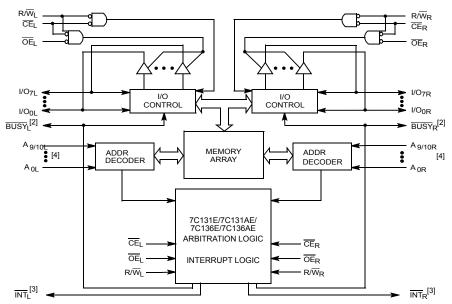


1K/2K × 8 Dual-Port Static RAM

Features

- True dual-ported memory cells, which allow simultaneous reads of the same memory location
- 1K/2K × 8 organization
- 0.35 micron complementary metal oxide semiconductor (CMOS) for optimum speed and power
- High speed access: 15 ns
- Low operating power: I_{CC} = 110 mA (typical), Standby: I_{SB3} = 0.05 mA (typical)
- Fully asynchronous operation
- Automatic power-down
- BUSY output flag to indicate access to the same location by both ports
- INT flag for port-to-port communication
- Available in 52-pin plastic leaded chip carrier (PLCC), 52-pin plastic quad flat package (PQFP)
- Pb-free packages available

Functional Description


CY7C131E/CY7C131AE/CY7C136E/CY7C136AE are high-speed, low-power CMOS 1K/2K × 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C131E/CY7C131AE/CY7C136E/CY7C136AE can be used as a standalone dual-port static RAM. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port <u>has</u> independent control <u>pins</u>; chip enable ($\overline{\text{CE}}$), write enable (R/W), and output enable (OE). Two flags are provided on each port, BUSY and INT. The BUSY flag signals that the port is trying to access the same lo<u>cation</u>, which is currently being accessed by the other port. The INT is an interrupt flag indicating that data is placed in a unique location^[1]. The BUSY and INT flags are push pull outputs. An automatic power-down feature is controlled independently on each port by the chip enable (CE) pins.

The CY7C131E/CY7C131AE/CY7C136E/CY7C136AE are available in 52-pin Pb-free PLCC and 52-pin Pb-free PQFP.

For a complete list of related documentation, click here.

Logic Block Diagram

Notes

1. Unique location used by interrupt flag: 1K × 8: Left port reads from 3FE, Right port reads from 3FF; 2K × 8: Left port reads from 7FE, Right port reads from 7FF.

BUSY is a push-pull output. No pull-up resistor required.

3. INT: push-pull output. No pull-up resistor required.

4. 1K \times 8: A0–A9, 2K \times 8: A0–A10, address lines are for both left and right ports.

CY7C131E/CY7C131AE CY7C136E/CY7C136AE

Contents

Pin Configurations	3
Pin Definitions	3
Selection Guide	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	
Capacitance	5
AC Test Loads and Waveforms	5
Switching Characteristics	6
Switching Characteristics	
Switching Waveforms	
Ordering Information	

Ordering Code Definitions	16
Package Diagrams	17
Acronyms	18
Document Conventions	18
Units of Measure	18
Document History Page	19
Sales, Solutions, and Legal Information	21
Worldwide Sales and Design Support	21
Products	21
PSoC® Solutions	21
Cypress Developer Community	21
Technical Support	

Pin Configurations

Figure 1. 52-pin PLCC pinout (Top View)

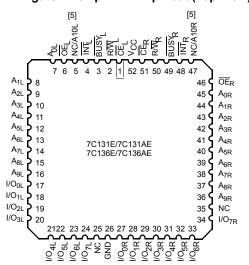
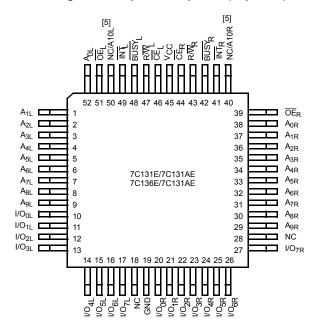



Figure 2. 52-pin PQFP pinout (Top View)

Pin Definitions

Left Port	Right Port	Description
CEL	CE _R	Chip Enable
R/\overline{W}_L	R/W _R	Read/Write Enable
ŌĒL	ŌE _R	Output Enable
A _{0L} -A _{9/10L} ^[5]	A _{0R} -A _{9/10R} ^[5]	Address
I/O _{0L} –I/O _{7L}	I/O _{0R} –I/O _{7R}	Data Bus Input/Output
INT _L	INT _R	Interrupt Flag
BUSYL	BUSY _R	Busy Flag
V _{CC}		Power
GND		Ground

