10	Reserved.
11 - 15	Control Packet Counter. Specifies the number of control packet currently in the Control Packet Receive Queue. Possible values range from 0 to 16.

5.2.18 Output Queue Status Registers 0-3

These four registers provide the output queue empty status, as well as the priority full status. Each register provides the status bits for four output queues, as indicated in the OCM address listing below.

If an output queue is empty while some of its priorities are declared full (this is the case of a threshold being programmed at 0), the status register reports that the queue is indeed empty. The full information is only available if the queue is non-empty.

Reset Value '1111'b

OCM Address Output Queue Status Register 0: 10'x'

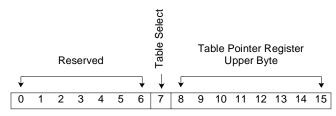
Output Queue Status Register 1: 11'x'
Output Queue Status Register 2: 12'x'
Output Queue Status Register 3: 13'x'

Access Type Read Only

Bits	Description
0	Reserved.
1 - 3	Status for output queue 4*N. Encoded as follows: 000: none (not empty, not full for any priority) 001: empty 100: priority 3 full 101: priority 2 and 3 full 110: priority 1, 2 and 3 full 111: priority 0, 1, 2 and 3 full others: reserved
4	Reserved.
5 - 7	Status for output queue 4*N + 1. See bits 1-3 for coding.
8	Reserved.
9 - 11	Status for output queue 4*N + 2. See bits 1-3 for coding.
12	Reserved.
13 - 15	Status for output queue 4*N + 3. See bits 1-3 for coding.

5.2.19 Look-Up Tables and Memory Row

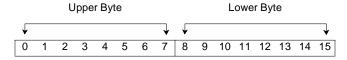
The Table Pointer and Table Data Registers (the two registers described next) work in combination to access the Look-Up Table or the Memory Row. The lower byte of the Table Pointer Register is set to '0' (for Memory Row) or '1' (for Look-Up Table).


A Look-Up Table is a 16-entry table that allows the first 16 bytes of each data row of a byte stream to be arranged before transmission. There are two Look-Up Tables; one for the master stream and one for the slave stream. For each table, entry at location *A* of the lookup table points to the data byte to be sent as the *A*th byte in the same data stream. A Look-Up Table is accessed by first setting the Table Select Bit (bit 7) in the Table Pointer register to '1', then performing a Table Data register access. Note that the Table Pointer register is auto incremented by two after every read or write operation to the Table Data register. The Look-Up Table reset values are the normal byte order, from 0 to 15 (no rearranging).

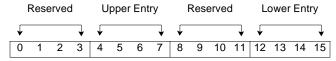
This register is a direct mapping of one shared memory row/location, specified by the Memory Row Address Register. It is a 20 byte wide register. Because it is the address of the ROW (16 bits) and the address of a byte in a row which is 4 which makes it a total of 20. Read/write to this register is performed by first setting the Table Select Bit (bit 7) in the Table Pointer Register to '0', then performing a Table Data Register access. Note that the Table Pointer register is auto incremented by two after every read or write operation to the Table Data register.

5.2.20 Table Pointer Register

Reset Value 0


OCM Address 14'x'

Bits	Description
Upper Byte	
0 - 6	Reserved.
7	Table Select. Specifies the type of table, either Memory Row or Look-Up Table, to access: 0: Memory Row access 1: Look-Up Table access
Lower Byte, with Table Se	lect = 0 (Memory Row Access)
8 - 10	Reserved.
11 - 15	Byte Pointer. Specifies the byte index of the Table Data register Upper Byte in the Memory Row Register. The value range of this bit is 0 to 18. Since the Table Data register returns two bytes, only even values of the Byte Pointer are allowed. The value of this register is auto incremented by two after every access (read or write) to the Table Data Register when Table Select = '0'b. Bit 15 is always forced to 0.
Lower Byte, with Table Se	lect = 1 (Look-Up Table Access)
8 to 10	Reserved.
11	Master/Slave Select. Identifies the Look-Up Table. When '0'b, the master lookup table is selected. When '1'b, the slave lookup table is selected.
12 to 15	Look-Up Table Pointer. Specifies the byte index of the Table Data register Upper Byte in the Look-Up Table. The value range for these bits is 0 to 14. Since the Table Data register returns two bytes, only even value of the Byte Pointer are allowed. The value of this register is auto incremented by two after every access (read or write) to the Table Data Register when Table Select = '0'b. Bit 15 is always forced to 0.



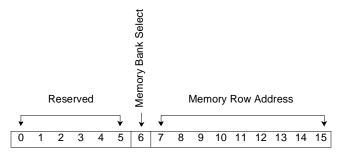
5.2.21 Table Data Register

5.2.21.1 Table Select = '0'b (Memory Row Data)

5.2.21.2 Table Select = '1'b (Look-Up Table)

Reset Value 0

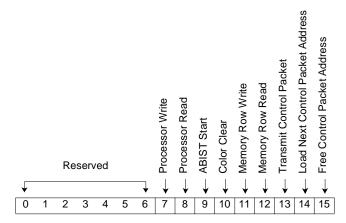
OCM Address 15'x'


Access Type Read/Write

Note: Each Read/Write access to this register causes the value in the Memory Row Byte Pointer or Look-Up Table fields of Table Pointer Register to be incremented by 2.

Bits	Description	
When Table Select = '0'	b (Memory Row Data)	
0 - 7	Upper Byte . Carries the data byte value of the Memory Row Register byte with the index corresponding to the Row Pointer field value.	
8 - 15	Lower Byte . Carries the data byte value of the Memory Row Register byte with the index corresponding to the Row Pointer field value + 1.	
When Table Select = '1'	When Table Select = '1'b (Look-Up Table)	
0 - 3	Reserved.	
4 - 7	Upper Entry . Carries the Look-Up Table entry with the index corresponding to the Look-Up Pointer field value.	
8 - 11	Reserved.	
12 - 15	Lower Entry . Carries the Look-Up Table entry with the index corresponding to the Look-Up Pointer field value + 1.	

5.2.22 Memory Row Address Register


Reset Value 0

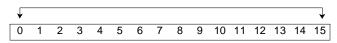
OCM Address 16'x'

Bits	Description
0 to 5	Reserved.
6	Memory Bank Select. Selects the memory bank to point to: 0: Indicates the 'first' bank corresponding to the data flow from the first byte stream (master) 1: Indicates the 'second' bank corresponding to the data flow from the second byte stream (slave)
7 to 15	Memory Row Address . Points to a specific 20-byte row of the shared memory. Possible Integer values range from 0 to 511. This field is automatically incremented after a Memory Row Read command.

5.2.23 Command Register

This register allows the software to initiate specific actions. Only one command can be set at a time. All commands are interpreted as pulses, that is a command is only executed when the register is written to. This register does not have to be cleared after the command has been executed.

Reset Value 0

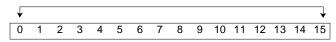

OCM Address 17'x'

Bits	Description
0 - 6	Reserved.
7	Processor Write . Triggers a write command of the data in the Processor Data register to the Pico-Processor address specified in the Processor Address register.
8	Processor Read . Triggers a read command to the Pico-Processor address specified in the Processor Address register. The result is returned in the Processor Data register.
9	ABIST Start. Starts the ABIST process, which checks all RAMs. When the ABIST is running, the ABIST Active bit of the Status register is active. And upon completion, the ABIST Pass/Fail status is reported in the Miscellaneous Status Register. Note that the ABIST can only be run while the device is in Standby mode. This command can only be triggered in Standby mode after Power-on Reset or Flush Reset.
10	Color Clear. Clears the Idle Packet color state machine. After this command is initiated, Idle Packets of the same color as the Expected Color are transmitted on a given output port when both following conditions are satisfied: at least one packet of the expected color is received on all inputs, and the corresponding output queue is empty. As long as these two conditions are not met, Idle Packets are transmitted with the opposite color to the expected color.
11	Memory Row Write . Triggers the writing of the Memory Row Data register to the shared memory row location specified by the Memory Row Address register.
12	Memory Row Read . Triggers the reading of the shared memory row location specified by the Memory Row Address register and the loading of the data into the Memory Row Data register.
13	Transmit Control Packet . Triggers the transmission of the Control Packet, located in shared memory address 0 (and 1 if not in internal and external speed expansion), on all the ports specified in the Control Packet Destination register. The Control Packet Transmitted interrupt is generated once the packet has been transmitted by all the specified ports.
14	Load Next Control Packet Address . Loads the address at the top of the control packet queue into the Memory Row Address Register. Note that the read address stays at the top of the control packet queue.
15	Free Control Packet Address. Frees the address at the top of the control packet queue. The following address moves to the top.

5.2.24 Control Packet Destination Register

Control Packet Destination Register

Reset Value 0

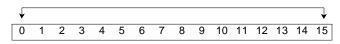

OCM Address 18'x'

Bits	Description
0 - 15	Control Packet Destination Register. Provides the bit map of the output ports to which the current control packet is destined. A '1'b at position n indicates that the Control Packet has to be sent to output n.

5.2.25 Bit Map Filter Register

Bit Map Filter

Reset Value '11111111111111'

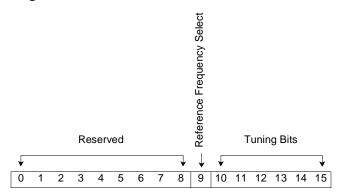

OCM Address 19'x'

Bits	Description
0 - 15	Bit Map Filter . Specifies the mask to apply to the received packet bit map for switchover support. See the description of the received packet header for details on the operation of this mask. Bit n of the register corresponds to output port n.

5.2.26 Yellow Packet Received Register

Yellow Idle Packet Received

Reset Value 0


OCM Address 1A'x'

Access Type Read Only

Bits	Description
0 - 15	Yellow Idle Packet Received. Specifies if at least one Yellow Idle Packet has been received on the port since the register was last read. The register is cleared on read, and bits are set dominant. Bit n of the register corresponds to input port n.

5.2.27 PLL Configuration Register

Performing a write to this register automatically enables the internal PLL. When using an external PLL, this register should not be written to.

Reset Value 0

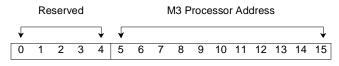
OCM Address 1B'x'

Bits	Description
0 - 8	Reserved.
9	Reference Frequency Select. Indicates the ratio between the internal PLL reference clock and the internal byte clock: 0: byte clock = 2 x reference clock, 1: byte clock = 4 x reference clock.
10 - 15	Tuning bits . Modifies the PLL loop parameter to compensate for a high level of noise or input jitter. For the frequency range of operation of PRIZMA, the recommended tuning bits are: "111100". The settings "011100" and "000010" are also allowed to compensate for noise or jitter.

5.2.28 Processor Access Registers

The address space of the internal pico-processor (M3), used for DASL synchronization, can be accessed via the Processor Address and Data Registers, along with the Processor Write and Processor Read commands of the Command register.

To perform a write to a processor location:


- 1. Write the Processor Address register.
- 2. Write the Processor Data register.
- 3. Issue a Processor Write Command via the Command register.

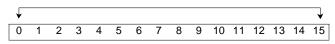
To perform a read from a processor location:

- 1. Write to Processor Address register.
- 2. Issue a Processor Read Command via the Command register.
- 3. Read the Processor Data register.

The Processor Address auto-increments after every Processor Read or Write command, such that step (1) only has to be performed once when consecutive locations are to be accessed.

5.2.29 Processor Address Register

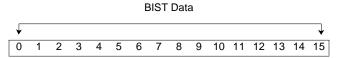
Reset Value 0


OCM Address 1C`x'

Bits	Description
0 - 4	Reserved.
	M3 Processor Address. (See DASL Specification and Pico-Processor on page 124) Automatically increments when the Processor Data register is accessed (read or write).

5.2.30 Processor Data Register

M3 Processor Data

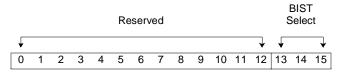

Reset Value 0

OCM Address 1D'x'

Bits	Description
0 - 15	M3 Processor Data. A 16 bit access to the M3 address location specified by the Processor Address register.

5.2.31 BIST Data Register

This register provides access to the three BIST registers, which are double word (32 bits) registers. These three registers control the User Controlled BIST operation. The 16-bit word to access is specified by the BIST Select bits in the BIST Control register. These three BIST Control registers are never reset. After power-on and reset, these registers are undefined. They must be written before a user defined BIST is initiated. The BIST cycle count (accessed via this register) is a countdown counter with a terminal value of x'000000000'.


Reset Value Undefined

OCM Address 1E'x'

Bits	Description
0 - 15	BIST Data. Contains data that applies to the BIST Control Register.

5.2.32 BIST Control Register

Reset Value 0

OCM Address 1F'x'

Bits	Description				
0 - 12	Reserved.				
13 - 15	BIST Select. Selects which of the three BIST Control registers is accessed by the BIST Control register. 000: BIST cycle count high word (MSW) - BISTData(0:11) reserved, 001: BIST cycle count low word (LSW) 010: BIST PRPG high word (MSW) 011: BIST PRPG low word (LSW) 100: BIST MISR high word (MSW) 101: BIST MIST low word (LSW) others: Reserved.				

6. Reset, Initialization, and Operation

6.1 Clock and PLL

PRS28.4G logic contains an internal PLL to generate the high frequency required for the DASL operation. However, an external PLL can also be used.

6.1.1 Internal PLL

When using the internal PLL, a reference clock must be provided on the SYS_CLK input. The frequency of reference clock is either a half or a fourth of the byte clock, depending on the setting of the PLL Register. Also, in order to use the internal PLL, the PLL Register has to be programmed before issuing a Clock Start OCM Event.

6.1.2 External PLL

When using an external PLL, a clock twice as fast as the internal byte clock has to be provided on the SYS_CLK input. The C_CLK_OUT byte clock is then used as the reference clock. Note that since the SYS_CLK clock directly feeds the high speed DASL logic, where both edges of the clock are used to latch data, the SYS_CLK duty cycle must be 50%.

Notes:

- 1. Do not access (read or write) the PLL register when an external PLL is used. This guarantees that the internal PLL stays in reset, and thus in bypass mode, during operation.
- 2. The external PLL should be locked and generate a stable clock before the Clock Start OCM Event can be issued.

6.2 Reset

6.2.1 Power-On-Reset Sequence and Clock Start OCM Event

The nRESET primary input must be asserted after a system power-up sequence occurs. It must be active for at least four EMB bus clock cycles. During this time, the EMB clocks and system clock must be running, stable, and at the correct frequencies. The EMB_SELECT and EMB_MODE primary inputs must be at a high voltage level ('1'b).

The assertion of $\overline{\mathsf{nRESET}}$ causes a discrete reset of the following islands:

- · OCM and Reset logic
- · Clocks, BIST, and Flush Reset logic
- · Internal PLL.

When nRESET is released, the OCM island is functional, while the PLL and Clock/BIST/Flush-Reset logic are kept in reset state. This is necessary to allow enabling of the internal PLL and its configuration via the PLL Register. This register should only be accessed when using the internal PLL. The PLL Register physically resides in the OCM clock domain, and thus does not require the internal core clock to be running in order to be programmed.

