

## **Sound Processors for Home Theater Systems**

# 5.1ch Sound Processors



BD3813KS,BD3815KS

No.10081EAT04

#### Description

The BD3813KS and BD3815KS sound processors integrate a gain amp and volume/bass/treble controls on a single chip, making them optimally suited for use in audio applications, such as AV receivers, home theater systems and mini-component systems. Used in combination with the BD3812F, a 2ch volume IC, the units enable 6.1ch and 7.1ch operation. In addition, utilization of a BiCMOS process ensures a wide dynamic range (129dB).

#### Features

- 1) Wide dynamic range: 129dB (Tone Bypass, VOL=MUTE, IHF-A)
- 2) Independent 6 channels for Master Volume (0 to -95 dB, MUTE 1dB/Step) Implementation of a resistance ladder type circuit reduces residual noise and shock sounds during switching.
- 3) Low current consumption achieved through utilization of BiCMOS processes
- 4) Maximum output voltage: 4.2Vrms (Vcc=7V, VEE=-7V, RL=10kΩ)
- 5) Built-in 5ch independent input gain amplifier useful for amplifying input signals
- 6) Built-in 2ch output port
- 7) 2-wire serial control (for both 3.3V and 5V)

#### Applications

AV receivers, home theater systems and mini-component systems

#### Line up matrix

| ilo up matrix   |                     |                     |  |  |  |
|-----------------|---------------------|---------------------|--|--|--|
| Parameter       | BD3813KS            | BD3815KS            |  |  |  |
| Mode Selector   | Yes                 | Yes                 |  |  |  |
| Input Gain      | 0, 6, 12dB          | 0, 6, 18dB          |  |  |  |
| Volume          | 0 to -95dB 1dB/Step | 0 to -95dB 1dB/Step |  |  |  |
| Bass, Treble    | ±14dB 2dB/Step      | ±14dB 2dB/Step      |  |  |  |
| Number of Ports | 2                   | 2                   |  |  |  |
| Package         | SQFP56              | SQFP56              |  |  |  |

● Absolute maximum ratings (Ta=25°C)

| Parameter                   | Symbol          | Ratings                         | Unit |
|-----------------------------|-----------------|---------------------------------|------|
| Dower Supply Voltage        | V <sub>CC</sub> | 7.5 <sup>*1</sup>               | V    |
| Power Supply Voltage        | V <sub>EE</sub> | -7.5                            | V    |
| Input Signal Voltage        | V <sub>IN</sub> | V <sub>CC</sub> +0.3 to VEE-0.3 | V    |
| Power Dissipation           | Pd              | 1000 <sup>*2</sup>              | mW   |
| Operating Temperature Range | Topr            | 20 to 75                        | °C   |
| Storage Temperature Range   | Tastg           | 55 to 125                       | Ő    |

Applying voltage only to the  $V_{CC}$  side, even if within the specified power supply voltage range, may cause excessive current to flow, resulting in permanent damage to the IC.  $\,$  Therefore, when starting up the power supplies, VEE and  $\,$  V<sub>CC</sub> should either be powered ON simultaneously, or VEE first, followed by V<sub>CC</sub>. Please note the derating characteristics above Ta=25°C: 10mW/°C (Mounted on a 70mmx70mmx1.6mm sized board).

## Operating conditions

(Normal function at Ta=25°C)

| Down mater               | Cy week ed      |      | l lait |      |      |  |
|--------------------------|-----------------|------|--------|------|------|--|
| Parameter                | Symbol          | Min. | Тур.   | Max. | Unit |  |
| Operating Supply Voltage | V <sub>CC</sub> | 5    | 7      | 7.3  | V    |  |
| Operating Supply Voltage | VEE             | -7.3 | -7     | -5   | V    |  |