Selection Guide

Parameter	7C131E-15 7C131AE-15	7C131E-25 7C136E-25	7C131E-55 7C136E-55 7C136AE-55	Unit
Maximum Access Time	15	25	55	ns
Typical Operating Current	110	100	95	mA
Typical Standby Current for I _{SB1} (both ports TTL level)	50	45	45	mA
Typical Standby Current for I _{SB3} (Both ports CMOS level)	0.05	0.05	0.05	mA

Note

^{5. 1}K \times 8: A0–A9, 2K \times 8: A0–A10, address lines are for both left and right ports.

Maximum Ratings

Exceeding maximum ratings $^{\rm [6]}$ may shorten the useful life of the device. User guidelines are not tested. Ambient temperature Supply voltage to ground potential-0.3 V to +7.0 V DC voltage applied to outputs

DC input voltage [7]	0.5 V to +7.0 V
Output current into outputs (LOW)	20 mA
Static discharge voltage	>1100 V
Latch up current	>200 mA

Operating Range

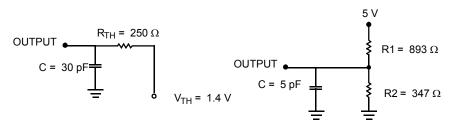
Range	Ambient Temperature	V _{CC}
Commercial	0 °C to +70 °C	5 V ± 10%
Industrial	–40 °C to +85 °C	5 V ± 10%

Electrical Characteristics

Over the Operating Range

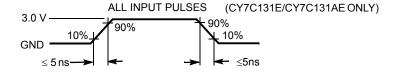
Parameter	Description	Test Conditions		-	C131E-1 C131AE-			C131E-2 C136E-2		70	C131E- C136E- 136AE-	55	Unit
				Min	Typ [8]	Max	Min	Typ ^[8]	Max	Min	Typ [8]	Max	
V _{OH}	Output HIGH Voltage	V_{CC} = Min, I_{OH} = -4.0 mA		2.4	-	-	2.4	_	_	2.4	_	-	V
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 4.0 mA		-	_	0.4	-	_	0.4	-	_	0.4	V
V _{IH}	Input HIGH Voltage			2.2	_	-	2.2	_	-	2.2	-	-	V
V _{IL}	Input LOW Voltage			_	_	8.0	-	_	8.0	-	-	8.0	V
l _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output dis	abled	-20	-	+20	-20	-	+20	-20	-	+20	μА
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max, I _{OUT} = 0 mA Outputs disabled	Commercial Industrial	_	110 115	190 200	_	100 110	170 180	_	95 105	160 170	mA
I _{SB1}	Standby Current, Both Ports, TTL Inputs	\overline{CE}_{L} and $\overline{CE}_{R} \ge V_{IH}$, $f = f_{MAX}^{[9]}$	Commercial Industrial	_	50 65	70 95	_	45 65	65 95	_	45 65	65 95	mA
I _{SB2}	Standby Current, One Port, TTL Inputs	$\overline{\text{CE}}_{\text{L}}$ or $\overline{\text{CE}}_{\text{R}} \ge \text{V}_{\text{IH}}$, Active Port Outputs Open, $\text{f} = \text{f}_{\text{MAX}}^{[9]}$	Commercial Industrial	_	120 135	180 205	_	110 135	160 205	_	110 135	160 205	mA
I _{SB3}	Standby Current, Both Ports, CMOS Inputs	$\begin{array}{l} \underline{\text{Both Ports}} \\ CE_L \text{ and } CE_R \geq V_{CC} - 0.2 \text{ V,} \\ V_{IN} \geq V_{CC} - 0.2 \text{ V} \\ \text{or } V_{IN} \leq 0.2 \text{ V, f} = 0 \end{array}$	Commercial Industrial	_	0.05 0.05	0.5 0.5	_	0.05 0.05	0.5 0.5	_	0.05 0.05	0.5 0.5	mA
I _{SB4}	Standby Current, One Port, CMOS Inputs	$\begin{array}{l} \underline{\text{One Port}} \\ \overline{\text{CE}_{L}} \text{ or } \overline{\text{CE}_{R}} \geq V_{CC} - 0.2 \text{ V}, \\ V_{IN} \geq V_{CC} - 0.2 \text{ V} \\ \text{or } V_{IN} \leq 0.2 \text{ V}, \\ \text{Active Port Outputs Open,} \\ f = f_{MAX}^{[9]} \end{array}$	Commercial Industrial	-	110 125	160 175		100 125	140 175	_	100 125	140 175	mA

- 6. The voltage on any I/O pin cannot exceed the power pin during power-up.
- 7. Pulse width < 20 ns.
- Fuse Width 22 hs.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC}(typ.), T_A = 25 °C.
 At f = f_{MAX}, address and data inputs are cycling at the maximum frequency of read cycle of 1/t_{RC} and using AC Test Waveforms input levels of GND to 3 V.