After configuration of the PLL Register (if necessary depending on use of internal or external PLL), the Clock Start OCM Event is sent. This event causes the PLL Reset to be internally released when the internal PLL is enabled. 100 microseconds after the PLL Reset has been released, the high speed DASL logic is automatically placed in reset. If the internal PLL is not enabled, the DASL logic reset is sent just after the Clock Start Event. After the DASL logic has been reset, the reset of the Clock/BIST/Flush-Reset is released, which causes the internal Flush-Reset sequence to begin. The Status Register must be polled to determine when the flush reset is complete.

In summary, the following steps must be taken to complete a Power-On-Reset of the device:

- 1. Assert nRESET for at least four EMB clock cycles.
- 2. Program the PLL Tune Bits via the PLL Register, only when using the internal PLL.
- 3. Issue a Clock Start OCM Event.

Check the Status Register bit 15 for completion of the Reset and Flush-Reset sequence. The first Response to an OCM command after reset is undefined. Therefore, this data must be discarded and no checks (including parity) should be performed on the first OCM Response.

6.2.2 Flush Reset and OCM_RESET Command

As mentioned above, the flush reset sequence is triggered automatically after a Power On Reset (nRESET) and Clock Start OCM Event sequence. A flush reset can also be initiated by the OCM_RESET command (Soft Reset).

All the core logic is reset via a flush reset (except the OCM, Clocks logic, BIST, Flush Reset logic, PLL, DASL clock generation and macro, and JTAG logic). The scan chains are flushed with '0'b, and all other registers and state machine are forced to their reset values.

The OCM_RESET command only starts the flush reset and does not cause any blocks (other than the one touched by the flush reset) to be reset.

Bit 15 of the Status register is kept high as long as flush reset is active, and it is cleared when flush reset completes.

The Flush Reset takes 1 ms to complete.

6.2.3 nTRST Primary Input Reset

The nTRST primary input must be asserted after a system power-on sequence. The nTRST input must be kept active high during functional operation. During this time, the TMS primary input must be at a high voltage level ('1'b).

The nTRST input resets the JTAG logic block and is completely independent of all other reset sequences. The JTAG logic can only be reset via the nTRST input, and the nTRST input has no effect on any other logic block.

6.3 Initialization

The PRS28.4G device must be initialized after completion of a Power-On-Reset sequence, a Soft Reset, or a Built In Self Test (BIST). These three events all cause the Flush Reset sequence to run. After completion of the Flush Reset, the device is in a standby state. All outputs are tri-stated and data on all inputs is discarded.

Whenever a Flush Reset sequence is triggered, the following steps must occur before normal operation can take place:

- After completion of the Flush Reset sequence, the chip core logic is in Standby mode (that is, the application registers can be programmed) but the output pins stay tri-stated and the data presented on input pins is ignored, except for the OCM island pins. Even though most registers can be programmed during normal operation, the following registers must be programmed during standby only:
 - · Configuration Register 0
 - Configuration Register 1
 - Mode Register with M3_Reset = 1'b' and ColorForce = 1'b'.
- 2. Standby Mode must be exited by setting bit 15 of the Mode Register to 0'b'.
- 3. The Processor Instruction Memory has to be programmed, while keeping the Mode Register M3_Reset at '1'b. After the Processor Instruction Memory is programmed, the M3_Reset bit is released.
- 4. Depending on the system configuration, the Bit Map Filter register and Look-Up Table are also programmed.
- 5. The Port Enable Register can be programmed, by following the sequence described below.
- An OCM OCD_ENABLE command must be issued. This command enables the functional primary output drivers to drive the data busses. This command also allows interrupts to occur. No interrupts will occur on the EMB bus until the OCDs are enabled with the OCM OCD_ENABLE command.

Standby mode should not be entered from normal operation mode. Programming the Standby bit to '1'b from '0'b while in normal operation mode will result in unpredictable behavior. Standby mode can only be entered after Power-On-Reset, Soft Reset, or BIST.

During operation, all registers can be programmed except for the Configuration registers 0 and 1. Programming these two registers while in normal operation mode (Standby bit at '0'b) could result in unpredictable behavior. The Processor Instruction Memory can be programmed at all times during normal operation with the provision that the M3_Reset bit on the Mode register is set to '1'b during programming.

6.4 DASL Initialization and Operation

Once the PRS28.4G has been fully configured and before actual data traffic can take place between any PRS28.4G and the adapter(s), the DASL interfaces must be initialized to provide bit phase alignment and packet alignment at the data receivers in both directions.

Note: DASL initialization involves communication between the IBM3221L0572 and the device connected to a specific PRS28.4G port, which is referred to as the remote device (located in the adapter).

The port synchronization is under the overall control of the using system Control Processor which coordinates the operation between the switch core and the adapters. For PRS28.4G switch elements, this synchronization is handled by the local processor (running the switch control microcode), connected to the OCM interface, after initialization or after error detection. But it can also be performed directly through interface lines between the switch control and the port adapter.

The registers of interest in this case are:

- 1. Port enable register 0x'03'
- 2. No signal register 0x'0C'

- 3. Sync Status and Sync Hunt registers 0x'08'
- 4. Sync Packet Transmit register 0x'09'
- 5. Signal detect Interrupt in Status register bit 12

The Sync Status register reports the status of the input receiver, and the Sync Hunt register forces the input ports to start the synchronization sequence.

The Sync Packet Transmit register specifies on which port the sync packets are to be transmitted in order for the remote device input port to synchronize. While sync packets are transmitted on an output port, Data Packets destined to that output port will be discarded at the same rate as if they were actually sent on the line. When not transmitting Sync packets, the output ports transmit normal traffic packets, Data Packets or Idle Packets.

Also, when the PRS28.4G is used in external speed expansion, the local processor must set the Sync Hunt register and check the Sync Status register on both devices separately. Similarly, it has to inform both the master and slave device to transmit sync packets via the Sync Packet Transmit registers.

In summary, the following steps must be taken in order to synchronize input ports, either after reset and initialization of the device, or when the control processor decides to resynchronize a link due to data errors on the incoming packets. Even if on both the switch port and the remote device the same steps must be taken they don't have to be synchronous, but the global sequence of operation must be followed:

- 1. Disable the switch, by writing '0'b in register 0x'03' (it takes between 10 to 60ms to be effective), and remote chip ports
- 2. Enable the switch, by writing '1'b in register 0x'03' (it takes between 10 to 60ms to be effective), and remote chip ports
- 3. Disable DASL transmission. For the switch this imply writing a '1'b (it is bit map field) into the M3 picoprocessor address 0x'400' to disable 'transmit sync enable' internal line through command register 0x'1C', 0x'1D' and 0x'17'.
- 4. Check for valid connectivity of the receiver to a differential transmitter through the no signal register. This is to ensure the integrity of the serial links.
- 5. Enable 'Transmit Sync Packets'.
- 6. Enable DASL transmission. For the switch this imply writing a '0'b (it is bit map field) into the M3 picoprocessor address 0x'400' to validate 'transmit sync enable' internal line through command register 0x'1C', 0x'1D' and 0x'17'.
- 7. Write to the Sync Hunt register for the enabled ports to start synchronization.
- 8. Poll the Sync Status register to verify completion of synchronization after a Sync Time-Out period. If some ports failed to synchronize, their Sync Status bits will be '0'b.
- 9. When synchronization has been achieved the local processor reports to the control processor that it is ready for data transfer. Similarly the remote device does the same reporting.
- 10. Read CRC port ID register 0x'0A' and CRC error counter register to clear any CRC error indication that might have been set up during synchronization period.
- 11. Upon reception of both reports, the control processor indicates to both ends of the full duplex link (switch port and remote device) to stop transmitting Sync packets. Normal packet transfer (idle or data) on the input ports can then be initiated.
- 12. As the link is now in data mode, the switch control has to poll the CRC Error registers and the No Signal register to check for error free operation.

Note: The above sequences can be performed for multiple ports at the same time, or for one port at a time.

6.5 Control Packet Reception and Transmission

Control Packet reception and transmission involves accessing multiple registers and performing tasks in a specific order.

For external speed expansion, Control Packet Received and Transmitted Interrupts are only generated by the master device. Also, the Load Next Control Packet Address command, Free Control Packet Address command, and Control Packet Transmit command are only issued to the master device. No action is taken if those commands are issued to the slave devices.

Whenever performing a shared memory access to receive or transmit a Control Packet, the access time to the memory is guaranteed by the sequencer to be at most one LU unit length, except for LUs of length 16 and 32 bytes. This holds also for both master and slave device in speed expansion.

For LUs of 16 and 32 bytes, the Control Packet Access Priority Enable bit (Configuration register 0) has to be set in order to guarantee a memory access time of at most three LU unit lengths. This rule applies only to single device configurations or to the master device in speed expansion. For the slave device, the rule is to always perform a slave operation followed by a master operation, as described in the sections below. In this case, it is guaranteed that the slave memory access is completed when the master memory access is completed.

6.5.1 Control Packet Reception

Control Packets can be received on all input ports and are stored as any other packet in the shared memory. The shared memory locations of the Control Packets are written into a Control Packet queue, which allows for multiple control packets to be received. When a new Control Packet arrives, a Control Received Interrupt is generated. Also, the number of Control Packets currently enqueued is provided via the Control Packet Counter. Upon reception of a Control Packet Received Interrupt, the following tasks are performed:

- 1. Issue a Load Next Control Packet Address command via the Command Register. This loads the first address of the Control Packet Queue into the Memory Row Address Register.
- 2. Read the Memory Row Address Register. This is address A.
- 3. Issue a Memory Row Read command via the Command Register. This performs a read from the shared memory location pointed to by the Memory Row Address Register and loads the row data into the Memory Row Register.
- 4. Read out the Memory Row Register via the Table Pointer and Table Data Registers.
- 5. Update the Memory Row Address register to point to the location where the next row of the packet is located and repeat items 3 to 5 until all rows of the packet have been read. The following table provides the addresses to be read in the master memory bank and in the slave memory bank.

Table 20: Master and Slave Memory Bank Addressing

External Speed Expansion	Internal Speed Expansion	Packet Size (Number of bytes)	Addresses to read in master and slave memory banks
0	0	64 to 80	A and A+1
0	1	64 to 80	A and A+256
1	0	64 to 80	А

External Speed Expansion	Internal Speed Expansion	Packet Size (Number of bytes)	Addresses to read in master and slave memory banks
1	0	128 to 160	A and A+1

- 6. Issue a Free Current Control Packet Address command via the Table Command Register to free up the first address in the Control Packet Queue.
- 7. If the Control Packet Counter is not zero, and/or if another Control Packet Received Interrupt is issued, perform all above items again.

For external speed expansion, the shared memory start address of the control packet for the slaves is the same as for the master. Therefore, after issuing the Load Next Control Packet Address command to the master, the local processor has to read the master Memory Row Address register and write its content to the slave Memory Row Address Register. The local processor then has to issue the Read Command to the slave, followed by the Read Command to the master. Only then can the data from the slave and the master be read. Once the first row is completely read in both master and slave, the same sequence of Read Command to the slave and the master has to be issued in order to read the second data row in both devices. This is necessary to guarantee the access time to the slave chip shared memory. All rows in both the master and the slave have to be read before issuing the Free Current Control Packet Address command to the master.

6.5.2 Control Packet Transmission

Control Packets are sent one at a time. Note that Control Packets can only start at shared memory location zero. In order to transmit a Control Packet, the following tasks are performed:

- 1. Load the Memory Row Address Register with value zero.
- 2. Build the first row of the control packet in the Memory Row Register via the Table Pointer and Table Data registers.
- 3. Issue a Memory Row Write command via the Command Register to load the row into shared memory.
- 4. Update Memory Row Address Register to point to the location where the next row of the packet has to go, and repeat steps 2 and 3 for all rows of the Control Packet.
- 5. Specify the output ports which the Control Packet has to be transmitted from, by loading the Control Packet Destination Register.
- 6. Issue a Control Packet Transmit command via the Command Register. Wait for a Control Packet Transmitted Interrupt.

For external speed expansion, the local processor must write the rows to the slave and the master devices before issuing the Control Packet Transmit command. The local processor must first write a row to the slave device, followed by a row to the master. This sequence is necessary to guarantee access time to the slave memory.

Note: The Control Packet Destination Register must be specified only for the master device.

7. I/O Definitions and Timing

Table 21: Signal Definitions (Page 1 of 6)

Signal Name	Туре	Description		
Clock and Reset Signals				
SYS_CLK_Q SYS_CLK_QN	Input, differential	System clock used for the internal clock generation network. When the internal PLL is enabled, SYS_CLK is equal to the internal byte clock divided by either two or four, depending on the setting of the PLL register. See <i>Electrical Characteristics</i> on page 125 for requirements on SYS_CLK. When using an external PLL, SYS_CLK is a equal to the internal byte clock times 2, with 50% duty cycle.		
C_CLK_OUTQ C_CLK_OUTQN	Output differential	Free running C clock phase of the byte clock at the output of the internal clock tree. When the internal PLL is used, this clock output will be at the correct frequency of 100µs after the Clock Start OCM Event is sent. During Flush Reset and BIST, this signal is the free-running byte clock feeding the clock generation logic. During normal operation, this signal is generated by the end of the C clock tree. When using an external PLL, C_CLK_OUT is to be used as the PLL feedback clock.		
nRESET	Input active low	Must be active for at least four EMB clock cycles. Asserting this pin causes a reset of all internal logic, except the IEEE 1149.1 (JTAG logic block). See <i>Reset, Initialization, and Operation</i> on page 88 for details on the reset sequence.		
SEQ_CLK	Bidirec- tional	Low frequency clock used to synchronize the internal sequencers of different modules. For external speed expansion, it is a synchronous signal generated by the Master device and fed to the slave device. The period of this clock is equal to one-quarter of the total packet length in SYS_CLK cycle units. Therefore, it can vary from 16 to 20 SYS_CLK cycles according to the packet length. The mode of operation of this pin is programmable via the Sequencer Sync Mode bit in Configuration Register 0. It can be either tri-stated for single device operation, generated by the device, or received by the device. This signal is HSTL level and can only be connected point to point.		
SEQ_CLK_TTL	Output	Identical to the SEQ_CLK output, but is in TTL level, and is only used as an output signal.		
Data Signals				
DATA_IN_[00:15]_Q(0:3) DATA_IN_[00:15]_QN(0:3)	Input	DATA_IN_n_Q(i) and DATA_IN_n_QN(i) form one of the four 444 Mb/s differential signals for input port n. For each port, bits 0 and 1 carry the slave byte stream and bits 2 and 3 carry the master byte stream (see <i>Physical Bit Organization of a Port</i> on page 27).		
DATA_OUT_[00:15]_Q(0:3) DATA_OUT_[00:15]_QN(0:3)	Output	DATA_OUT_n_Q(i) and DATA_OUT_n_QN(i) form one of the four 444 Mb/s differential signals for output port n. For each port, bits 0 and 1 carry the slave byte stream and bits 2 and 3 carry the master byte stream (see <i>Physical Bit Organization of a Port</i> on page 27).		