#### Electrical Characteristics

Ta=25°C, VCC=7V, VEE=-7V, f=1kHz, VIN=1Vrms, RL=10k $\Omega$ , Rg=600 $\Omega$ 

Input Gain=0dB, Master Volume=0dB, Bass bnd Treble=0dB, Unless otherwise noted. Limits Conditions Parameter Symbol Unit Min. Тур. Max. VCC 10 20 Circuit Current IQ No signal mΑ VEE -20 -10 Output Voltage Gain 1 Gv1 -2 0 2 dB Measure: Pin31, 29, 27, 25, 23, 21 Output Voltage Gain 2 Gv2 0 2 dΒ Measure: Pin19 -2 **Total Harmonic Distortion** Measure: Pin31, 29, 27, 25, 23, 21 THD1 0.004 0.05 % ratio 1 BW=400~30kHz **Total Harmonic Distortion** Measure: Pin19 THD2 0.05 0.004 % ratio 2 BW=400~30kHz Measure: Pin31, 29, 27, 25, 23, 21 4.2 Maximum Output Voltage 1 Vomax1 3.4 Vrms THD=1% Measure: Pin19 Maximum Output Voltage 2 Vomax2 3.4 4.2 Vrms **Total Output** THD=1% Measure: Pin 31,29 2.0 12 **μVrms** Rg=0Ω, Tone: ON, BW=IHF-A Output Noise Voltage 1 Vno1 Measure: Pin 31,29 1.5 8.0 μVrms Rg=0Ω, Tone: By-pass, BW=IHF-A Measure: Pin 27,25,23,21 Output Noise Voltage 2 8.0 μVrms Vno2 1.5 Rg=0Ω, BW=IHF-A Measure: Pin 19 Output Noise Voltage 3 Vno3 1.0 5.0 μVrms Rg=0Ω, BW=IHF-A Measure: Pin29(OUTFL) Crosstalk between Channels **CTCRL** -95 -80 dΒ Rg=0Ω, BW=IHF-A Rch→Lch Reference: Pin31(OUTFR)=1Vrms Measure: Pin31(OUTFR) Crosstalk between Channels **CTCLR** Rg=0Ω, BW=IHF-A -95 -80 dΒ Lch→Rch Reference: Pin29(OUTFL)=1Vrms Measure: Pin 31,29,27,25, Crosstalk between Selectors **CTSA** -95 -80 dΒ 23.21.19 DVD Rg=0Ω, BW=IHF-A Measure: Pin 31,29,27,25, Crosstalk between Selectors **CTSB** -95 -80 dΒ 23,21,19

D/A

Rg=0Ω, BW=IHF-A

|               | Danamatan                              | 0      |      | Limits |      | 1.1 14 | O and distingtion                                                |
|---------------|----------------------------------------|--------|------|--------|------|--------|------------------------------------------------------------------|
|               | Parameter                              | Symbol | Min. | Тур.   | Max. | Unit   | Conditions                                                       |
|               | Volume Control Range                   | GVR    | -98  | -95    | -92  | dB     | Measure : Pin31, 29, 27, 25, 23, 21<br>Vin=3Vrms                 |
| put           | Volume Setting Error 1                 | VE1    | -2   | 0      | 2    | dB     | 0 to -53dB<br>Measure : Pin31, 29, 27, 25, 23, 21<br>Vin=3Vrms   |
| Volume Output | Volume Setting Error 2                 | VE2    | -3   | 0      | 3    | dB     | -54 to -95dB<br>Measure : Pin31, 29, 27, 25, 23, 21<br>Vin=3Vrms |
| 9             | Channel Balance                        | VCB    | -0.5 | 0      | 0.5  | dB     | Measure : Pin31, 29, 27, 25, 23, 21<br>Vin=3Vrms, Volume=0dB     |
|               | Maximum Attenuation                    | Vmin   | _    | -115   | -105 | dB     | BW=IHF-A<br>Measure : Pin31, 29, 27, 25, 23, 21<br>Vin=3Vrms     |
|               | Input Gain Control Range (BD3813KS)    | GIG    | 10   | 12     | 14   | dB     | Measure : Pin31, 29, 27, 25, 23, 21, 19<br>Vin=0.4Vrms           |
| Gain          | Input Gain Control Range<br>(BD3815KS) |        | 16   | 18     | 20   | dB     | Measure : Pin31, 29, 27, 25, 23, 21, 19<br>Vin=0.4Vrms           |
| Input         | Input Gain Setting Error (BD3813KS)    | GIE    | -2   | 0      | 2    | dB     | Measure : Pin31, 29, 27, 25, 23, 21, 19<br>Vin=0.4Vrms           |
|               | Input Gain Setting Error (BD3815KS)    |        | -2   | 0      | 2    | dB     | Measure : Pin31, 29, 27, 25, 23, 21, 19<br>Vin=0.4Vrms           |
|               | Treble Maximum Boost Gain              | GTB    | 12   | 14     | 16   | dB     | Measure : Pin 31, 29<br>f=15kHz, VIN=0.4Vrms                     |
| Treble        | Treble Maximum Cut Gain                | GTC    | -16  | -14    | -12  | dB     | Measure : Pin 31, 29<br>f=15kHz, VIN=0.4Vrms                     |
| Tre           | Treble Step Resolution                 | TR     | _    | 2      | _    | dB     | Measure : Pin 31, 29<br>f=15kHz, VIN=0.4Vrms                     |
|               | Treble Gain Setting Error              | TE     | -2   | 0      | 2    | dB     | Measure : Pin 31, 29<br>f=15kHz, VIN=0.4Vrms                     |
|               | Bass Maximum Boost Gain                | GBB    | 12   | 14     | 16   | dB     | Measure : Pin 31, 29<br>f=100Hz, Vi=0.4Vrms                      |
| Bass          | Bass Maximum Cut Gain                  | GBC    | -16  | -14    | -12  | dB     | Measure : Pin 31, 29<br>f=100Hz, VIN=0.4Vrms                     |
| Ba            | Bass Step Resolution                   | BR     | _    | 2      | _    | dB     | Measure : Pin 31, 29<br>f=100Hz, VIN=0.4Vrms                     |
|               | Bass Gain Setting Error                | BE     | -2   | 0      | 2    | dB     | Measure : Pin 31, 29<br>f=100Hz, VIN=0.4Vrms                     |
| Port          | Port H Output                          | PH     | 4.5  | 4.9    | _    | V      | Measure : Pin11,12<br>VDD=5V, RL=47kΩ                            |