Capacitance

Parameter [10]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	15	pF
C _{OUT}	Output capacitance		10	pF

AC Test Loads and Waveforms


Figure 3. AC Test Loads and Waveforms

- (a) Normal Load (Load 1)
- (b) Thévenin Equivalent (Load 1)
- (c) Three-State Delay (Load 2)

(Used for t_{LZ} , t_{HZ} , t_{HZWE} , and t_{LZWE} including scope and jig)

Note

^{10.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter [11]	Description	7C131E-15/	7C131AE-15	7C131E-25		
Parameter		Min	Max	Min	Max	Unit
Read Cycle		•			1	
t _{RC}	Read cycle time	15	_	25	_	ns
t _{AA}	Address to data valid [12]	-	15	_	25	ns
t _{OHA}	Data hold from Address change	3	-	3	-	ns
t _{ACE}	CE LOW to data valid [12]	_	15	_	25	ns
t _{DOE}	OE LOW to data valid [12]	_	10	_	15	ns
t _{LZOE}	OE LOW to Low Z [13, 14, 15]	3	_	3	_	ns
t _{HZOE}	OE HIGH to High Z [13, 14, 15]		10	_	15	ns
t _{LZCE}	CE LOW to Low Z [13, 14, 15]	3	_	5	_	ns
t _{HZCE}	CE HIGH to High Z [13, 14, 15]		10	_	15	ns
t _{PU}	CE LOW to power-up [13]	0	_	0	_	ns
t _{PD}	CE HIGH to power-down [13]		15	_	25	ns
Write Cycle [1	6]	•			1	
t _{WC}	Write cycle time	15	_	25	_	ns
t _{SCE}	CE LOW to write end	12	-	20	_	ns
t _{AW}	Address setup to write end	12	-	20	_	ns
t _{HA}	Address hold from write end	0	-	0	_	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	R/W pulse width	10	_	12	_	ns
t _{SD}	Data setup to write end	10	_	15	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{HZWE} ^[13]	R/\overline{W} LOW to High Z ^[15]	_	10	_	15	ns
t _{LZWE} ^[13]	R/\overline{W} HIGH to Low $Z^{[15]}$	3	-	3	_	ns

Notes

11. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V and output loading of the specified I_{OL}/I_{OH}, and 30 pF load capacitance.

12. AC Test Conditions use V_{OH} = 1.6 V and V_{OL} = 1.4 V.

13. This parameter is guaranteed but not tested.

14. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE}.

15. Parameters t_{LZCE}, t_{LZWE}, t_{HZOE}, t_{LZOE}, t_{HZCE} and t_{HZWE} are tested with C_L = 5 pF as in part (c) of Figure 3 on page 5. Transition is measured ±500 mV from steady state voltage.

^{16.} The internal write time of the memory is defined by the overlap of CE LOW and R/W LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics (continued)

Over the Operating Range

Parameter [11]	Description	7C131E-15/	7C131AE-15	7C131E-25	11	
Parameter		Min	Max	Min	Max	- Unit
Busy/Interrup	t Timing ^[17]					•
t _{BLA}	BUSY LOW from Address match	_	15	_	20	ns
t _{BHA}	BUSY HIGH from Address mismatch [18]	_	15	_	20	ns
t _{BLC}	BUSY LOW from CE LOW	_	15	-	20	ns
t _{BHC}	BUSY HIGH from CE HIGH [18]	_	15	-	20	ns
t _{PS}	Port setup for priority	5	-	5	_	ns
t _{BDD}	BUSY HIGH to valid data	_	15	-	25	ns
t _{DDD}	Write data valid to read data valid ^[19]	_	25	-	30	ns
t _{WDD}	Write pulse to data delay [19]	_	30	-	45	ns
Interrupt Timi	ng					•
t _{WINS}	R/W to INTERRUPT set time	_	15	-	25	ns
t _{EINS}	CE to INTERRUPT set time	_	15	-	25	ns
t _{INS}	Address to INTERRUPT set time	_	15	-	25	ns
t _{OINR}	OE to INTERRUPT reset time [18]	_	15	_	25	ns
t _{EINR}	CE to INTERRUPT reset time [18]	_	15	_	25	ns
t _{INR}	Address to INTERRUPT reset time [18]	_	15	_	25	ns

^{17.} Test conditions used are Load 2.