Table 21: Signal Definitions (Page 2 of 6)

Signal Name Type		Description	
Flow Control Signals			
MEM_GRANT(0:3)	Output	MEM_GRANT(n) provides the grant status of the shared memory for priority n. The MEM_GRANT pins are updated every four clock cycles (of 9 to 10 ns). See Functional Description on page 25. The device pin encoding and corresponding grant definition is as follows: 0000: No Grant 1000: Priority 0, or control packets 1100: Priority 0 or 1, or control packets 1110: Priority 0 2, or control packets 1111: Priority 0 3, or control packets others: Reserved. The MEM_GRANT device pins are always active and always reflect the latest memory full information. When two devices are in external speed expansion, only the MEM_GRANT bus from the master device is used.	
SND_GRANT(0:15)	Input	Grants the output ports the opportunity to transmit packets. When bit <i>n</i> is active, a packet can be transmitted on port <i>n</i> . When inactive, Data Packets are not allowed to be transmitted, and only Idle Packets will come out. Note that, when a Data packet is to be transmitted, the packet of highest available priority will be transmitted. When two devices are in external speed expansion, the SND_GRANT bus of the slave device is not used and thus not connected (internal pull-up).	
RCV_GRANT(0:15)	Input	Provides a grant to receive packets for each output. Incoming packets will only be received for output <i>n</i> if the RCV_GRANT(<i>n</i>) is active high. Packets destined for outputs for which the RCV_GRANT is deasserted will not be enqueued in those outputs The RCV_GRANT pins are to be used only for Data Packets with Active bit = '1'b, and Backup bit = '0'b. When two devices are in external speed expansion, the RCV_GRANT bus of the slave device is not used and thus not connected (internal pull-up).	
Q_FULL(0:15)	Output	Provides the full status of all 16 output queues. Bit <i>n</i> carries the status of output queue, <i>n</i> , for all priorities, in the time multiplexed manner. For each priority, the signal is valifor four clock cycles. When Q_SYNC is active high, Q_FULL carries the status of the 16 queues for priority 0. It is followed four cycles later by priority 1, in another four cycles by priority 2, in another four cycles by priority 3. Note that only the number of priorities programmed in the Configuration Register 0 is reported. Thus, if only three priorities are enabled, the multiplexing cycle will be: priority 0 (Q_SYNC active), priority 1, priority 2, priority 0 (Q_SYNC active) and so forth. When two devices are in external speed expansion, only the Q_FULL bus from the master device is used.	
Q_EMPTY(0:15)	Output	Provides the empty status of all 16 output queues. Bit n carries the status of output queue n, for all priorities, in the time multiplexed manner. For each priority, the signa is valid for four clock cycles. When Q_SYNC is active high, Q_EMPTY, carries the status of the 16 queues for priority 0. It is followed four cycles later by priority 1, in another four cycles by priority 2, and in another four cycles by priority 3. Note that only the number of priorities programmed in the Configuration Register 0 is reported. Thus if only three priorities are enabled, the multiplexing cycle will be: priority 0 (Q_SYNC active), priority 1, priority 2, priority 0 (Q_SYNC active), and so forth. When two devices are in external speed expansion, only the Q_EMPTY bus from the master device is used.	
Q_SYNC	Output	Used as a framing bit for the Q_FULL(0:15) and Q_EMPTY(0:15) busses and is active when the status of priority 0 is valid for all 16 bits of the bus. When two devices are in external speed expansion, only the Q_SYNC bit from the master device is used.	

Table 21: Signal Definitions (Page 3 of 6)

Signal Name	Туре	Description		
	nected when t	two devices are in external speed expansion. The internal master/slave clocks and point to point between the two devices.		
MS_SYNC_OUT	Output	Connects directly to the MS_SYNC_IN pin of the other device. When the device is master, this signal is a synchronous one clock cycle (of 9 to 10ns) pulse to frame the information that is multiplexed on the MS_IN_ADDR(0:10) and MS_OUT_ADDR(0:10) busses. When the device is slave, this signal has no function, but it has to be connected. When the device is used alone, that is, without external speed expansion, this signal is tri-stated.		
MS_SYNC_IN	Input	Connects directly to the MS_SYNC_OUT of the other device.		
MS_DASLSYNC_OUT(0:1)	Output	Directly connected to the MS_DASLSYNC_IN bus of the other device in speed expansion (no function).		
MS_DASLSYNC_IN(0:1)	Input	Connects directly to the MS_DASLSYNC_OUT of the other device in speed expansion.		
MS_IN_ADDR(0:10)	Bidirec- tional	Goes from the master to the slave. In single device mode, this bus is tri-stated. It provides the address used by the input controllers to store the next packet. MS_IN_ADDR(0:8) are the 9-bit wide address value fields, MS_IN_ADDR(9) is the valid bit of the address, and MS_IN_ADDR(10) is the odd parity bit over MS_IN_ADDR(0:9). MS_IN_ADDR(0:10) is a multiplexed bus on which the store addresses of all 16 input controllers are transmitted. It is synchronized with MS_SYNC_OUT. When MS_SYNC_OUT is high, the address for port 0 is carried. N clock cycles after MS_SYNC high, the address for port N is carried. Note that the values of the address and the valid bit are used by the master to indicate to the slave ports, according to the table below, whether to ignore the incoming data packet, to receive the incoming data packet, or to treat the incoming packet as idle. The slave action is as follows: Bits 0-8 (Address)Bit 9 (Valid Bit)Slave Action Zero value1 Ignore the data packet Non Zero value1Receive the data packet Treat incoming packet as an Idle Packet		
MS_OUT_ADDR(0:10)	Bidirec- tional	Goes from the master to the slave. In single device mode, this bus is tri-stated. It provides the address used by the output controllers to read the next packet. MS_OUT_ADDR(0:8) are the 9-bit wide address value fields, MS_OUT_ADDR(9) is the valid bit of the address, and MS_OUT_ADDR(10) is the odd parity bit over MS_OUT_ADDR(0:9). MS_OUT_ADDR(0:10) is a multiplexed bus on which the read addresses of all 16 output controllers are transmitted. It is synchronized with MS_SYNC_OUT. When MS_SYNC_OUT is high, the address for port 0 is carried. N clock cycles after MS_SYNC_OUT high, the address for port N is carried.		
OCM Interface Signals				
EMB_A_CLOCK EMB_B_CLOCK	Inputs (2)	Free-running clock signals that generate the OCM internal C (EMB_A_CLOCK) and B (EMB_B_CLOCK) clocks. The clock frequency must be less than or equal to half of the internal byte clock frequency (100 to 111.1 MHz). The EMB_A_CLOCK and the EMB_B_CLOCK must be non-overlapping clocks; that is, they cannot be high at the same time (See I/O Definitions and Timing on page 94). For scan operation, these signals are sampled by the system clock.		
nEMB_SIGOUT	Output active low	Used to generate an interrupt to the microprocessor. The signal remains asserted until an OCM_READ_STATUS command occurs. To support a wired-OR configuration, nEMB_SIGOUT uses an open-drain driver and is in the high-impedance state when inactive.		
EMB_DATA_IN	Input	Serial data line that shifts into the OCM either the instruction or the scan string data, according to EMB_MODE and based on the EMB clock.		

Table 21: Signal Definitions (Page 4 of 6)

Signal Nama	Typo			Description
Signal Name	Туре			Description
EMB_DATA_OUT	Output	string data, acc The EMB_DAT	cording to EMB_N A_OUT is placed	the OCM either the command respond or the scan MODE and based on the EMB clock. If in high-impedance state when the OCM is not in shift one EMB clock cycle after EMB_SELECT = '0'b.
EMB_MODE	Input	Used to define the operation type of the OCM when EMB_SELECT is asserted: 0'b: Instruction / Status operation 1'b: Scan operation This signal must be stable one EMB clock cycle before the start of data transmission and has to be stable for the duration of the transfer.		
nEMB_SELECT	Input active low	EMB_SELECT the OCM via EI on the EMB_D. EMB_SELECT cuted. When EMB_M internal byte cy In a ring config a common EMI In order to ensi	signal becomes MB_DATA_IN, an ATA_OUT. If EMI is deactivated, the DDE is '0'b, the nucles (60 ns) between the proper initialized low.	crified by EMB_MODE. One EMB clock cycle after the active, instruction or scan data is serially shifted into a the response or scan data is shifted out of the OCM B_MODE is '0'b, one EMB clock cycle after the ne instruction in the OCM register is decoded and exeme instruction in the OCM register is decoded and exeme instruction in the OCM register is decoded and exeme instruction in the OCM register is decoded and exeme instruction in the OCM register is decoded and exempted in the occupance of the instructions. Instruction during power-on-reset, the EMB_SELECT signormal instruction applied to EMB_DATA_IN is shifted into the OCM instruction register. At the same time, the content of the response register is shifted out on the EMB_DATA_OUT line. Instruction in OCM instruction register is executed. Serial scan data applied to EMB_DATA_IN is shifted into the device SRL strings. At the same time, the SRL scan string data is shifted out on the EMB_DATA_OUT line. No operation occurs
Debug Bus Signals				
Dodug Duo Olyliaio		Enables the ex DBG_DATA bu		and select the set of signals presented on the
DBG_SELECT(0:7)	Input	Bit PositionBus 0-2 000 001 010 011 100 111 3-6	Debug bus no Sequencer de Address Mana Clock Logic d Input Controlle fie M3 Debug 1 b M3 Debug 2 b Stored Memo Port Number	of used - DBG_DATA bus is tri-stated. Sebug bus selected ager debug bus selected sebug bus selected er debug bus selected - Port Number has to be speci- ed via DBG_SELECT(3 to 6). Sous selected bus selected ry bus selected ry bus selected selected ry specifies the port number of the Input Controller, then the Input Controller Debug Bus is selected.
DBG_DATA(0:15)	Output	Provides direct I/O access (logic analyzer) to the Debug Bus specified by the DBG_SELECT bus. See <i>DBG_DATA Bus Definitions</i> on page 100.		
IEEE 1149.1 (JTAG) Interfac	e Signals			

Table 21: Signal Definitions (Page 5 of 6)

Signal Name	Туре	Description	
тск	Input	Test Clock Input - see IEEE 1491.1 Specification "IEEE Standard Test Access Port and Boundary Scan Architecture" on page 131 [1] for details.	
TMS	Input	Test Mode Select Input. See [1].	
TDI	Input	Test Data Input. See [1].	
TDO	Output	Test Data Output. See [1].	
TRST	Input	Test Reset Input. See [1]. Must be asserted during a Power-On-Reset to reset the JTAG control logic.	
IOTEST	Input	Used for Reduced Pin Count Testing. It allows all LSSD boundary inputs to drive signals out (this makes all boundary OCRs and ClOs).	
Test (LSSD) Interface Signal	S		
LSSD_SCAN_MODE	Input	Allows all clocks to be controlled from the primary inputs and connects all scan chains. This signal must be set to '0'b during normal operation and to '1'b during LSSD test.	
LSSD_SCAN_GATE	Input	Controls the functional clock for special logic books.	
LSSD_A_CLK	Input	Used as an external source for the internal SRL scan A clock. It is used during LSSD test to enable the tester to source the internal SRL clocks independently of the primary inputs. This signal must be '1'b (pull-up) during normal operation.	
LSSD_B_CLK	Input	Used as an external source for the internal SRL scan B clock. It is used during LSSD test to enable the tester to source the internal SRL clocks independently of the primary inputs. This signal must be '1'b (pull-up) during normal operation	
LSSD_B2_CLK	Input	Used as an external source for some internal SRL scan B clock. It is used during LSSD test to enable the tester to source the internal SRL clocks independently of the primary inputs. This signal must be '1'b (pull-up) during normal operation.	
LSSD_C1_CLK	Input	Used as an external source for the internal SRL scan C clock. It is used during LSSD test to enable the tester to source the internal SRL clocks independently of the primary inputs. This signal must be '1'b (pull-up) during normal operation.	
LSSD_C2_CLK	Input	Used as an external source for the internal GRA and RAM scan C clock. It is used during LSSD test to enable the tester to source the internal GRA clocks independently of the primary inputs. This signal must be '1'b (pull-up) during normal operation.	
LSSD_C3_CLK	Input	Used as an external source for the second write port for internal dual port GRA scan C clock. It is used during LSSD test to enable the tester to source the internal GRA clocks independently of primary inputs. This signal must be '1'b (pull-up) during normal operation.	
SCAN_IN(0:14)	Input	Data input for the LSSD scan operation.	
SCAN_OUT(0:14)	Output	Data output for the LSSD scan operation.	
LSSD_TAP_C1	Input	LSSD Tap Controller C1 clock.	
LSSD_TAP_C2	Input	LSSD Tap Controller C2 clock	
nDl1	Input, active low	Serves as the driver inhibit for all chip non-test outputs. When a low level ('0'b) is applied to this input, all chip non-test outputs are disabled. When this signal is inactive ('1'b), all on-test outputs are controlled by the functional enable. This input enables exclusive control of the non-test outputs independently of their respective functional enable, for the purpose of LSSD test.	

Table 21: Signal Definitions (Page 6 of 6)

Signal Name	Туре	Description	
nDI2	Input, active low	Serves as the driver inhibit for all chip test outputs. When a low level ('0'b) is applied to this input, all chip test outputs are disabled. When this signal is inactive ('1'b), all test outputs are controlled by the functional enable. This input enables exclusive con trol of the test outputs independently of their respective functional enable, for the pur pose of LSSD test.	
SIDD	Input	Receiver inhibit and leakage current test.	
WTEST	Input	Receiver inhibit for wafer test.	
PLL_TESTIN	Input	Used during a test as the internal PLL test input.	
PLL_TESTOUT	Output	Used during a test as the internal PLL test output	
PLL_LOCK	Output	Set to '1'b when the PLL has attained phase lock.	
DELAY_OUT	Output	Output of the internal delay element used for process measurement. The input to the delay element is RAM_BURN_IN.	
RAM_BURN_IN	Input	Performs a "burn-in" of the internal RAMs. Once the ABIST is started from the OCM, the ABIST sequence will repeat itself until the device is reset.	
Other Signals			
PLL_VDDA	Input	3.3V PLL supply.	
VREF_MS_IN	Input	1.5V voltage reference for MS_IN_ADDR HSTL receivers.	
VREF_MS_OUT	Input	1.5V voltage reference for MS_OUT_ADDR HSTL receivers.	
VREF_MS_SYNC	Input	1.5V voltage reference for MS_SYNC and MS_DASLSYNC HSTL receivers.	

