
Vishay Semiconductors

Optocoupler, Phototransistor Output

DESCRIPTION

The TCDT1100, TCDT1100G series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6 pin plastic dual inline package. The base of the phototransistor is not connected providing noise immunity.

VDE STANDARDS

These couplers perform safety functions according to the following equipment standards:

- DIN EN 60747-5-5 (VDE0884)
 Optocoupler for electrical safety requirements
- IEC 60950/EN 60950
 Office machines (applied for reinforced isolation for mains voltage ≤ 400 V_{RMS})
- VDE0804
 Telecommunication apparatus and data processing
- IEC 60065
 Safety for mains-operated electronic and related household apparatus

FEATURES

- Isolation test voltage 5000 V_{RMS}
- · High common mode rejection
- No base terminal connection for improved noise immunity

• CTR offered in 4 groups

- Thickness though insulation ≥ 0.4 mm
- Creepage current resistance according to VDE0303/ IEC 60112 comparative tracking index: CTI ≥ 275
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Switch-mode power supplies
- · Line receiver
- · Computer peripheral interface
- · Microprocessor system interface
- Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
 - for appl. class I IV at mains voltage ≤ 300 V
 - for appl. class I III at mains voltage \leq 600 V according to DIN EN 60747-5-5

AGENCY APPROVALS

- UL1577, file no. E52744, double protection
- BSI IEC 60950; IEC 60065 pending
- DIN EN 60747-5-5 (VDE0884)
- FIMKO

ORDER INFORMATION	
PART	REMARKS
TCDT1100	CTR > 40 %, DIP-6
TCDT1101	CTR 40 % to 80 %, DIP-6
TCDT1102	CTR 63 % to 125 %, DIP-6
TCDT1103	CTR 100 % to 200 %, DIP-6
TCDT1100G	CTR > 40 %, DIP-6, 400 mil
TCDT1101G	CTR 40 % to 80 %, DIP-6, 400 mil
TCDT1102G	CTR 63 % to 125 %, DIP-6, 400 mil
TCDT1103G	CTR 100 % to 200 %, DIP-6, 400 mil

Note

• G = leadform 10.16 mm; G is not marked on the body.

Optocoupler, Phototransistor Output Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (1) (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
INPUT	INPUT								
Reverse voltage		V _R	5	V					
Forward current		I _F	60	mA					
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	А					
Power dissipation		P _{diss}	70	mW					
Junction temperature		T _j	125	°C					
OUTPUT									
Collector emitter voltage		V _{CEO}	32	V					
Emitter collector voltage		V _{ECO}	7	V					
Collector current		I _C	50	mA					
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA					
Power dissipation		P _{diss}	70	mW					
Junction temperature		T _j	125	°C					
COUPLER									
Isolation test voltage (RMS)		V _{ISO}	5000	V_{RMS}					
Total power dissipation		P _{tot}	200	mW					
Ambient temperature range		T _{amb}	- 55 to + 110	°C					
Storage temperature range		T _{stg}	- 55 to + 125	°C					
Soldering temperature (2)	2 mm from case, t ≤ 10 s	T _{sld}	260	°C					

Notes

⁽²⁾ Refer to wave profile for soldering conditions for through hole devices.

ELECTRICAL CHARACTERISTCS (1) (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	I _F = 50 mA	V _F		1.25	1.6	V		
Junction capacitance	V _R = 0, f = 1 MHz	C _j		50		pF		
OUTPUT								
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32			V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V		
Collector ermitter cut-off current	$V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	I _{CEO}		200		nA		
COUPLER	<u> </u>							
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	V		
Cut-off frequency	$V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA},$ $R_L = 100 \Omega$	f _c		110		kHz		
Coupling capacitance	f = 1 MHz	C _k		0.6		pF		

Note

⁽¹⁾ Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Minimum and maximum values are testing requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