<sup>\*</sup> This product is not designed to be resistant against radiation

## **Timing Chart**

- 1) Signal Timing Conditions
  - Data is read on the rising edge of the clock.
  - · Latch is read on the falling edge of the clock.
  - The latch signal must terminate with the Low state.
  - \*To avoid malfunction, the clock and data signals must terminate with the Low state.

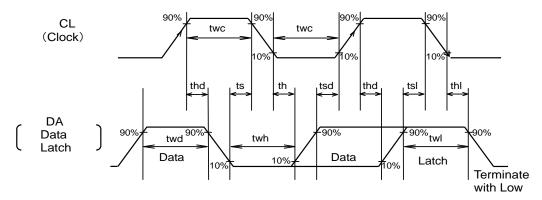



Fig.1

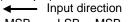
| Parameter                         | Symbol |      | Limits |      | Unit  |
|-----------------------------------|--------|------|--------|------|-------|
| Farameter                         | Symbol | Min. | Тур.   | Max. | Ullit |
| Minimum Clock Width               | twc    | 2.0  | _      |      | μs    |
| Minimum Data Width                | twd    | 2.0  | _      | _    | μs    |
| Minimum Latch Width               | twl    | 2.0  | _      | _    | μs    |
| Low Hold Width                    | twh    | 2.0  | _      | _    | μs    |
| Data Set-up Time (Data→Clock)     | tsd    | 1.0  | _      | _    | μs    |
| Data Hold Time ( Clock → Data )   | thd    | 1.0  | _      | _    | μs    |
| Latch Set-up Time ( Clock →Latch) | tsl    | 1.0  | _      | _    | μs    |
| Latch Hold Time ( Data → Latch )  | thl    | 1.0  | _      | _    | μs    |
| Latch Low Set-up Time             | ts     | 1.0  | _      | _    | μs    |
| Latch Low Hold Time               | th     | 1.0  | _      |      | μs    |

2) Control Signal Voltage Conditions

| Darameter         | Condition                 |      | Unit |            |       |
|-------------------|---------------------------|------|------|------------|-------|
| Parameter         | Condition                 | Min. | Тур. | Max.(≤Vcc) | Offic |
| "H" Input Voltage | Vcc=5~7.3V                | 2.2  | _    | 5.5        | V     |
| "L" Input Voltage | V <sub>EE</sub> =-5~-7.3V | 0    | _    | 1.0        | V     |