Table 22: DBG_DATA Bus Definitions (Page 1 of 2)

Bit Positions	Description		
DBG_DATA Bus Definition for	Sequencer Debug Bus [DBG_SELECT(0 to 2) = 001]		
0 to 15	OQ Read Sequencer Timing (SEQ_T_ReadFromOQ) bus		
DBG_DATA Bus Definition for	Address Manager Debug Bus [DBG_SELECT(0 to 2) = 010]		
0	Valid bit for Bit(1 to 4) field		
1 to 4	Next Store Address from ADM to ICT - Field carries the number of the receiving input controller port.		
5	Valid bit for Bit(6 to 9) field		
6 to 9	Read Address Freed by OPQ - This field carries the number of the output queue freeing an address.		
DBG_DATA Bus Definition for	Clock Logic Debug Bus [DBG_SELECT(0 to 2) = 011]		
0	PLL Enable		
1	PLL Lock		
2 to 4	RST State		
5 to 7	CLOCK_GEN State		
8	OCM OCD Enable		
9 to 15	reserved		
DBG_DATA Bus Definition for	Input Controller Debug Bus [DBG_SELECT(0 to 2) = 100]		
0 to 4	Byte Counter (0 to 20)		
5	Row Counter (0 to 1)		
6	Port Synchronized		
7	CRC Error		
8	Receiving data		
9	Idle Packet detected		
10	Control Packet detected		
11	Data packet detected		
12	ASA Valid		
13	NSA Valid		
14	Address In Time		
15	Master Byte Counter Valid		
DBG_DATA Bus Definition for	M3 Debug 1 Bus [DBG_SELECT(0 to 2) = 101]		
10 to 0	Program Counter		
13 to 11	ALU Status Bits		
14	reserved		
15	M3 Oscillator		
DBG_DATA Bus Definition for	M3 Debug 2 Bus [DBG_SELECT(0 to 2) = 110]		
1 to 0	from IDCD_CC unit		
2	MUXR_CNTL		

Table 22: DBG_DATA Bus Definitions (Page 2 of 2)

Bit Positions	Description	
3	MUXQ_CNTL	
4	MUXA_CNTL	
5	IMMEDIATE_DATA_FROM_INSTRUCTION	
7 to 6	DATA_WIDTH	
9 to 8	ALU_B_SELECT	
11 to 10	ALU_A_SELECT	
12	ACCESS_PY	
13	PY_AUTO_INCREMENT	
14	ACCESS_PX	
15	PX_AUTO_INCREMENT	
DBG_DATA Bus Definition for Store Memory Bus [DBG_SELECT(0 to 2) = 101]		
0 to 15	Store Memory write data port	

Table 23: I/O Summary (Page 1 of 3)

Pin Name	OCR/OCD/CIO	JTAG Boundary Cell	IO Level
SYS_CLK_Q SYS_CLK_QN	Differential OCR	Clock Tap Cell	Diff. HSTL
C_CLK_OUTQ C_CLK_OUTQN	Differential OCD, always enabled	None	Diff. HSTL
nRESET	OCR with Pull-Up	Boundary	TTL
SEQ_CLK	CIO, HSTL level, enable gated with OCM_OCD_ENABLE and SEQ_CLK_OCD_ENABLE	Boundary	HSTL
SEQ_CLK_TTL	CIO, enable gated with OCM_OCD_ENABLE and SEQ_CLK_OCD_ENABLE	Boundary	TTL
DATA_IN_(00:15)_Q(0:3) DATA_IN_(00:15)_QN(0:3)	Differential OCR	Boundary	Diff. HSTL
DATA_OUT_(00:15)_Q(0:3) DATA_OUT_(00:15)_QN(0:3)	Differential OCD	Boundary	Diff. HSTL
MEM_GRANT(0:3)	CIO, enable gated with OCM_OCD_ENABLE	Boundary	TTL
SND_GRANT(0:15)	OCR with Pull-Up	Boundary	TTL
RCV_GRANT(0:15)	OCR with Pull-Up	Boundary	TTL
Q_FULL(0:15)	CIO, enable gated with OCM_OCD_ENABLE	Boundary	TTL
Q_EMPTY(0:15)	CIO, enable gated with OCM_OCD_ENABLE	Boundary	TTL
Q_SYNC	CIO, enable gated with OCM_OCD_ENABLE	Boundary	TTL
MS_SYNC_IN	CIO, always disabled	Boundary	HSTL
MS_SYNC_OUT	CIO, enable gated with OCM_OCD_ENABLE and MS_OCD_ENABLE	Boundary	HSTL
MS_DASLSYNC_IN(0:1)	CIO, always disabled	Boundary	HSTL
MS_DASLSYNC_OUT(0:1)	CIO, enable gated with OCM_OCD_ENABLE and MS_OCD_ENABLE	Boundary	HSTL
MS_IN_ADDR(0:10)	CIO, enable gated with OCM_OCD_ENABLE and MS_ADDR_OCD_ENABLE	Boundary	HSTL
MS_OUT_ADDR(0:10)	CIO, enable gated with OCM_OCD_ENABLE and MS_ADDR_OCD_ENABLE	Boundary	HSTL
EMB_A_CLK	OCR with Pull-Down	Clock Tap Cell	TTL
EMB_B_CLK	OCR with Pull-Down	Clock Tap Cell	TTL
nEMB_SIGOUT	CIO, enable gated with OCM_OCD_ENABLE and INTERRUPT in order to drive '0'. Requires on card pull-up.	Boundary	TTL
nEMB_SELECT	OCR with Pull-Down	Boundary	TTL
EMB_MODE	OCR with Pull-Down	Boundary	TTL

Table 23: I/O Summary (Page 2 of 3)

Pin Name	OCR/OCD/CIO	JTAG Boundary Cell	IO Level
EMB_DATA_IN	OCR with Pull-Down	Boundary	TTL
EMB_DATA_OUT	CIO, enable gated with EMB_DATA_OUT_EN. Required on card pull-up.	Boundary	TTL
DBG_DATA(0:15)	CIO, enable gated with OCM_OCD_ENABLE and DBG_ENABLE and BIST_ACTIVE.	Boundary	TTL
DBG_SELECT(0:7)	OCR with Pull-Down	Boundary	TTL
TCK	OCR with Pull-Up	None	TTL
TMS	OCR with Pull-Up	None	TTL
TDI	OCR with Pull-Up	None	TTL
TDO	CIO enabled by JTAG controller	None	TTL
TRST	OCR with Pull-Up	None	TTL
IOTEST	OCR with Pull-Down	None	TTL
LSSD_TAP_C1	OCR with Pull-Up	None	TTL
LSSD_TAP_C2	OCR with Pull-Up	None	TTL
LSSD_SCAN_MODE	OCR with Pull-Down	None	TTL
LSSD_SCAN_GATE	OCR with Pull-Up	None	TTL
LSSD_A_CLK	OCR with Pull-Up	None	TTL
LSSD_B_CLK	OCR with Pull-Up	None	TTL
LSSD_B2_CLK	OCR with Pull-Up	None	TTL
LSSD_C1_CLK	OCR with Pull-Up	None	TTL
LSSD_C2_CLK	OCR with Pull-Up	None	TTL
LSSD_C3_CLK	OCR with Pull-Up	None	TTL
SCAN_IN(0:14)	OCR with Pull-Down	None	TTL
SCN_OUT(0:14)	CIO, always enabled	None	TTL
nDI1	OCR with Pull-Up	None	TTL
nDI2	OCR with Pull-Up	None	TTL
SIDD	OCR Required on card Pull-Down.	None	TTL
WTEST	OCR with Pull-Down	None	TTL
PLL_TESTIN	OCR with Pull-Down	Boundary	TTL
PLL_TESTOUT	CIO, always enabled	Boundary	TTL
PLL_LOCK	CIO, always enabled	Boundary	TTL
DELAY_OUT	CIO, always enabled	Boundary	TTL

Table 23: I/O Summary (Page 3 of 3)

Pin Name	OCR/OCD/CIO	JTAG Boundary Cell	IO Level
RAM_BURN_IN	OCR with Pull-Down	Boundary	TTL
PLL_VDDA	Direct connection to PLL	None	-
VREF_MS_IN	OCR	None	-
VREF_MS_OUT	OCR	None	-
VREF_MS_SYNC	OCR	None	-

The table above indicates which CIOs are enabled and by which internal signals. OCM_OCD_ENABLE is directly generated by the OCM_OCD_ENABLE command. The other signals are:

- SEQ_CLK_OCD_ENABLE: Set to '1'b when the Sequencer Sync Pin Mode field of the Configuration Register 0 is set to '01'b
- MS_OCD_ENABLE: Set to '1'b when External Speed Expansion is enabled
- MS_ADDR_OCD_ENABLE: Set to '1'b when External Speed Expansion is enabled and when the device is Master
- EMB_DATA_OUT_EN: Active only during OCM shift/scan (nEM_SELECT = '0'b)

7.1 I/O Timing

7.1.1 DASL Signals

The following table provides the skew requirements related to the DASL links.

Table 24: DASL Interface Skew

Parameter	Rating	Units	Note	
Maximum skew between the two lines of a differential pair	± 130	ps		
Maximum skew between two 444 Mb/s links of the same port (This applies also for any two ports in speed expansion)	± 2	clock cycles	1	
Clock cycle = 9ns (111.1MHz operation) to 10ns (100MHz operation).				

7.1.2 OCM Interface Signals

Figure 9: OCM Interface Signals Timing Diagram

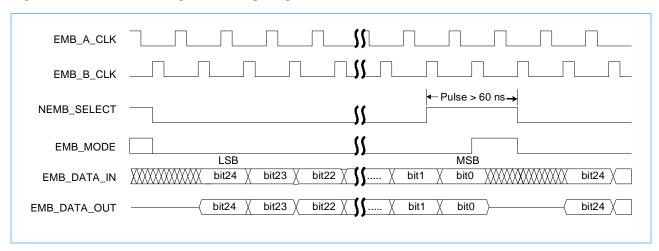
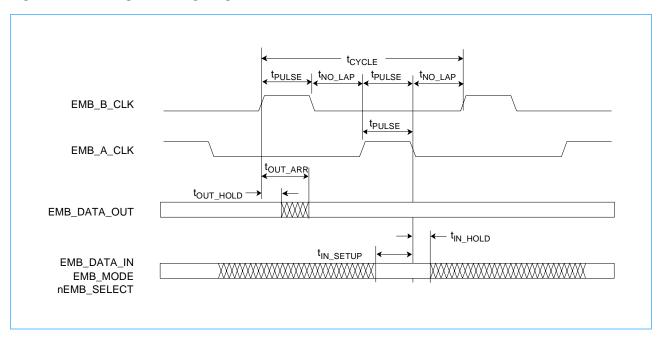



Figure 10: OCM Signal Timing Diagram

Table 25: OCM Signal Timing Values

Symbol	Parameter	Rating		Units
		Min.	Max.	Offics
t _{CYCLE}	EMB Clock Cycle Time	16		
t _{PULSE}	EMB Clock Pulse	4		
t _{NO_LAP}	EMB Clock Non Overlap	2		
t _{IN_SETUP}	EMB_Data_In Setup Time	6		ns
t _{IN_HOLD}	EMB_Data_In Hold Time	0		
t _{OUT_ARR}	EMB_Data_Out Arrival Time		6.5	
t _{OUT_HOLD}	EMB_Data_Out Hold Time	0		

7.1.2.1 Timing Window

The sampling window of SND_GRANT(n) is the time window during which the SND_GRANT(n) signal on the device pin is sampled in order to decide on the transmission of a data or control packet. This window is defined in relationship with the beginning of transmission of that packet on the chip output pins.

Figure 11: SND_GRANT(n) Sampling Window in relationship with the packet flow on output n pins.

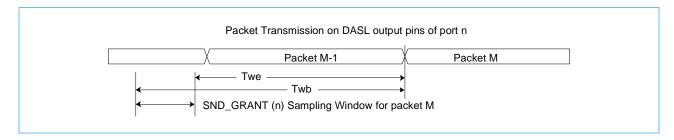


Table 26: SND_Grant Sampling Window Timing

Symbol	Parameter	Rating	Note	
t _{WB}	Sampling Window Beginning (including setup time)	21 ns + 18 byte cycles	1	
t _{WE}	Sampling Window End (including hold time)	17 ns + 18 byte cycles	1	
1. Byte cycle = 9ns (111.1MHz operation) to 10ns (100MHz operation).				

7.1.2.2 RCV_GRANT Sampling Window

The sampling window of RCV_GRANT(n) is the time window during which the RCV_GRANT signals on the device pins are sampled in order to decide on the reception of a packet for output n. This window is defined in relationship with the beginning of the packet reception on the chip input pins.

Figure 12: RCV_GRANT(n) Sampling Window in relationship with the packet flow on any input.

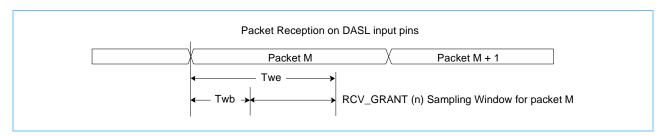


Table 27: RCV_Grant Sampling Window Timing

Symbol	Parameter	Rating	Note	
t _{WB}	Sampling Window Beginning - (including setup time)	-3 ns + 2 clock cycles	1	
t _{WE}	Sampling Window End - (including hold time)	14 ns + 5.25 clock cycles	1	
Clock cycle = 9ns (111.1MHz operation) to 10ns (100MHz operation).				

7.1.2.3 Q_FULL, Q_EMPTY and Q_SYNC Bus

(Trb, Tre) and (Tfe, Tfb) defined windows in which the Q_FULL and Q_EMPTY bits will change value for a new priority, in relation to Q_SYNC rising edge and falling edge respectively.

Figure 13: Q_FULL, Q_EMPTY, Q_SYNC Timing Diagram

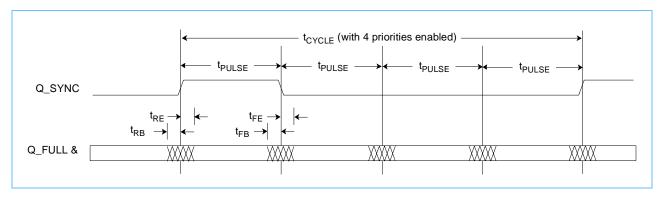


Table 28: Q_FULL, Q_EMPTY, Q_SYNC Timing Values

Symbol	Parameter	Rating	Note
tCYCLE	Cycle time	NrOfPriorities (1 to 4) x 4 byte cycles	1
t _{PULSE}	Q_SYNC Pulse	4 byte cycles	1
t _{RB}	Beginning of Rising Window	0.57ns	
t _{RE}	End of Rising Window	1.05ns	
t _{FB}	Beginning of Falling Window	0.37ns	
t _{FE}	End of Falling Window	1.25ns	

^{1.} Byte cycle = 9ns (111.1MHz operation) to 10ns (100MHz operation). Therefore, 4 byte cycles = 36ns (111.1MHz operation) to 40ns (100MHz operation).