Vishay Semiconductors Optocoupler, Phototransistor Output

CURRENT TRANSFER RATIO								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
		TCDT1100	CTR	40			%	
		TCDT1100G	CTR	40			%	
I _C /I _F		TCDT1101	CTR	40		80	%	
	V 5 V 1 10 mA	TCDT1101G	CTR				%	
	$V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}$	TCDT1102	CTR	63		125	%	
		TCDT1102G	CTR				%	
		TCDT1103	CTR	100		200	%	
		TCDT1103G	CTR				%	

MAXIMUM SAFETY RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward current		l _F			130	mA		
OUTPUT								
Power dissipation		P _{diss}			265	mW		
COUPLER								
Rated impulse voltage		V _{IOTM}			6	kV		
Safety temperature		T _{si}			150	°C		

Note

 According to DIN EN 60747-5-5. This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

INSULATION RATED PARAMETERS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1.6			kV	
Partial discharge test voltage - lot test (sample test)	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$ (see figure 1)	V_{IOTM}	6			kV	
		V_{pd}	1.3			kV	
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω	
	$V_{IO} = 500 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω	
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω	

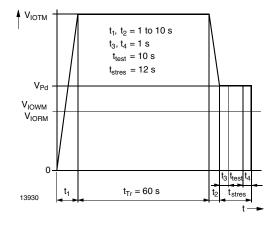


Fig. 1 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-5/DIN EN 60747-; IEC60747

Optocoupler, Phototransistor Output Vishay Semiconductors

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Delay time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see figure 2)}$	t _d		4		μs	
Rise time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega$, (see figure 2)	t _r		7		μs	
Fall time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega$, (see figure 2)	t _f		6.7		μs	
Storage time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega$, (see figure 2)	t _s		0.3		μs	
Turn-on time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega$, (see figure 2)	t _{on}		11		μs	
Turn-off time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega$, (see figure 2)	t _{off}		7		μs	
Turn-on time	$V_S = 5 \text{ V}, I_C = 10 \text{ mA}, R_L = 1 \text{ k}\Omega, \text{ (see figure 3)}$	t _{on}		25		μs	
Turn-off time	$V_S = 5 \text{ V}, I_C = 10 \text{ mA}, R_L = 1 \text{ k}\Omega$, (see figure 3)	t _{off}		42.5		μs	

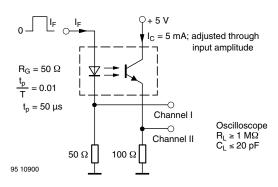


Fig. 2 - Test Circuit, Non-Saturated Operation

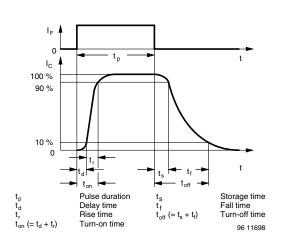
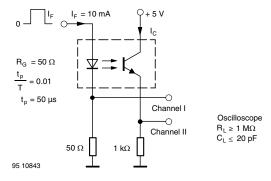
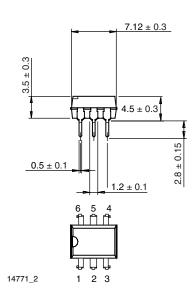
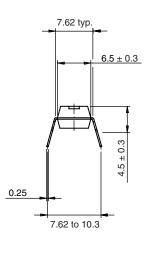
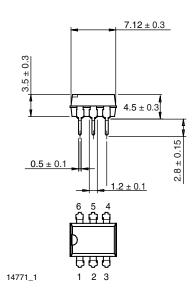


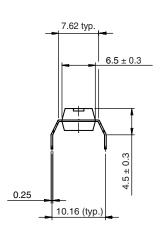
Fig. 4 - Switching Times

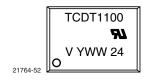



Fig. 3 - Test Circuit, Saturated Operation


Vishay Semiconductors Optocoupler, Phototransistor Output


PACKAGE DIMENSIONS in millimeters


DIP-6



DIP-6, 400 mil

PACKAGE MARKING

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.