3) Control Data Format - Basic Configuration

| $\leftarrow$ | <ul> <li>Input</li> </ul> | directi | on  |     |     |     |     |     |    |    |    |    |    |    |      |        |      |
|--------------|---------------------------|---------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|------|--------|------|
|              | MSB                       |         |     |     |     |     |     |     |    |    |    |    |    |    |      |        | LSB  |
|              | D16                       | D15     | D14 | D13 | D12 | D11 | D10 | D9  | D8 | D7 | D6 | D5 | D4 | D3 | D2   | D1     | D0   |
| Data         |                           |         |     |     |     |     | Da  | ıta |    |    |    |    |    |    | Sele | ct Add | ress |


| • Cont    | rol Data           | a Form<br>directio |             |         |        |     |             |       |          |                      |                      |                   |                   |    | Sele | ct Add | ress |
|-----------|--------------------|--------------------|-------------|---------|--------|-----|-------------|-------|----------|----------------------|----------------------|-------------------|-------------------|----|------|--------|------|
|           | D16                | D15                | D14         | D13     | D12    | D11 | D10         | D9    | D8       | D7                   | D6                   | D5                | D4                | D3 | D2   | D1     | D0   |
| Data<br>1 | Input<br>FR        |                    | Input<br>SR |         | Input  |     | Input<br>S' |       |          | Gain<br>B            | SW1<br>0:A<br>1:B    | SW2<br>0:A<br>1:B | SW3<br>0:A<br>1:B | 0  | 0    | 0      | 0    |
|           | D16                | D15                | D14         | D13     | D12    | D11 | D10         | D9    | D8       | D7                   | D6                   | D5                | D4                | D3 | D2   | D1     | D0   |
| Data<br>2 |                    | Tre                | ble         |         |        | Ва  | ISS         |       | TON<br>E | Port A<br>0:L<br>1:H | Port B<br>0:L<br>1:H | *                 | *                 | 1  | 0    | 0      | 0    |
|           | D16                | D15                | D14         | D13     | D12    | D11 | D10         | D9    | D8       | D7                   | D6                   | D5                | D4                | D3 | D2   | D1     | D0   |
| Data<br>3 |                    |                    | Master      | Volum   | e FRch |     |             |       |          | Master               | Volum                | e FLch            |                   |    | 0    | 0      | 1    |
|           | D16                | D15                | D14         | D13     | D12    | D11 | D10         | D9    | D8       | D7                   | D6                   | D5                | D4                | D3 | D2   | D1     | D0   |
| Data<br>4 | Master Volume SRch |                    |             |         |        |     | Master      | Volum | e SLch   |                      |                      | 0                 | 1                 | 0  |      |        |      |
|           | D16                | D15                | D14         | D13     | D12    | D11 | D10         | D9    | D8       | D7                   | D6                   | D5                | D4                | D3 | D2   | D1     | D0   |
| Data<br>5 |                    |                    | Maste       | r Volum | ne Cch |     |             |       |          | Master               | Volume               | e SWcł            | 1                 |    | 0    | 1      | 1    |

Changing the Select Address settings allows selection of four different control formats.

For Select Address, values except those shown above must not be specified.

The address data must be initialized after every power ON.

#### (Example)



| MSB I | _SB | MSB LS | B | MSB L  | SB | MSB L  | SB | MSB LS | BB |
|-------|-----|--------|---|--------|----|--------|----|--------|----|
| Data1 | L   | Data 2 | L | Data 3 | L  | Data 4 | L  | Data 5 | L  |

<sup>&</sup>quot;L" means latch.

After power ON, only the desired data can be set for the second and subsequent times,.

(Example) When changing the bass,

Input direction



<sup>\*</sup> Indicates 0 or 1.