7.1.3 Master-Slave Speed Expansion Signals

The Master-Slave speed expansion bus (SYS_CLK, MS_SYNC_IN, MS_SYNC_OUT, MS_DASLSYNC_IN, MS_DASLSYNC_OUT, MS_IN_ADDR, and MS_OUT_ADDR) is synchronous to the internal byte clock of the devices. They are connected point-to-point between the master and the slave devices. In order to guarantee the timing on those signals, the wiring is bounded:

Wiring delay on Master-Slave bus: maximum of 1.05 ns, or 15 cm of trace (70 ps/cm for FR4)

8. Packaging and Pin Information

Figure 14: Package Physical Dimensions

Ceramic Column Grid Array (CCGA), 32mm x 32mm 624-lead, Dual power supply

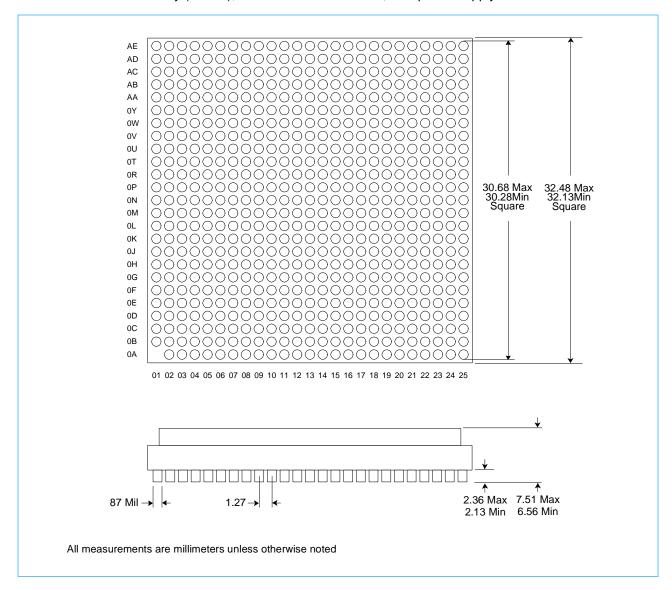


Table 29: Pin List, Sorted by Pin Name (Page 1 of 7)

		· -			
Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
C_CLK_OUTQ	0U05	DATA_IN_03_QN<2>	0H07	DATA_IN_07_QN<2>	0K11
C_CLK_OUTQN	0U03	DATA_IN_03_QN<3>	0B01	DATA_IN_07_QN<3>	0C12
DATA_IN_00_Q<0>	0N05	DATA_IN_04_Q<0>	0A02	DATA_IN_08_Q<0>	0A14
DATA_IN_00_Q<1>	0M02	DATA_IN_04_Q<1>	OE05	DATA_IN_08_Q<1>	0K15
DATA_IN_00_Q<2>	0L10	DATA_IN_04_Q<2>	0E07	DATA_IN_08_Q<2>	0G14
DATA_IN_00_Q<3>	0L02	DATA_IN_04_Q<3>	0H09	DATA_IN_08_Q<3>	0J15
DATA_IN_00_QN<0>	0N04	DATA_IN_04_QN<0>	0B02	DATA_IN_08_QN<0>	0A13
DATA_IN_00_QN<1>	0N02	DATA_IN_04_QN<1>	0D05	DATA_IN_08_QN<1>	0J14
DATA_IN_00_QN<2>	0M09	DATA_IN_04_QN<2>	0E06	DATA_IN_08_QN<2>	0F14
DATA_IN_00_QN<3>	0M01	DATA_IN_04_QN<3>	0G09	DATA_IN_08_QN<3>	0J16
DATA_IN_01_Q<0>	0L06	DATA_IN_05_Q<0>	0A05	DATA_IN_09_Q<0>	0E14
DATA_IN_01_Q<1>	0K02	DATA_IN_05_Q<1>	0D08	DATA_IN_09_Q<1>	0G15
DATA_IN_01_Q<2>	0K03	DATA_IN_05_Q<2>	0F09	DATA_IN_09_Q<2>	0D16
DATA_IN_01_Q<3>	0L04	DATA_IN_05_Q<3>	0B08	DATA_IN_09_Q<3>	0B17
DATA_IN_01_QN<0>	0L07	DATA_IN_05_QN<0>	0A06	DATA_IN_09_QN<0>	0D15
DATA_IN_01_QN<1>	0K01	DATA_IN_05_QN<1>	0E08	DATA_IN_09_QN<1>	0F15
DATA_IN_01_QN<2>	0J02	DATA_IN_05_QN<2>	0G10	DATA_IN_09_QN<2>	0C16
DATA_IN_01_QN<3>	0K05	DATA_IN_05_QN<3>	0B07	DATA_IN_09_QN<3>	0D17
DATA_IN_02_Q<0>	0H03	DATA_IN_06_Q<0>	0B09	DATA_IN_10_Q<0>	0B18
DATA_IN_02_Q<1>	0J06	DATA_IN_06_Q<1>	0C10	DATA_IN_10_Q<1>	0G16
DATA_IN_02_Q<2>	0F01	DATA_IN_06_Q<2>	0F11	DATA_IN_10_Q<2>	OE18
DATA_IN_02_Q<3>	0D01	DATA_IN_06_Q<3>	0B11	DATA_IN_10_Q<3>	0H17
DATA_IN_02_QN<0>	0J04	DATA_IN_06_QN<0>	0A08	DATA_IN_10_QN<0>	0A18
DATA_IN_02_QN<1>	0K07	DATA_IN_06_QN<1>	0D10	DATA_IN_10_QN<1>	0F17
DATA_IN_02_QN<2>	0E02	DATA_IN_06_QN<2>	0G11	DATA_IN_10_QN<2>	0D18
DATA_IN_02_QN<3>	0E01	DATA_IN_06_QN<3>	0D11	DATA_IN_10_QN<3>	0G17
DATA_IN_03_Q<0>	0C01	DATA_IN_07_Q<0>	0J10	DATA_IN_11_Q<0>	0E20
DATA_IN_03_Q<1>	0E03	DATA_IN_07_Q<1>	0F12	DATA_IN_11_Q<1>	0C21
DATA_IN_03_Q<2>	0G06	DATA_IN_07_Q<2>	0J12	DATA_IN_11_Q<2>	0C23
DATA_IN_03_Q<3>	0C02	DATA_IN_07_Q<3>	0B13	DATA_IN_11_Q<3>	0B24
DATA_IN_03_QN<0>	0D02	DATA_IN_07_QN<0>	0J11	DATA_IN_11_QN<0>	0C20
DATA_IN_03_QN<1>	0E04	DATA_IN_07_QN<1>	0G12	DATA_IN_11_QN<1>	0D21
L		U.		U.	

Table 29: Pin List, Sorted by Pin Name (Page 2 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
DATA_IN_11_QN<2>	0C22	DATA_IN_15_QN<2>	0M15	DATA_OUT_03_QN<2>	AC25
DATA_IN_11_QN<3>	0A24	DATA_IN_15_QN<3>	0N18	DATA_OUT_03_QN<3>	AB24
DATA_IN_12_Q<0>	0F21	DATA_OUT_00_Q<0>	0N21	DATA_OUT_04_Q<0>	AD23
DATA_IN_12_Q<1>	0G20	DATA_OUT_00_Q<1>	0N16	DATA_OUT_04_Q<1>	AE22
DATA_IN_12_Q<2>	0E23	DATA_OUT_00_Q<2>	0P15	DATA_OUT_04_Q<2>	AC21
DATA_IN_12_Q<3>	0D24	DATA_OUT_00_Q<3>	0R16	DATA_OUT_04_Q<3>	AE21
DATA_IN_12_QN<0>	0F20	DATA_OUT_00_QN<0>	0N22	DATA_OUT_04_QN<0>	AC23
DATA_IN_12_QN<1>	0G19	DATA_OUT_00_QN<1>	0N17	DATA_OUT_04_QN<1>	AE23
DATA_IN_12_QN<2>	0D23	DATA_OUT_00_QN<2>	0P17	DATA_OUT_04_QN<2>	AB21
DATA_IN_12_QN<3>	0C25	DATA_OUT_00_QN<3>	0R17	DATA_OUT_04_QN<3>	AD21
DATA_IN_13_Q<0>	0J18	DATA_OUT_01_Q<0>	0P25	DATA_OUT_05_Q<0>	AB19
DATA_IN_13_Q<1>	0H19	DATA_OUT_01_Q<1>	0R24	DATA_OUT_05_Q<1>	AC18
DATA_IN_13_Q<2>	OE25	DATA_OUT_01_Q<2>	0R19	DATA_OUT_05_Q<2>	AD17
DATA_IN_13_Q<3>	0H22	DATA_OUT_01_Q<3>	0T25	DATA_OUT_05_Q<3>	AC16
DATA_IN_13_QN<0>	0J19	DATA_OUT_01_QN<0>	0P24	DATA_OUT_05_QN<0>	AC20
DATA_IN_13_QN<1>	0H20	DATA_OUT_01_QN<1>	0R22	DATA_OUT_05_QN<1>	AD19
DATA_IN_13_QN<2>	0D25	DATA_OUT_01_QN<2>	0R20	DATA_OUT_05_QN<2>	AB17
DATA_IN_13_QN<3>	0G22	DATA_OUT_01_QN<3>	0T24	DATA_OUT_05_QN<3>	AB16
DATA_IN_14_Q<0>	0K19	DATA_OUT_02_Q<0>	0T21	DATA_OUT_06_Q<0>	0V15
DATA_IN_14_Q<1>	0K25	DATA_OUT_02_Q<1>	0U22	DATA_OUT_06_Q<1>	AD15
DATA_IN_14_Q<2>	0L19	DATA_OUT_02_Q<2>	0W22	DATA_OUT_06_Q<2>	0U15
DATA_IN_14_Q<3>	0K17	DATA_OUT_02_Q<3>	0U18	DATA_OUT_06_Q<3>	AC14
DATA_IN_14_QN<0>	0J20	DATA_OUT_02_QN<0>	0T23	DATA_OUT_06_QN<0>	0U16
DATA_IN_14_QN<1>	0K24	DATA_OUT_02_QN<1>	0U20	DATA_OUT_06_QN<1>	AB15
DATA_IN_14_QN<2>	0L20	DATA_OUT_02_QN<2>	0W24	DATA_OUT_06_QN<2>	0T15
DATA_IN_14_QN<3>	0L17	DATA_OUT_02_QN<3>	0U19	DATA_OUT_06_QN<3>	AA14
DATA_IN_15_Q<0>	0M24	DATA_OUT_03_Q<0>	AA25	DATA_OUT_07_Q<0>	0W14
DATA_IN_15_Q<1>	0M19	DATA_OUT_03_Q<1>	0W20	DATA_OUT_07_Q<1>	AE13
DATA_IN_15_Q<2>	0L16	DATA_OUT_03_Q<2>	AB25	DATA_OUT_07_Q<2>	0U13
DATA_IN_15_Q<3>	0N20	DATA_OUT_03_Q<3>	AB23	DATA_OUT_07_Q<3>	AA13
DATA_IN_15_QN<0>	0L24	DATA_OUT_03_QN<0>	AA23	DATA_OUT_07_QN<0>	0U14
DATA_IN_15_QN<1>	0M17	DATA_OUT_03_QN<1>	0W21	DATA_OUT_07_QN<1>	AC13

Table 29: Pin List, Sorted by Pin Name (Page 3 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
DATA_OUT_07_QN<2>	0T13	DATA_OUT_11_QN<2>	AB05	DATA_OUT_15_QN<2>	0R09
DATA_OUT_07_QN<3>	0Y13	DATA_OUT_11_QN<3>	AE02	DATA_OUT_15_QN<3>	0R10
DATA_OUT_08_Q<0>	AC12	DATA_OUT_12_Q<0>	0Y05	DBG_DATA<0>	OE13
DATA_OUT_08_Q<1>	0T11	DATA_OUT_12_Q<1>	AA03	DBG_DATA<10>	0C05
DATA_OUT_08_Q<2>	0W12	DATA_OUT_12_Q<2>	AA02	DBG_DATA<11>	0B05
DATA_OUT_08_Q<3>	0U11	DATA_OUT_12_Q<3>	0V07	DBG_DATA<12>	0C04
DATA_OUT_08_QN<0>	AD13	DATA_OUT_12_QN<0>	AA05	DBG_DATA<13>	0A04
DATA_OUT_08_QN<1>	0U12	DATA_OUT_12_QN<1>	AB03	DBG_DATA<14>	0B03
DATA_OUT_08_QN<2>	AA12	DATA_OUT_12_QN<2>	AB02	DBG_DATA<15>	0A03
DATA_OUT_08_QN<3>	0U10	DATA_OUT_12_QN<3>	0V06	DBG_DATA<1>	0D13
DATA_OUT_09_Q<0>	0V11	DATA_OUT_13_Q<0>	AA01	DBG_DATA<2>	OE12
DATA_OUT_09_Q<1>	AB10	DATA_OUT_13_Q<1>	0W02	DBG_DATA<3>	0A12
DATA_OUT_09_Q<2>	AD09	DATA_OUT_13_Q<2>	0V04	DBG_DATA<4>	OE10
DATA_OUT_09_Q<3>	AD08	DATA_OUT_13_Q<3>	0U06	DBG_DATA<5>	0A10
DATA_OUT_09_QN<0>	0W11	DATA_OUT_13_QN<0>	0Y01	DBG_DATA<6>	0D09
DATA_OUT_09_QN<1>	AC10	DATA_OUT_13_QN<1>	0W04	DBG_DATA<7>	0C08
DATA_OUT_09_QN<2>	AB09	DATA_OUT_13_QN<2>	0V05	DBG_DATA<8>	0D07
DATA_OUT_09_QN<3>	AE08	DATA_OUT_13_QN<3>	0T07	DBG_DATA<9>	0C06
DATA_OUT_10_Q<0>	AB07	DATA_OUT_14_Q<0>	0T03	DBG_SELECT<0>	0G04
DATA_OUT_10_Q<1>	AA08	DATA_OUT_14_Q<1>	0R07	DBG_SELECT<1>	0G07
DATA_OUT_10_Q<2>	AD05	DATA_OUT_14_Q<2>	0T01	DBG_SELECT<2>	0F03
DATA_OUT_10_Q<3>	0V09	DATA_OUT_14_Q<3>	0R06	DBG_SELECT<3>	0F05
DATA_OUT_10_QN<0>	AC08	DATA_OUT_14_QN<0>	0U04	DBG_SELECT<4>	0D03
DATA_OUT_10_QN<1>	AB08	DATA_OUT_14_QN<1>	0R08	DBG_SELECT<5>	0G08
DATA_OUT_10_QN<2>	AE05	DATA_OUT_14_QN<2>	0T02	DBG_SELECT<6>	0F07
DATA_OUT_10_QN<3>	0W09	DATA_OUT_14_QN<3>	0R04	DBG_SELECT<7>	0C03
DATA_OUT_11_Q<0>	AA06	DATA_OUT_15_Q<0>	0P01	DELAY_OUT	AA11
DATA_OUT_11_Q<1>	AC04	DATA_OUT_15_Q<1>	0U09	EMB_A_CLK	AC07
DATA_OUT_11_Q<2>	AC05	DATA_OUT_15_Q<2>	0P09	EMB_B_CLK	AE07
DATA_OUT_11_Q<3>	AD02	DATA_OUT_15_Q<3>	0P11	EMB_DATA_IN	AD01
DATA_OUT_11_QN<0>	AC06	DATA_OUT_15_QN<0>	0P02	EMB_DATA_OUT	AE03
DATA_OUT_11_QN<1>	AD03	DATA_OUT_15_QN<1>	0T09	EMB_MODE	AE04