^{18.} These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.

19. <u>A write</u> operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH.

Port B's address toggled.

CE for Port B is toggled.

Switching Characteristics

Over the Operating Range

Parameter	Description		7C131E-55/7C136E-55/ 7C136AE-55		
	·		Max		
Read Cycle					
t _{RC}	Read cycle time	55	_	ns	
t _{AA}	Address to data valid [20]	_	55	ns	
t _{OHA}	Data hold from Address change	3	_	ns	
t _{ACE}	CE LOW to data valid [20]	_	55	ns	
t _{DOE}	OE LOW to data valid [20]	_	25	ns	
t _{LZOE}	OE LOW to Low Z [20, 21, 22]	3	_	ns	
t _{HZOE}	OE HIGH to High Z [20, 21, 22]	-	25	ns	
t _{LZCE}	CE LOW to Low Z [20, 21, 22]	5	_	ns	
t _{HZCE}	CE HIGH to High Z [20, 21, 22]	-	25	ns	
t _{PU}	CE LOW to power-up [21]	0	_	ns	
t _{PD}	CE HIGH to power-down [21]	-	35	ns	
Write Cycle			•		
t _{WC}	Write cycle time	55	-	ns	
t _{SCE}	CE LOW to write end	40	_	ns	
t _{AW}	Address setup to write end	40	_	ns	
t _{HA}	Address hold from write end	2	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	R/W pulse width	30	_	ns	
t _{SD}	Data setup to write end	20	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{HZWE}	R/W LOW to High Z [23]	-	25	ns	
t _{LZWE}	R/W HIGH to Low Z [23]	3	_	ns	

^{20.} The internal write time of the memory is defined by the overlap of CE LOW and R/W LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

^{21.} AC Test Conditions use V_{OH} = 1.6 V and V_{OL} = 1.4 V.
22. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
23. Parameters t_{LZCE}, t_{LZWE}, t_{HZOE}, t_{LZOE}, t_{HZCE} and t_{HZWE} are tested with C = 5 pF as in part (b) of Figure 3 on page 5. Transition is measured ±500 mV from steady state voltage.

Switching Characteristics (continued)

Over the Operating Range

Parameter	Description	7C131E-55/ 7C136	Unit	
	·	Min	Max	
Busy/Interrup	t Timing ^[24]			
t _{BLA}	BUSY LOW from Address match	_	30	ns
t _{BHA}	BUSY HIGH from Address mismatch [25]	_	30	ns
t _{BLC}	BUSY LOW from CE LOW	_	30	ns
t _{BHC}	BUSY HIGH from CE HIGH [25]	_	30	ns
t _{PS}	Port setup for priority	5	-	ns
t _{BDD}	BUSY HIGH to valid data	_	45	ns
t _{DDD}	Write data valid to read data valid [25]	_	30	ns
t _{WDD}	Write pulse to data delay [25]	_	45	ns
Interrupt Timi	ng			
t _{WINS}	R/W to INTERRUPT set time	_	45	ns
t _{EINS}	CE to INTERRUPT set time	_	45	ns
t _{INS}	Address to INTERRUPT set time	_	45	ns
t _{OINR}	OE to INTERRUPT reset time [26]	_	45	ns
t _{EINR}	CE to INTERRUPT reset time [26]	_	45	ns
t _{INR}	Address to INTERRUPT reset time [26]	_	45	ns

^{24.} Test conditions used are Load 2.

^{24.} lest conditions used are Load 2.
25. <u>A write</u> operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH.
Port B's address toggled.
CE for Port B is toggled.
R/W for Port B is toggled during valid read.
26. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.