## Application Circuit

## 1) BD3813KS / BD3815KS

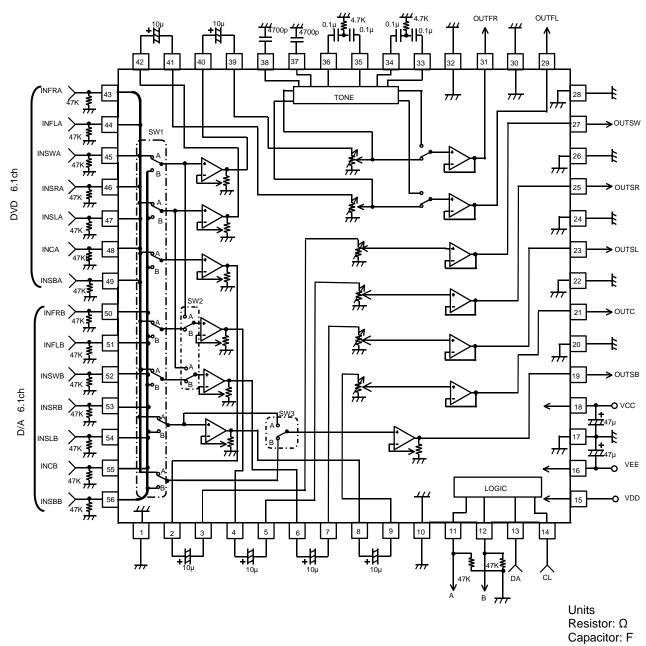



Fig. 2

## **●**Pin Description

| in Desc    | ription     |                                          |            |             |                           |
|------------|-------------|------------------------------------------|------------|-------------|---------------------------|
| Pin<br>No. | Pin<br>Name | Description                              | Pin<br>No. | Pin<br>Name | Description               |
| 1          | GND1        | Ground pin                               | 29         | OUTFL       | Lch Output pin            |
| 2          | GOUTSW      | Input Gain output for subwoofer pin      | 30         | GND9        | Ground pin                |
| 3          | VINSW       | Volume Input for subwoofer pin           | 31         | OUTFR       | Rch Output pin            |
| 4          | GOUTSR      | Input Gain output for surround Rch pin   | 32         | GND10       | Ground pin                |
| 5          | VINSR       | Volume Input for surround Rch pin        | 33         | BNF2L       | Lch Bass filter pin 2     |
| 6          | GOUTSL      | Input Gain output for surround Lch pin   | 34         | BNF1L       | Lch Bass filter pin 1     |
| 7          | VINSL       | Volume Input for surround Lch pin        | 35         | BNF2R       | Rch Bass filter pin 2     |
| 8          | GOUTC       | Input Gain output for center speaker pin | 36         | BNF1R       | Lch Bass filter pin 1     |
| 9          | VINC        | Volume Input for center speaker pin      | 37         | TNFL        | Lch Treble filter pin     |
| 10         | GND2        | Ground pin                               | 38         | TNFR        | Rch Treble filter pin     |
| 11         | PORTA       | Output for port pin                      | 39         | VINFR       | Rch Volume input pin      |
| 12         | PORTB       | Output for port pin                      | 40         | GOUTFR      | Rch Input gain output pin |
| 13         | DA          | Serial data, latch input pin             | 41         | VINFL       | Lch Volume input pin      |
| 14         | CL          | Serial clock input pin                   | 42         | GOUTFL      | Lch Input gain output pin |
| 15         | VDD         | Power supply for port pin                | 43         | INFRA       | Input for Rch DVD pin     |
| 16         | VEE         | (-) Power supply pin                     | 44         | INFLA       | Input for Lch DVD pin     |
| 17         | GND3        | Ground pin                               | 45         | INSWA       | Input for SWch DVD pin    |
| 18         | VCC         | (+) Power supply pin                     | 46         | INSRA       | Input for SRch DVD pin    |
| 19         | OUTSB       | Surround back output pin                 | 47         | INSLA       | Input for SLch DVD pin    |
| 20         | GND4        | Ground pin                               | 48         | INCA        | Input for Cch DVD pin     |
| 21         | OUTC        | Center speaker output pin                | 49         | INSBA       | Input for SBch DVD pin    |
| 22         | GND5        | Ground pin                               | 50         | INFRB       | Input for Rch DSP pin     |
| 23         | OUTSL       | Output for surround Lch pin              | 51         | INFLB       | Input for Lch DSP pin     |
| 24         | GND6        | Ground pin                               | 52         | INSWB       | Input for SWch DSP pin    |
| 25         | OUTSR       | Output for surround Rch pin              | 53         | INSRB       | Input for SRch DSP pin    |
| 26         | GND7        | Ground pin                               | 54         | INSLB       | Input for SLch DSP pin    |
| 27         | OUTSW       | Subwoofer output pin                     | 55         | INCB        | Input for Cch DSP pin     |
| 28         | GND8        | Ground pin                               | 56         | INSBB       | Input for SBch DSP pin    |