Table 29: Pin List, Sorted by Pin Name (Page 4 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
IOTEST	0C11	MS_OUT_ADDR<1> 0V19 Q_EMPTY<6> AE		AE16	
LSSD_A_CLK	0J03	MS_OUT_ADDR<2>	0W19 Q_EMPTY<7>		0W15
LSSD_B2_CLK	OE11	MS_OUT_ADDR<3>	AA24	Q_EMPTY<8>	0R14
LSSD_B_CLK	0J05	MS_OUT_ADDR<4>	AA22	Q_EMPTY<9>	AE14
LSSD_C1_CLK	0L01	MS_OUT_ADDR<5>	AA20	Q_FULL<0>	0Y11
LSSD_C2_CLK	0L03	MS_OUT_ADDR<6>	AA19	Q_FULL<10>	0Y06
LSSD_C3_CLK	OE09	MS_OUT_ADDR<7>	AA18	Q_FULL<11>	AC02
LSSD_SCAN_GATE	0L05	MS_OUT_ADDR<8>	AC22	Q_FULL<12>	AA04
LSSD_SCAN_MODE	0G01	MS_OUT_ADDR<9>	AD24	Q_FULL<13>	0U08
LSSD_TAP_C1	0G03	MS_SYNC_IN	0R18	Q_FULL<14>	AB01
LSSD_TAP_C2	0J01	MS_SYNC_OUT	0N24	Q_FULL<15>	0Y03
MEM_GRANT<0>	0B25	NDI1	AE09	Q_FULL<1>	AB11
MEM_GRANT<1>	0C24	NDI2	AC11	Q_FULL<2>	AD11
MEM_GRANT<2>	0B23	NEMB_SELECT	AD07	Q_FULL<3>	0W10
MEM_GRANT<3>	0A23	NEMB_SIGOUT	AC01	Q_FULL<4>	AA10
MS_DASLSYNC_IN<0>	0G24	NRESET	AA09	Q_FULL<5>	AE10
MS_DASLSYNC_IN<1>	0F25	PLL_LOCK	0R01	Q_FULL<6>	0Y09
MS_DASLSYNC_OUT<0>	0M23	PLL_TESTIN	0R05	Q_FULL<7>	AA07
MS_DASLSYNC_OUT<1>	0L22	PLL_TESTOUT	0U01	Q_FULL<8>	0W08
MS_IN_ADDR<0>	0M21	PLL_VDDA	0R03	Q_FULL<9>	0Y07
MS_IN_ADDR<10>	0V21	Q_EMPTY<0>	0L12	Q_FULL_SYNC	AE12
MS_IN_ADDR<1>	0N23	Q_EMPTY<10>	0P13	RAM_BURN_IN	AC09
MS_IN_ADDR<2>	0P23	Q_EMPTY<11>	0N12	RCV_GRANT<0>	0M07
MS_IN_ADDR<3>	0P21	Q_EMPTY<12>	0W13	RCV_GRANT<10>	0U02
MS_IN_ADDR<4>	0P19	Q_EMPTY<13>	0M11	RCV_GRANT<11>	0V03
MS_IN_ADDR<5>	0T19	Q_EMPTY<14>	0R12	RCV_GRANT<12>	0V01
MS_IN_ADDR<6>	0U24	Q_EMPTY<15>	0Y12	RCV_GRANT<13>	0W07
MS_IN_ADDR<7>	0V25	Q_EMPTY<1>	0V17	RCV_GRANT<14>	0W06
MS_IN_ADDR<8>	0V23	Q_EMPTY<2>	AB18	RCV_GRANT<15>	0W05
MS_IN_ADDR<9>	0V22	Q_EMPTY<3>	AE18	RCV_GRANT<1>	0M05
MS_OUT_ADDR<0>	0V20	Q_EMPTY<4>	AD18	RCV_GRANT<2>	0M03
MS_OUT_ADDR<10>	AE20	Q_EMPTY<5>	0U17	RCV_GRANT<3>	0N07

Table 29: Pin List, Sorted by Pin Name (Page 5 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
RCV_GRANT<4>	0N01	SCAN_OUT<6>	AE19	VREF_MS_SYNC	0J24
RCV_GRANT<5>	0P07	SCAN_OUT<7>	AC19 WTEST		0R25
RCV_GRANT<6>	0P03	SCAN_OUT<8>	0U21	VDD	0D04
RCV_GRANT<7>	0R02	SCAN_OUT<9>	0R21	VDD	0D12
RCV_GRANT<8>	0T05	SEQ_CLK	0N25	VDD	0D14
RCV_GRANT<9>	0U07	SEQ_CLK_TTL	0N14	VDD	0D22
SCAN_IN<0>	0A15	SIDD	AE11	VDD	0H08
SCAN_IN<10>	0G23	SND_GRANT<0>	0F23	VDD	0H12
SCAN_IN<11>	0J23	SND_GRANT<10>	0B19	VDD	0H14
SCAN_IN<12>	0L23	SND_GRANT<11>	0G18	VDD	0H18
SCAN_IN<13>	0G25	SND_GRANT<12>	0C18	VDD	0L11
SCAN_IN<14>	0J25	SND_GRANT<13>	OE16	VDD	0L15
SCAN_IN<1>	0C15	SND_GRANT<14>	0A16	VDD	0M04
SCAN_IN<2>	OE15	SND_GRANT<15>	0B15	VDD	0M08
SCAN_IN<3>	0A17	SND_GRANT<1>	OE22	VDD	0M12
SCAN_IN<4>	0C17	SND_GRANT<2>	0A22	VDD	0M14
SCAN_IN<5>	OE17	SND_GRANT<3>	0G21	VDD	0M18
SCAN_IN<6>	0A19	SND_GRANT<4>	0B21	VDD	0M22
SCAN_IN<7>	0C19	SND_GRANT<5>	0A21	VDD	0P04
SCAN_IN<8>	0J21	SND_GRANT<6>	0A20	VDD	0P08
SCAN_IN<9>	0L21	SND_GRANT<7>	0F19	VDD	0P12
SCAN_OUT<0>	AE15	SND_GRANT<8>	OE19	VDD	0P14
SCAN_OUT<10>	0W23	SND_GRANT<9>	0D19	VDD	0P18
SCAN_OUT<11>	0U23	SYS_CLKQ	0W03	VDD	0P22
SCAN_OUT<12>	0R23	SYS_CLKQN	0W01	VDD	0R11
SCAN_OUT<13>	0W25	тск	0C07	VDD	0R15
SCAN_OUT<14>	0U25	TDI	0A09	VDD	0V08
SCAN_OUT<1>	AC15	TDO	0A11	VDD	0V12
SCAN_OUT<2>	AA15	TMS	0A07	VDD	0V14
SCAN_OUT<3>	AE17	TRST	0C09	VDD	0V18
SCAN_OUT<4>	AC17	VREF_MS_IN	0M13	VDD	AB04
SCAN_OUT<5>	AA17	VREF_MS_OUT	0W18	VDD	AB12

Table 29: Pin List, Sorted by Pin Name (Page 6 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
VDD	AB14	VDR	0L25	GND	0J07
VDD	AB22	VDR	0N03	GND	0J08
VDD2	0B06	VDR	0N19	GND	0J09
VDD2	0B10	VDR	0V13	GND	0J13
VDD2	0B16	GND	0A25	GND	0J17
VDD2	0B20	GND	0B04	GND	0J22
VDD2	0F02	GND	0B12	GND	0K04
VDD2	0F10	GND	0B14	GND	0K08
VDD2	0F16	GND	0B22	GND	0K09
VDD2	0F24	GND	0C13	GND	0K12
VDD2	0K06	GND	0C14	GND	0K13
VDD2	0K10	GND	0D06	GND	0K14
VDD2	0K16	GND	0D20	GND	0K18
VDD2	0K20	GND	0F04	GND	0K21
VDD2	0L13	GND	0F08	GND	0K22
VDD2	0N11	GND	0F13	GND	0K23
VDD2	0N13	GND	0F18	GND	0L08
VDD2	0N15	GND	0F22	GND	0L09
VDD2	0R13	GND	0G02	GND	0L14
VDD2	0T06	GND	0G13	GND	0L18
VDD2	0T10	GND	0H02	GND	0M06
VDD2	0T16	GND	0H04	GND	0M10
VDD2	0T20	GND	0H05	GND	0M16
VDD2	0Y02	GND	0H06	GND	0M20
VDD2	0Y10	GND	0H10	GND	0N08
VDD2	0Y16	GND	0H11	GND	0N10
VDD2	0Y24	GND	0H15	GND	0P06
VDD2	AD06	GND	0H16	GND	0P10
VDD2	AD10	GND	0H21	GND	0P16
VDD2	AD16	GND	0H23	GND	0P20
VDD2	AD20	GND	0H24	GND	0T04
VDR	0H13	GND	0H25	GND	0T08

Table 29: Pin List, Sorted by Pin Name (Page 7 of 7)

Signal Name	Pin	Signal Name	Pin	Signal Name	Pin
GND	0T12	N.C.	0N06		
GND	0T14	N.C.	0N09		
GND	0T17	N.C.	0P05		
GND	0T18	N.C.	0Y14		
GND	0T22	N.C.	0Y15		
GND	0V02	N.C.	0Y17		
GND	0V10	N.C.	0Y19		
GND	0V16	N.C.	0Y20		
GND	0V24	N.C.	0Y21		
GND	0W16	N.C.	0Y23		
GND	0W17	N.C.	0Y25		
GND	0Y04	N.C.	AA21		
GND	0Y08	N.C.	AB13		
GND	0Y18	N.C.	AC03		
GND	0Y22	N.C.	AD25		
GND	AA16	N.C.	AE06		
GND	AB06				
GND	AB20				
GND	AC24				
GND	AD04				
GND	AD12				
GND	AD14				
GND	AD22				
GND	AE01				
GND	AE24				
GND	AE25				
N.C.	OE21				
N.C.	OE24				
N.C.	0F06				
N.C.	0G05				
N.C.	0H01				
N.C.	0M25				

Table 30: Pin List, Sorted by Pin Number (Page 1 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
0A02	DATA_IN_04_Q<0>	0B09	DATA_IN_06_Q<0>	0C16	DATA_IN_09_QN<2>
0A03	DBG_DATA<15>	0B10	VDD2	0C17	SCAN_IN<4>
0A04	DBG_DATA<13>	0B11	DATA_IN_06_Q<3>	0C18	SND_GRANT<12>
0A05	DATA_IN_05_Q<0>	0B12	GND	0C19	SCAN_IN<7>
0A06	DATA_IN_05_QN<0>	0B13	DATA_IN_07_Q<3>	0C20	DATA_IN_11_QN<0>
0A07	TMS	0B14	GND	0C21	DATA_IN_11_Q<1>
0A08	DATA_IN_06_QN<0>	0B15	SND_GRANT<15>	0C22	DATA_IN_11_QN<2>
0A09	TDI	0B16	VDD2	0C23	DATA_IN_11_Q<2>
0A10	DBG_DATA<5>	0B17	DATA_IN_09_Q<3>	0C24	MEM_GRANT<1>
0A11	TDO	0B18	DATA_IN_10_Q<0>	0C25	DATA_IN_12_QN<3>
0A12	DBG_DATA<3>	0B19	SND_GRANT<10>	0D01	DATA_IN_02_Q<3>
0A13	DATA_IN_08_QN<0>	0B20	VDD2	0D02	DATA_IN_03_QN<0>
0A14	DATA_IN_08_Q<0>	0B21	SND_GRANT<4>	0D03	DBG_SELECT<4>
0A15	SCAN_IN<0>	0B22	GND	0D04	VDD
0A16	SND_GRANT<14>	0B23	MEM_GRANT<2>	0D05	DATA_IN_04_QN<1>
0A17	SCAN_IN<3>	0B24	DATA_IN_11_Q<3>	0D06	GND
0A18	DATA_IN_10_QN<0>	0B25	MEM_GRANT<0>	0D07	DBG_DATA<8>
0A19	SCAN_IN<6>	0C01	DATA_IN_03_Q<0>	0D08	DATA_IN_05_Q<1>
0A20	SND_GRANT<6>	0C02	DATA_IN_03_Q<3>	0D09	DBG_DATA<6>
0A21	SND_GRANT<5>	0C03	DBG_SELECT<7>	0D10	DATA_IN_06_QN<1>
0A22	SND_GRANT<2>	0C04	DBG_DATA<12>	0D11	DATA_IN_06_QN<3>
0A23	MEM_GRANT<3>	0C05	DBG_DATA<10>	0D12	VDD
0A24	DATA_IN_11_QN<3>	0C06	DBG_DATA<9>	0D13	DBG_DATA<1>
0A25	GND	0C07	тск	0D14	VDD
0B01	DATA_IN_03_QN<3>	0C08	DBG_DATA<7>	0D15	DATA_IN_09_QN<0>
0B02	DATA_IN_04_QN<0>	0C09	TRST	0D16	DATA_IN_09_Q<2>
0B03	DBG_DATA<14>	0C10	DATA_IN_06_Q<1>	0D17	DATA_IN_09_QN<3>
0B04	GND	0C11	IOTEST	0D18	DATA_IN_10_QN<2>
0B05	DBG_DATA<11>	0C12	DATA_IN_07_QN<3>	0D19	SND_GRANT<9>
0B06	VDD2	0C13	GND	0D20	GND
0B07	DATA_IN_05_QN<3>	0C14	GND	0D21	DATA_IN_11_QN<1>
0B08	DATA_IN_05_Q<3>	0C15	SCAN_IN<1>	0D22	VDD