Switching Waveforms

Figure 4. Read Cycle No. 1 [27, 28] **Either Port ADDR Access**

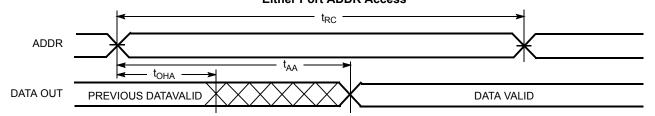


Figure 5. Read Cycle No. 2 [27, 29]

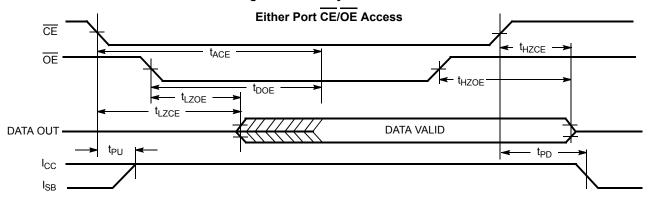
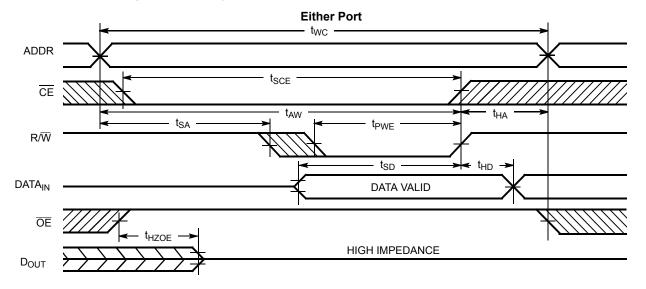



Figure 6. Write Cycle No. 1 (OE Three-States Data I/Os – Either Port) [30, 31]

- 27. R/\overline{W} is HIGH for read cycle.
- 28. Device is continuously selected, $\overline{CE} = V_{\parallel}$ and $\overline{OE} = V_{\parallel}$.
- 29. Address valid prior to or coincident with $\overline{\text{CE}}$ transition $\overline{\text{LOW}}$.
- 30. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and R/\overline{W} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.

 31. If \overline{OE} is LOW during a R/\overline{W} controlled write cycle, the write pulse width must be the larger of t_{PWE} or $t_{HZWE} + t_{SD}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD} .

Figure 7. Write Cycle No. 2 (R/W Three-States Data I/Os – Either Port) [32, 33]

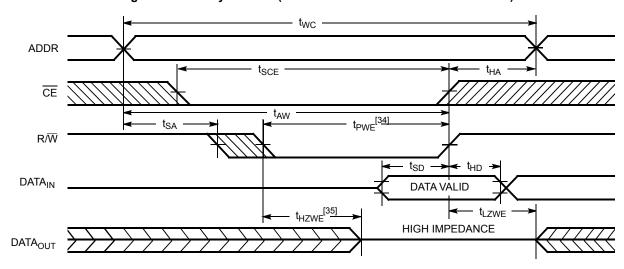
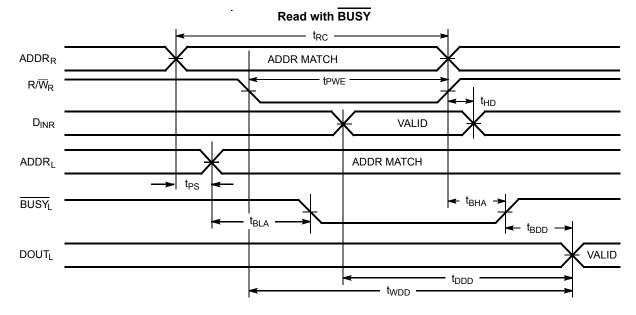



Figure 8. Read Cycle No. 3 [36]

- 32. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
 33. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in a high impedance state.
- 34. If \overrightarrow{OE} is LOW during a $\overrightarrow{R/W}$ controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on the bus for the required tSD. If \overrightarrow{OE} is HIGH during a R/Wn controlled write cycle, this requirements does not apply and the write pulse can be as short as the specified tPWE.
- 35. Transition is measured ±500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100% tested.
- 36. CEL = CER = LOW.