Table 30: Pin List, Sorted by Pin Number (Page 2 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
0D23	DATA_IN_12_QN<2>	0F05	DBG_SELECT<3>	0G12	DATA_IN_07_QN<1>
0D24	DATA_IN_12_Q<3>	0F06	N.C.	0G13	GND
0D25	DATA_IN_13_QN<2>	0F07	DBG_SELECT<6>	0G14	DATA_IN_08_Q<2>
OE01	DATA_IN_02_QN<3>	0F08	GND	0G15	DATA_IN_09_Q<1>
OE02	DATA_IN_02_QN<2>	0F09	DATA_IN_05_Q<2>	0G16	DATA_IN_10_Q<1>
OE03	DATA_IN_03_Q<1>	0F10	VDD2	0G17	DATA_IN_10_QN<3>
OE04	DATA_IN_03_QN<1>	0F11	DATA_IN_06_Q<2>	0G18	SND_GRANT<11>
OE05	DATA_IN_04_Q<1>	0F12	DATA_IN_07_Q<1>	0G19	DATA_IN_12_QN<1>
OE06	DATA_IN_04_QN<2>	0F13	GND	0G20	DATA_IN_12_Q<1>
OE07	DATA_IN_04_Q<2>	0F14	DATA_IN_08_QN<2>	0G21	SND_GRANT<3>
OE08	DATA_IN_05_QN<1>	0F15	DATA_IN_09_QN<1>	0G22	DATA_IN_13_QN<3>
OE09	LSSD_C3_CLK	0F16	VDD2	0G23	SCAN_IN<10>
OE10	DBG_DATA<4>	0F17	DATA_IN_10_QN<1>	0G24	MS_DASLSYNC_IN<0>
OE11	LSSD_B2_CLK	0F18	GND	0G25	SCAN_IN<13>
OE12	DBG_DATA<2>	0F19	SND_GRANT<7>	0H01	N.C.
OE13	DBG_DATA<0>	0F20	DATA_IN_12_QN<0>	0H02	GND
OE14	DATA_IN_09_Q<0>	0F21	DATA_IN_12_Q<0>	0H03	DATA_IN_02_Q<0>
OE15	SCAN_IN<2>	0F22	GND	0H04	GND
OE16	SND_GRANT<13>	0F23	SND_GRANT<0>	0H05	GND
OE17	SCAN_IN<5>	0F24	VDD2	0H06	GND
OE18	DATA_IN_10_Q<2>	0F25	MS_DASLSYNC_IN<1>	0H07	DATA_IN_03_QN<2>
OE19	SND_GRANT<8>	0G01	LSSD_SCAN_MODE	0H08	VDD
OE20	DATA_IN_11_Q<0>	0G02	GND	0H09	DATA_IN_04_Q<3>
OE21	N.C.	0G03	LSSD_TAP_C1	0H10	GND
OE22	SND_GRANT<1>	0G04	DBG_SELECT<0>	0H11	GND
OE23	DATA_IN_12_Q<2>	0G05	N.C.	0H12	VDD
OE24	N.C.	0G06	DATA_IN_03_Q<2>	0H13	VDR
OE25	DATA_IN_13_Q<2>	0G07	DBG_SELECT<1>	0H14	VDD
0F01	DATA_IN_02_Q<2>	0G08	DBG_SELECT<5>	0H15	GND
0F02	VDD2	0G09	DATA_IN_04_QN<3>	0H16	GND
0F03	DBG_SELECT<2>	0G10	DATA_IN_05_QN<2>	0H17	DATA_IN_10_Q<3>
0F04	GND	0G11	DATA_IN_06_QN<2>	0H18	VDD

Table 30: Pin List, Sorted by Pin Number (Page 3 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
0H19	DATA_IN_13_Q<1>	0K01	DATA_IN_01_QN<1>	0L08	GND
0H20	DATA_IN_13_QN<1>	0K02	DATA_IN_01_Q<1>	0L09	GND
0H21	GND	0K03	DATA_IN_01_Q<2>	0L10	DATA_IN_00_Q<2>
0H22	DATA_IN_13_Q<3>	0K04	GND	0L11	VDD
0H23	GND	0K05	DATA_IN_01_QN<3>	0L12	Q_EMPTY<0>
0H24	GND	0K06	VDD2	0L13	VDD2
0H25	GND	0K07	DATA_IN_02_QN<1>	0L14	GND
0J01	LSSD_TAP_C2	0K08	GND	0L15	VDD
0J02	DATA_IN_01_QN<2>	0K09	GND	0L16	DATA_IN_15_Q<2>
0J03	LSSD_A_CLK	0K10	VDD2	0L17	DATA_IN_14_QN<3>
0J04	DATA_IN_02_QN<0>	0K11	DATA_IN_07_QN<2>	0L18	GND
0J05	LSSD_B_CLK	0K12	GND	0L19	DATA_IN_14_Q<2>
0J06	DATA_IN_02_Q<1>	0K13	GND	0L20	DATA_IN_14_QN<2>
0J07	GND	0K14	GND	0L21	SCAN_IN<9>
0J08	GND	0K15	DATA_IN_08_Q<1>	0L22	MS_DASLSYNC_OUT<1>
0J09	GND	0K16	VDD2	0L23	SCAN_IN<12>
0J10	DATA_IN_07_Q<0>	0K17	DATA_IN_14_Q<3>	0L24	DATA_IN_15_QN<0>
0J11	DATA_IN_07_QN<0>	0K18	GND	0L25	VDR
0J12	DATA_IN_07_Q<2>	0K19	DATA_IN_14_Q<0>	0M01	DATA_IN_00_QN<3>
0J13	GND	0K20	VDD2	0M02	DATA_IN_00_Q<1>
0J14	DATA_IN_08_QN<1>	0K21	GND	0M03	RCV_GRANT<2>
0J15	DATA_IN_08_Q<3>	0K22	GND	0M04	VDD
0J16	DATA_IN_08_QN<3>	0K23	GND	0M05	RCV_GRANT<1>
0J17	GND	0K24	DATA_IN_14_QN<1>	0M06	GND
0J18	DATA_IN_13_Q<0>	0K25	DATA_IN_14_Q<1>	0M07	RCV_GRANT<0>
0J19	DATA_IN_13_QN<0>	0L01	LSSD_C1_CLK	0M08	VDD
0J20	DATA_IN_14_QN<0>	0L02	DATA_IN_00_Q<3>	0M09	DATA_IN_00_QN<2>
0J21	SCAN_IN<8>	0L03	LSSD_C2_CLK	0M10	GND
0J22	GND	0L04	DATA_IN_01_Q<3>	0M11	Q_EMPTY<13>
0J23	SCAN_IN<11>	0L05	LSSD_SCAN_GATE	0M12	VDD
0J24	VREF_MS_SYNC	0L06	DATA_IN_01_Q<0>	0M13	VREF_MS_IN
0J25	SCAN_IN<14>	0L07	DATA_IN_01_QN<0>	0M14	VDD

Table 30: Pin List, Sorted by Pin Number (Page 4 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
0M15	DATA_IN_15_QN<2>	0N22	DATA_OUT_00_QN<0>	0R04	DATA_OUT_14_QN<3>
0M16	GND	0N23	MS_IN_ADDR<1>	0R05	PLL_TESTIN
0M17	DATA_IN_15_QN<1>	0N24	MS_SYNC_OUT	0R06	DATA_OUT_14_Q<3>
0M18	VDD	0N25	SEQ_CLK	0R07	DATA_OUT_14_Q<1>
0M19	DATA_IN_15_Q<1>	0P01	DATA_OUT_15_Q<0>	0R08	DATA_OUT_14_QN<1>
0M20	GND	0P02	DATA_OUT_15_QN<0>	0R09	DATA_OUT_15_QN<2>
0M21	MS_IN_ADDR<0>	0P03	RCV_GRANT<6>	0R10	DATA_OUT_15_QN<3>
0M22	VDD	0P04	VDD	0R11	VDD
0M23	MS_DASLSYNC_OUT<0>	0P05	N.C.	0R12	Q_EMPTY<14>
0M24	DATA_IN_15_Q<0>	0P06	GND	0R13	VDD2
0M25	N.C.	0P07	RCV_GRANT<5>	0R14	Q_EMPTY<8>
0N01	RCV_GRANT<4>	0P08	VDD	0R15	VDD
0N02	DATA_IN_00_QN<1>	0P09	DATA_OUT_15_Q<2>	0R16	DATA_OUT_00_Q<3>
0N03	VDR	0P10	GND	0R17	DATA_OUT_00_QN<3>
0N04	DATA_IN_00_QN<0>	0P11	DATA_OUT_15_Q<3>	0R18	MS_SYNC_IN
0N05	DATA_IN_00_Q<0>	0P12	VDD	0R19	DATA_OUT_01_Q<2>
0N06	N.C.	0P13	Q_EMPTY<10>	0R20	DATA_OUT_01_QN<2>
0N07	RCV_GRANT<3>	0P14	VDD	0R21	SCAN_OUT<9>
0N08	GND	0P15	DATA_OUT_00_Q<2>	0R22	DATA_OUT_01_QN<1>
0N09	N.C.	0P16	GND	0R23	SCAN_OUT<12>
0N10	GND	0P17	DATA_OUT_00_QN<2>	0R24	DATA_OUT_01_Q<1>
0N11	VDD2	0P18	VDD	0R25	WTEST
0N12	Q_EMPTY<11>	0P19	MS_IN_ADDR<4>	0T01	DATA_OUT_14_Q<2>
0N13	VDD2	0P20	GND	0T02	DATA_OUT_14_QN<2>
0N14	SEQ_CLK_TTL	0P21	MS_IN_ADDR<3>	0T03	DATA_OUT_14_Q<0>
0N15	VDD2	0P22	VDD	0T04	GND
0N16	DATA_OUT_00_Q<1>	0P23	MS_IN_ADDR<2>	0T05	RCV_GRANT<8>
0N17	DATA_OUT_00_QN<1>	0P24	DATA_OUT_01_QN<0>	0T06	VDD2
0N18	DATA_IN_15_QN<3>	0P25	DATA_OUT_01_Q<0>	0T07	DATA_OUT_13_QN<3>
0N19	VDR	0R01	PLL_LOCK	0T08	GND
0N20	DATA_IN_15_Q<3>	0R02	RCV_GRANT<7>	0Т09	DATA_OUT_15_QN<1>
0N21	DATA_OUT_00_Q<0>	0R03	PLL_VDDA	0T10	VDD2

Table 30: Pin List, Sorted by Pin Number (Page 5 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
0T11	DATA_OUT_08_Q<1>	0U18	DATA_OUT_02_Q<3>	0V25	MS_IN_ADDR<7>
0T12	GND	0U19	DATA_OUT_02_QN<3>	0W01	SYS_CLKQN
0T13	DATA_OUT_07_QN<2>	0U20	DATA_OUT_02_QN<1>	0W02	DATA_OUT_13_Q<1>
0T14	GND	0U21	SCAN_OUT<8>	0W03	SYS_CLKQ
0T15	DATA_OUT_06_QN<2>	0U22	DATA_OUT_02_Q<1>	0W04	DATA_OUT_13_QN<1>
0T16	VDD2	0U23	SCAN_OUT<11>	0W05	RCV_GRANT<15>
0T17	GND	0U24	MS_IN_ADDR<6>	0W06	RCV_GRANT<14>
0T18	GND	0U25	SCAN_OUT<14>	0W07	RCV_GRANT<13>
0T19	MS_IN_ADDR<5>	0V01	RCV_GRANT<12>	0W08	Q_FULL<8>
0T20	VDD2	0V02	GND	0W09	DATA_OUT_10_QN<3>
0T21	DATA_OUT_02_Q<0>	0V03	RCV_GRANT<11>	0W10	Q_FULL<3>
0T22	GND	0V04	DATA_OUT_13_Q<2>	0W11	DATA_OUT_09_QN<0>
0T23	DATA_OUT_02_QN<0>	0V05	DATA_OUT_13_QN<2>	0W12	DATA_OUT_08_Q<2>
0T24	DATA_OUT_01_QN<3>	0V06	DATA_OUT_12_QN<3>	0W13	Q_EMPTY<12>
0T25	DATA_OUT_01_Q<3>	0V07	DATA_OUT_12_Q<3>	0W14	DATA_OUT_07_Q<0>
0U01	PLL_TESTOUT	0V08	VDD	0W15	Q_EMPTY<7>
0U02	RCV_GRANT<10>	0V09	DATA_OUT_10_Q<3>	0W16	GND
0U03	C_CLK_OUTQN	0V10	GND	0W17	GND
0U04	DATA_OUT_14_QN<0>	0V11	DATA_OUT_09_Q<0>	0W18	VREF_MS_OUT
0U05	C_CLK_OUTQ	0V12	VDD	0W19	MS_OUT_ADDR<2>
0U06	DATA_OUT_13_Q<3>	0V13	VDR	0W20	DATA_OUT_03_Q<1>
0U07	RCV_GRANT<9>	0V14	VDD	0W21	DATA_OUT_03_QN<1>
0U08	Q_FULL<13>	0V15	DATA_OUT_06_Q<0>	0W22	DATA_OUT_02_Q<2>
0U09	DATA_OUT_15_Q<1>	0V16	GND	0W23	SCAN_OUT<10>
0U10	DATA_OUT_08_QN<3>	0V17	Q_EMPTY<1>	0W24	DATA_OUT_02_QN<2>
0U11	DATA_OUT_08_Q<3>	0V18	VDD	0W25	SCAN_OUT<13>
0U12	DATA_OUT_08_QN<1>	0V19	MS_OUT_ADDR<1>	0Y01	DATA_OUT_13_QN<0>
0U13	DATA_OUT_07_Q<2>	0V20	MS_OUT_ADDR<0>	0Y02	VDD2
0U14	DATA_OUT_07_QN<0>	0V21	MS_IN_ADDR<10>	0Y03	Q_FULL<15>
0U15	DATA_OUT_06_Q<2>	0V22	MS_IN_ADDR<9>	0Y04	GND
0U16	DATA_OUT_06_QN<0>	0V23	MS_IN_ADDR<8>	0Y05	DATA_OUT_12_Q<0>
0U17	Q_EMPTY<5>	0V24	GND	0Y06	Q_FULL<10>

Table 30: Pin List, Sorted by Pin Number (Page 6 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	
0Y07	Q_FULL<9>	AA14	DATA_OUT_06_QN<3>	AB21	DATA_OUT_04_QN<2>	
0Y08	GND	AA15	SCAN_OUT<2>	AB22	VDD	
0Y09	Q_FULL<6>	AA16	GND	AB23	DATA_OUT_03_Q<3>	
0Y10	VDD2	AA17	SCAN_OUT<5>	AB24	DATA_OUT_03_QN<3>	
0Y11	Q_FULL<0>	AA18	MS_OUT_ADDR<7>	AB25	DATA_OUT_03_Q<2>	
0Y12	Q_EMPTY<15>	AA19	MS_OUT_ADDR<6>	AC01	NEMB_SIGOUT	
0Y13	DATA_OUT_07_QN<3>	AA20	MS_OUT_ADDR<5>	AC02	Q_FULL<11>	
0Y14	N.C.	AA21	N.C.	AC03	N.C.	
0Y15	N.C.	AA22	MS_OUT_ADDR<4>	AC04	DATA_OUT_11_Q<1>	
0Y16	VDD2	AA23	DATA_OUT_03_QN<0>	AC05	DATA_OUT_11_Q<2>	
0Y17	N.C.	AA24	MS_OUT_ADDR<3>	AC06	DATA_OUT_11_QN<0>	
0Y18	GND	AA25	DATA_OUT_03_Q<0>	AC07	EMB_A_CLK	
0Y19	N.C.	AB01	Q_FULL<14>	AC08	DATA_OUT_10_QN<0>	
0Y20	N.C.	AB02	DATA_OUT_12_QN<2>	AC09	RAM_BURN_IN	
0Y21	N.C.	AB03	DATA_OUT_12_QN<1>	AC10	DATA_OUT_09_QN<1>	
0Y22	GND	AB04	VDD	AC11	NDI2	
0Y23	N.C.	AB05	DATA_OUT_11_QN<2>	AC12	DATA_OUT_08_Q<0>	
0Y24	VDD2	AB06	GND	AC13	DATA_OUT_07_QN<1>	
0Y25	N.C.	AB07	DATA_OUT_10_Q<0>	AC14	DATA_OUT_06_Q<3>	
AA01	DATA_OUT_13_Q<0>	AB08	DATA_OUT_10_QN<1>	AC15	SCAN_OUT<1>	
AA02	DATA_OUT_12_Q<2>	AB09	DATA_OUT_09_QN<2>	AC16	DATA_OUT_05_Q<3>	
AA03	DATA_OUT_12_Q<1>	AB10	DATA_OUT_09_Q<1>	AC17	SCAN_OUT<4>	
AA04	Q_FULL<12>	AB11	Q_FULL<1>	AC18	DATA_OUT_05_Q<1>	
AA05	DATA_OUT_12_QN<0>	AB12	VDD	AC19	SCAN_OUT<7>	
AA06	DATA_OUT_11_Q<0>	AB13	N.C.	AC20	DATA_OUT_05_QN<0>	
AA07	Q_FULL<7>	AB14	VDD	AC21	DATA_OUT_04_Q<2>	
AA08	DATA_OUT_10_Q<1>	AB15	DATA_OUT_06_QN<1>	AC22	MS_OUT_ADDR<8>	
AA09	NRESET	AB16	DATA_OUT_05_QN<3>	AC23	DATA_OUT_04_QN<0>	
AA10	Q_FULL<4>	AB17	DATA_OUT_05_QN<2>	AC24	GND	
AA11	DELAY_OUT	AB18	Q_EMPTY<2>	AC25	DATA_OUT_03_QN<2>	
AA12	DATA_OUT_08_QN<2>	AB19	DATA_OUT_05_Q<0>	AD01	EMB_DATA_IN	
AA13	DATA_OUT_07_Q<3>	AB20	GND	AD02	DATA_OUT_11_Q<3>	

Table 30: Pin List, Sorted by Pin Number (Page 7 of 7)

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
AD03	DATA_OUT_11_QN<1>	AE10	Q_FULL<5>		
AD04	GND	AE11	SIDD		
AD05	DATA_OUT_10_Q<2>	AE12	Q_FULL_SYNC		
AD06	VDD2	AE13	DATA_OUT_07_Q<1>		
AD07	NEMB_SELECT	AE14	Q_EMPTY<9>		
AD08	DATA_OUT_09_Q<3>	AE15	SCAN_OUT<0>		
AD09	DATA_OUT_09_Q<2>	AE16	Q_EMPTY<6>		
AD10	VDD2	AE17	SCAN_OUT<3>		
AD11	Q_FULL<2>	AE18	Q_EMPTY<3>		
AD12	GND	AE19	SCAN_OUT<6>		
AD13	DATA_OUT_08_QN<0>	AE20	MS_OUT_ADDR<10>		
AD14	GND	AE21	DATA_OUT_04_Q<3>		
AD15	DATA_OUT_06_Q<1>	AE22	DATA_OUT_04_Q<1>		
AD16	VDD2	AE23	DATA_OUT_04_QN<1>		
AD17	DATA_OUT_05_Q<2>	AE24	GND		
AD18	Q_EMPTY<4>	AE25	GND		
AD19	DATA_OUT_05_QN<1>				
AD20	VDD2				
AD21	DATA_OUT_04_QN<3>				
AD22	GND				
AD23	DATA_OUT_04_Q<0>				
AD24	MS_OUT_ADDR<9>				
AD25	N.C.				
AE01	GND				
AE02	DATA_OUT_11_QN<3>				
AE03	EMB_DATA_OUT				
AE04	EMB_MODE				
AE05	DATA_OUT_10_QN<2>				
AE06	N.C.				
AE07	EMB_B_CLK				
AE08	DATA_OUT_09_QN<3>				
AE09	NDI1				

9. DASL Specification and Pico-Processor

The DASL interface is composed of four 444 Mb/s HSTL differential pairs, compliant with EIA/JEDEC JESD8-6 standard.

The data synchronization (bit-phase alignment and packet alignment) is performed by an internal pico-processor (M3) which acts as a shared controller for all DASL interfaces. This synchronization is performed when transmitting Sync packets and placing the shared controller in a Hunt state via the Sync Hunt register (see DASL Initialization and Operation section).

The DASL synchronization algorithm allows for temperature tracking and dynamic phase alignment. This algorithm will operate without lost of data in the following temperature range:

Table 31: DASL Temperature Range

Junction Temperature	0 °C to 100 °C

The operation of the shared controller requires first the programming of the -processor instruction memory. The instruction code is provided along with the PRS28.4G module.

Access to the instruction memory is provided via the Processor Address and Data registers, and the Processor Commands in the Command register (see Application Registers section). The table below shows the range addresses of the instruction memory in the pico-processor address space.

Table 32: Instruction Memory in Processor Address Space

Instruction Memory Lowest Address	x'800'
Instruction Memory Highest Address	x'FFF'

Loading of the instruction memory has to start at the lowest address, 0x'800', and the instructions have to be continuous in the address space. Note that the Processor Address only has to be set once, since its value will auto-increment after every memory access.

Finally, access to the instruction memory (read or write) has to be performed by first activating the M3_Reset bit in the Mode register and keeping it active until all memory accesses are completed. The M3_Reset keeps the pico-processor in its reset state. Once the M3_Reset is cleared, the pico-processor will start execution from address 0x'800'.

10. Electrical Characteristics

Table 33: Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{DD}	Supply Voltage	-0.5		3.6	V	1
V_{IN}	Input Voltage	-0.5		V _{DD} +0.4	V	1
V _{OUT}	Output Voltage	-0.5		V _{DD} +0.5	V	1
	Thermal impedance junction to ambient package Airflow = 0		11.8		°C/W	1
	Thermal impedance junction to ambient package Airflow = 100 FPM		10.5		°C/W	1
	Thermal impedance junction to ambient package Airflow = 100 FPM w/heat sink		3.6		°C/W	1
	Thermal impedance junction to case package		0.35		°C/W	1
T _S	Storage Temperature	-55		150	°C	1
T_A	Operating Junction Temperature Range	0		100	°C	1
	Electrostatic Discharge	-3000	6000	3000	V	1

^{1.} Permanent device damage might occur if the above absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational section of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 34: Recommended Operating Conditions

Symbol	Parameter (for TTL compatible I/Os)	Min	Тур	Max	Units	Notes
V_{DD}	Supply Voltage	3	3.3	3.6	V	1, 2
V_{DD2}	Supply Voltage	1.46	1.5	1.54	V	1, 2
V_{IH}	Input Up Level		1.4	2	V	
V_{IL}	Input Down Level	0.8	1.4		V	
V _{OH}	High Level Output Voltage (V _{DD} =min, I _{OH} =-4mA)	2.4	2.7	V_{DD}	V	
W	Low Level Output Voltage (V _{DD} =min, I _{OL} =6mA)	GND	0.25	0.4	V	5
V_{OL}	Low Level Output Voltage (V _{DD} =min, I _{OL} =8mA)	GND	0.25	0.4	V	6
I _{OZH}	High Level Off State Output Current (V_{DD} =max, V_{O} = V_{DD} (max))		0.1	10	μА	
l _{OZL}	Low Level Off State Output Current (V _{DD} =max, V _O =GND)		0.1	10	μΑ	
lį	Maximum Input Current (V _{DD} =max, VI=V _{DD} (max))		0.1	10	μΑ	
	High Level Input Current (V _{DD} =max, VI=V _{DD} (max))	10	0.1		μΑ	3
		40	69	113	μΑ	7
I _{IH}		80	133	217	μΑ	8
		750	1250	220	μΑ	9
	Low Level Input Current (V _{DD} =nom, V _O =GND)	-10	-0.1		μΑ	3
		-72	-47	-29	μΑ	4
I _{IL}		-139	-93	-58	μΑ	5
		-1927	-1285	-810	μΑ	6
	Output Circuit Shorted High Current (V _{DD} =nom, V _O =GND)	39	63	105	mA	7
I _{OSH}		83	135	224	mA	8
	Output Circuit Charted Lou Current // acce. V. OND	-90	-50	-29	mA	10
I _{OSL}	Output Circuit Shorted Low Current (V _{DD} =nom, V _O =GND)	-127	-71	-42	mA	11
C _I	Input Capacitance (V _{DD} =nom)			5	pF	

- 1. For power up, the +3.3 V supply must be activated, either prior to the +1.5 Volt supply, or concurrently with the +1.5 V supply. The device might be damaged if the 1.5 V supply is activated for an extended period of time while the 3.3 V supply remains at 0 V level.
- 2. For power down, the +3.3 V supply must be deactivated either after the +1.5 V supply, or concurrently with the +1.5 V supply. The device might be damaged if the 1.5 V supply is activated for an extended period of time while the 3.3 V supply remains at 0 V level.
- 3. Applies to receivers/bidi's without pullup or pulldown resistors
- 4. Applies to all receivers with pullup resistor and BHC=D
- 5. Applies to all receivers with pullup resistor and BHC=E
- 6. Applies to all receivers with pullup resistor and BHC=F
- 7. Applies to all receivers with pulldown resistor and BHC=D
- 8. Applies to all receivers with pulldown resistor and BHC=E
- 9. Applies to all receivers with pulldown resistor and BHC=F
- 10. Applies to all 6mA TS and bidi drivers
- 11. Applies to all 8mA TS and bidi drivers

Table 35: Electrical Characteristics for DASL I/Os

Parameter	Ref Signal	Min	Тур	Max	Units	Notes
Rising Transition Rate of the Output	DASL Driver	0.14	0.21	0.38	ns	
Falling Transition Rate of the Output	DASL Driver	0.19	0.28	0.33	ns	1
Max Input Pin Cap	DASL Receiver		2.5		pF	

The DASL I/Os are compatible with high speed transceiver logic (HSTL) differential interface standard defined in EIA/JEDEC Standard High Speed Transceiver Logic (HSTL) A 1.5V output Buffer Supply Voltage Based Interface Standard for Digital Integrated Circuits EIA/JESD8-6 August 1995 [3]

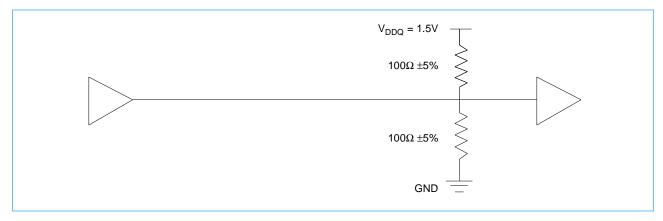
Table 36: Clocks

Parameter		Min	Max	Units	Notes
Internal Clock Frequency		100	111.1		
eve of ook	Internal PLL	50	55.5	MHz	1, 3
SYS_CLOCK	External PLL	25	27.75		1, 2, 3

^{1.} The SYS_CLK input must have a tolerance of ± 100 ppm (0.01%), a duty cycle of 40 - 60% and a phase jitter: ± 150 ps (cycle to cycle) maximum.

^{2.} When an external PLL is used, the duty cycle has to be 50%.

^{3.} The skew between Master and Slave SYS_CLK is ± 250 ps maximum.

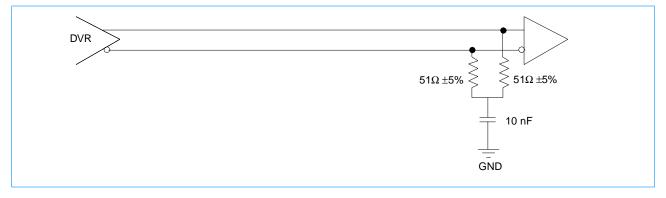


11. Line Termination

11.1 HSTL

The master-slave speed expansion bus, composed of SEQ_CLK, MS_SYNC, MS_DASLSYNC, MS_IN_ADDR and MS_OUT_ADDR, used HSTL EIA/JEDEC (EIA/JESD8-6) standard compliant IO books. The following figure gives the recommended termination of those receiver lines.

Figure 15: HSTL Termination

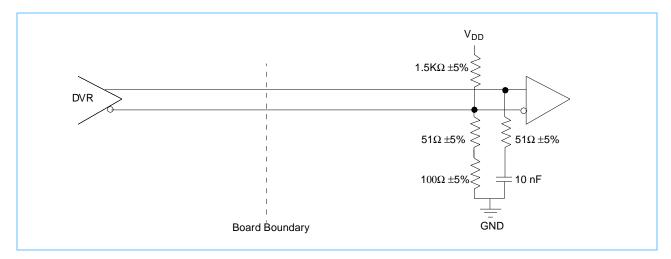


Note: The termination network has to be placed within 5 cm from the receiver device.

11.2 DASL and SYS_CLK

The DASL data inputs (DATA_IN_nn_Q(i) and DATA_IN_nn_QN(i)) and the clock reference (SYS_CLK_Q and SYS_CLK_QN) used differential HSTL EIA/JEDEC (EIA/JESD8-6) standard compliant IO books. The following figure gives the recommended termination for those receiver lines.

Figure 16: DASL Termination for Slave LUs


The termination network has to be placed within 2.5 cm from the receiver device.

There must not be additional via besides the ones required for the chip soldering, the 51 ohms network and the backplane connector. An artwork is available.

Note: for the SYS_CLK_Q/QN differential pair, both termination resistors can be directly connected to GND, without the use of the capacitor.

Figure 17: DASL Termination for Master LUs, Bits 2 and 3

12. Internal RAM ABIST

The Array Built In Self Test (ABIST) is directly controllable from the OCM interface. When running ABIST, all internal RAMs are tested. The test completes when all RAMs have been tested. Furthermore, the ABIST Pass/Fail is a logical OR of the Fail Pass/Fail status of all individual RAM tests. In order to run ABIST, the following sequence must be performed:

- 1. Perform chip reset (Power-On-Reset or Soft-Reset)
- 2. Issue the ABIST Start Command via the Command Register
- 3. Perform OCM Status Register Read commands. Bit 14 of the Status register is set to '1'b as long as the ABIST is running. A '0'b at that position indicated the ABIST completed
- 4. Read the Miscellaneous Status Register. Bit 0 of that register indicates if the ABIST passed ('0'b) or failed ('1'b).

The ABIST takes 1ms to complete.

13. References

- 1. IEEE 1491.1 Specification "IEEE Standard Test Access Port and Boundary Scan Architecture"
- 2. CMOS5S6 Semi-Custom User's Guide. IBM Document Number PL-SC-C56, October 30, 1998
- 3. EIA/JEDEC Standard High Speed Transceiver Logic (HSTL) A 1.5V output Buffer Supply Voltage Based Interface Standard for Digital Integrated Circuits EIA/JESD8-6 August 1995

Revision Log

Revision Date	Contents of Modification
August 25, 1999	Initial release (revision 00).
June 23, 2000	First revision (01). Added numbering to headings, tables, and figures.
July 10, 2000	Second revision (02). Added new Table of Contents, List of Figures, and List of Tables.
August 31, 2000	Third release (03). Changed document title from IBM 28.4G Packet Routing Switch to IBM Packet Routing Switch PRS28.4G. Changed reference to document type from Databook to Datasheet. Changed page header labels from IBM 28.4G Packet Routing Switch to IBM Packet Routing Switch and from IBM3209K4060 to PRS28.4G. Changed references to IBM 28.4G Packet Routing Switch to IBM Packet Routing Switch PRS28.4G or PRS28.4G as appropriate.
February 6, 2001	Fourth release (04). Changed product number from IBM3209K4060 to IBM3221L0572.