Figure 9. Busy Timing Diagram No. 1 (CE Arbitration) [37]

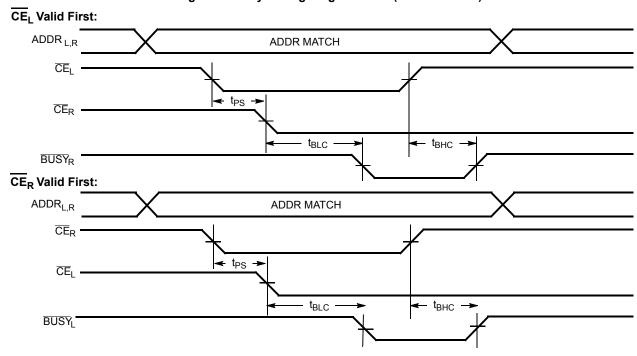
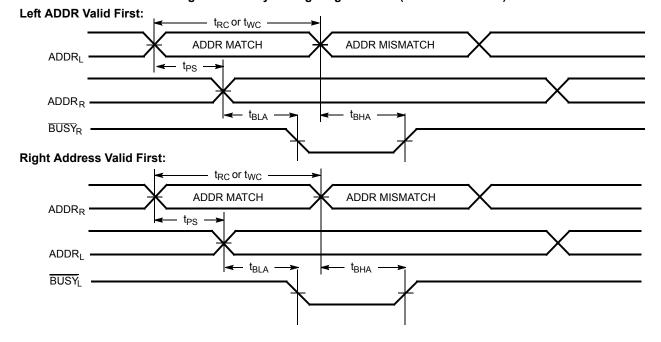
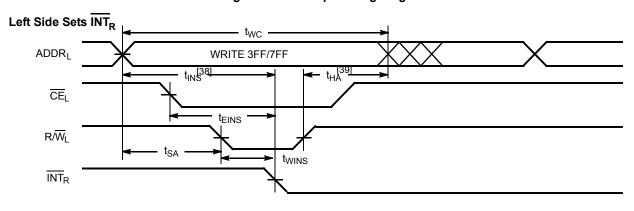
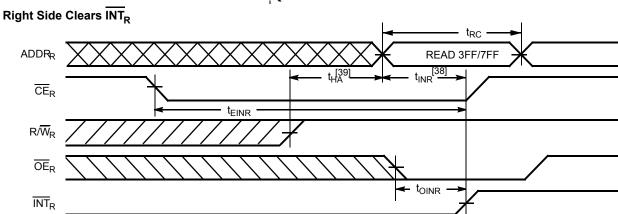



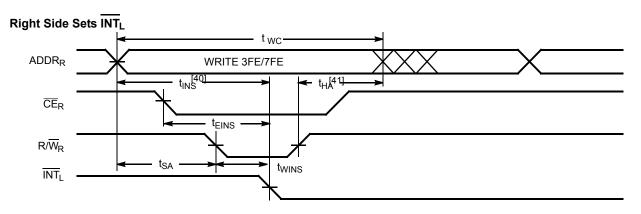
Figure 10. Busy Timing Diagram No. 2 (ADDR Arbitration) [37]

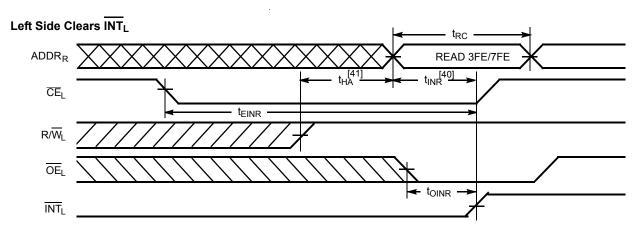



Note

37. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.

Figure 11. Interrupt Timing Diagrams

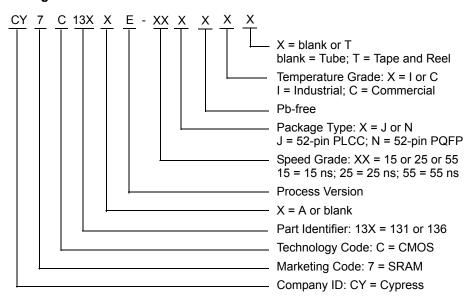




^{38.} Parameter t_{INS} or t_{INR} depends on which enable pin $(\overline{CE}_L$ or $R/\overline{W}_L)$ is asserted last. 39. Parameter t_{HA} depends on which enable pin $(\overline{CE}_L$ or $R/\overline{W}_L)$ is deasserted first.

Figure 12. Interrupt Timing Diagrams

 $[\]begin{array}{l} \textbf{Notes} \\ 40. \ \text{Parameter} \ t_{\text{INS}} \ \text{or} \ t_{\text{INR}} \ \text{depends on which enable} \ \text{pin} \ (\overline{\text{CE}_L} \ \text{or} \ R \overline{\text{W}_L}) \ \text{is asserted last.} \\ 41. \ \text{Parameter} \ t_{\text{HA}} \ \text{depends on which enable} \ \text{pin} \ (\overline{\text{CE}_L} \ \text{or} \ R \overline{\text{W}_L}) \ \text{is deasserted} \ \text{first.} \end{array}$



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
1K × 8 I	Dual-port SRAM			·
15	CY7C131E-15NXI	51-85042	52-pin PQFP (Pb-free)	Industrial
	CY7C131E-15NXIT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	
25	CY7C131E-25JXC	51-85004	52-pin PLCC (Pb-free)	Commercial
	CY7C131E-25JXCT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
	CY7C131E-25NXC	51-85042	52-pin PQFP (Pb-free)	
	CY7C131E-25NXCT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	
55	CY7C131E-55JXC	51-85004	52-pin PLCC (Pb-free)	Commercial
	CY7C131E-55JXCT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
	CY7C131E-55NXC	51-85042	52-pin PQFP (Pb-free)	
	CY7C131E-55NXCT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	
	CY7C131E-55JXI	51-85004	52-pin PLCC (Pb-free)	Industrial
	CY7C131E-55JXIT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
2K × 8 I	Dual-port SRAM	<u>.</u>		<u>.</u>
25	CY7C136E-25JXC	51-85004	52-pin PLCC (Pb-free)	Commercial
	CY7C136E-25JXCT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
	CY7C136E-25NXC	51-85042	52-pin PQFP (Pb-free)	
	CY7C136E-25NXCT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	
	CY7C136E-25JXI	51-85004	52-pin PLCC (Pb-free)	Industrial
	CY7C136E-25JXIT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
55	CY7C136E-55JXC	51-85004	52-pin PLCC (Pb-free)	Commercial
	CY7C136E-55JXCT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
	CY7C136E-55NXC	51-85042	52-pin PQFP (Pb-free)	
	CY7C136E-55NXCT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	
	CY7C136AE-55JXI	51-85004	52-pin PLCC (Pb-free)	Industrial
	CY7C136AE-55JXIT	51-85004	52-pin PLCC (Pb-free), Tape and Reel	
	CY7C136AE-55NXI	51-85042	52-pin PQFP (Pb-free)	
	CY7C136AE-55NXIT	51-85042	52-pin PQFP (Pb-free), Tape and Reel	

Ordering Code Definitions

Package Diagrams

Figure 13. 52-pin PLCC (0.756 × 0.756 Inches) J52 Package Outline, 51-85004

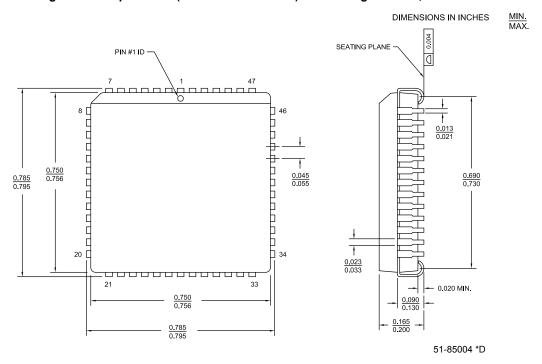
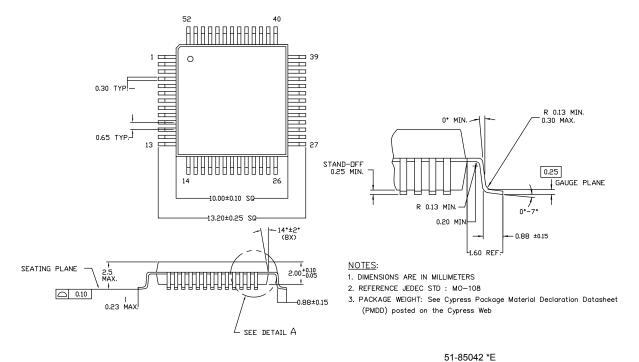



Figure 14. 52-pin PQFP (10 × 10 × 2.0 mm) N5210 Package Outline, 51-85042

Document Number: 001-64231 Rev. *I

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
ŌĒ	Output Enable
PLCC	Plastic Leaded Chip Carrier
PQFP	Plastic Quad Flat Package
SRAM	Static Random Access Memory
TTL	Transistor-Transistor Logic
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
μA	microampere
mA	milliampere
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	3038037	ADMU	09/24/2010	New data sheet.
*A	3394800	ADMU	10/04/2011	Changed status from Preliminary to Final. Updated Maximum Ratings (Removed (Pin 48 to Pin 24)). Updated Electrical Characteristics (changed minimum value of I_{OZ} parameter from $-10~\mu\text{A}$ to $-20~\mu\text{A}$, changed maximum value of I_{OZ} parameter from $+10~\mu\text{A}$ to $+20~\mu\text{A}$ and changed maximum value of I_{SB3} from $0.5~\text{mA}$ to $15~\text{mA}$ for bot Commercial and Industrial temperature ranges). Updated Package Diagrams (Updated revision of 51-85004 from *B to *C anrevision of 51-85042 from *A to *C). Updated in new template.
*B	3403147	ADMU	10/12/2011	No technical updates.
*C	3435230	ADMU	11/17/2011	Updated Features (Removed a feature "Expandable data bus width to 16 bi or more using Master/Slave chip select when using more than one device." an updated another feature to read as "BUSY output flag to indicate access to the same location by both ports.". Updated Functional Description (Updated the sentence in the first paragrap to read as "The CY7C131E / CY7C131AE / CY7C136E / CY7C136AE can be used as a standalone dual-port static RAM.". Updated Note 2 to read as "BUSY is a push-pull output. No pull-up resister required.". Updated Note 3 to read as "Interrupt: push-pull output. No pull-up resister required.". Updated Maximum Ratings (Removed "(per MIL-STD-883, Method 3015)"). Updated Electrical Characteristics (Removed the Note "See the last page of this specification for Group A subgroup testing information." and its reference in Parameter column.). Updated Capacitance (Changed maximum value of C _{IN} parameter from 10 pF 15 pF). Updated AC Test Loads and Waveforms. Updated Switching Characteristics (Removed the Note "See the last page of this specification for Group A subgroup testing information." and its reference in Parameter column.). Updated Switching Characteristics (Changed the minimum value of to Hammater Column.). Updated Switching Characteristics (Changed the minimum value of to Hammater Column.). Updated Switching Characteristics (Changed the minimum value of to Hammater Column.). Updated Switching Characteristics (Changed the minimum value of to Hammater Column.). Removed the section "Typical DC and AC Characteristics".

Document History Page (continued)

ocument Title: CY7C131E/CY7C131AE/CY7C136E/CY7C136AE, 1K/2K × 8 Dual-Port Static RAM ocument Number: 001-64231				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*D	3620277	ADMU	06/15/2012	Updated missing overbars in all instances across the document. Updated Selection Guide: Updated all values of "Typical Operating Current" parameter. Updated Maximum Ratings: Changed value of "Static discharge voltage" from ">2001 V" to ">1100 V". Updated Electrical Characteristics: Fixed typos. Added Note 8 and referred the same note in "Typ" column. Updated all values of I _{CC} parameter. Updated AC Test Loads and Waveforms: Updated Figure 3 (Replaced 3 ns with 5 ns). Updated Switching Characteristics: Added Note 17 and referred the same note in "Busy/Interrupt Timing". Updated Switching Characteristics: Added Note 24 and referred the same note in "Busy/Interrupt Timing". Updated Switching Waveforms: Added Note 34 and referred the same note in "tpWE" in Figure 7. Added Note 35 and referred the same note in "tpWE" in Figure 7. Added Note 38 and referred the same note in "tpWE" in Figure 11. Added Note 39 and referred the same note in "tpWE" in Figure 11. Added Note 40 and referred the same note in "tpWE" in Figure 12. Added Note 41 and referred the same note in "tpWE" in Figure 12. Removed "Busy Timing Diagram No. 3". Updated Package Diagrams: spec 51-85042 - Changed revision from *C to *D.
*E	3997575	ADMU	05/15/2013	Updated Package Diagrams: spec 51-85004 – Changed revision from *C to *D. Added Appendix: Silicon Errata for CY7C131E/131AE/136E/136AE 1K/2K × 8 Dual Port Static RAM.
*F	4241174	ADMU	01/09/2014	Removed Appendix: Silicon Errata for CY7C131E/131AE/136E/136AE 1K/2K × 8 Dual Port Static RAM. Updated to new template.
*G	4559526	AMDU	11/07/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.
*H	5397125	NILE	08/09/2016	Updated Ordering Information: Updated part numbers. Updated Package Diagrams: spec 51-85042 – Changed revision from *D to *E. Updated to new template.
*	5966445	AESATMP8	11/14/2017	Updated logo and Copyright.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

Memory cypress.com/memory
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-64231 Rev. *I Revised November 14, 2017 Page 21 of 21