## **Equivalent Circuits**

| quivaler                     | t Circuits                                              |             |                    |                                                                               |
|------------------------------|---------------------------------------------------------|-------------|--------------------|-------------------------------------------------------------------------------|
| Pin No.                      | Pin Name                                                | Pin Voltage | Equivalent Circuit | Description                                                                   |
| 2<br>4<br>6<br>8<br>40<br>42 | GOUTSW<br>GOUTSR<br>GOUTSL<br>GOUTC<br>GOUTFR<br>GOUTFL | 0           | VCC<br>VEE         | Sound signal output pins from input gain                                      |
| 3<br>5<br>7<br>9<br>39<br>41 | VINSW<br>VINSR<br>VINSL<br>VINC<br>VINFR<br>VINFL       | 0           | VCC<br>VEE         | Sound signal input pins to master volume, Input Impedance: $20k\Omega$ (typ.) |
| 11<br>12                     | PORTA<br>PORTB                                          |             | VCC<br>VEE         | Open drain output pins                                                        |
| 13                           | DA                                                      | _           | VCC<br>VEE         | Serial data input pin                                                         |
| 14                           | CL                                                      | _           | VCC Z              | Serial clock input pin                                                        |

| Pin No.                                                                    | Pin Name                                                          | Pin Voltage | Equivalent Circuit | Description                                                                        |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|--------------------|------------------------------------------------------------------------------------|
| 19<br>21<br>23<br>25<br>27<br>29<br>31                                     | OUTSB<br>OUTC<br>OUTSL<br>OUTSR<br>OUTSW<br>OUTFL<br>OUTFR        | 0           | VEE O              | Sound signal output pins                                                           |
| 33<br>35                                                                   | BNF2L<br>BNF2R                                                    | 0           | VCC<br>VEE         | Bass frequency characteristic/gain setting pins                                    |
| 34<br>36                                                                   | BNF1L<br>BNF1R                                                    | 0           | VCC<br>VEE         | Bass frequency characteristic/gain setting pins                                    |
| 37<br>38                                                                   | TNFL<br>TNFR                                                      | 0           | VCC<br>VEE         | Treble frequency characteristic/gain setting pins                                  |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55 | INFRA INFLA INSRA INSLA INSBA INFRB INFLB INSRB INSRB INSCB INSBB | 0           | VCC<br>VEE         | Sound signal input pins;<br>Input impedances determined by external<br>resistances |

**OSwitch Description** 

| Output - | Input<br>(SW1=A)     |                |                |  |
|----------|----------------------|----------------|----------------|--|
|          | SW2,3=B<br>(Default) | SW2=A<br>SW3=B | SW2=B<br>SW3=A |  |
| FR       | FR                   | FR             | FR             |  |
| FL       | FL                   | FL             | FL             |  |
| SW       | SW                   | SW             | sw             |  |
| SR       | SR                   | FR             | SR             |  |
| SL       | SL                   | FL             | SL             |  |
| С        | С                    | С              | С              |  |
| SB       | SB                   | SB             | С              |  |

SW1 A: Select input line A

B: Select input line B

SW2 A: Output the signals of the FR and FL inputs onto the Surround Outputs (SR, SL) Used when the source is stereo.

B: Output the signals of the SR and SL inputs onto the Surround Outputs (SR, SL) Used when the source is 5.1ch or 6.1ch.

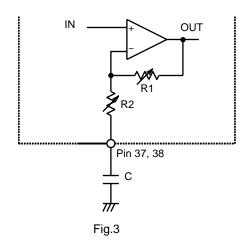
SW3 A: Output the C input signal onto SB output

Used when the source is 5.1ch with the 6.1ch speaker system installed.

B: Output the SB input signal onto the SB output Used when the source is 6.1ch with the 6.1ch speaker system installed.

G

G

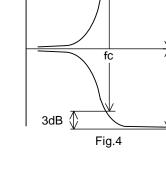

## Setting constants for tone control filters

## 1) Treble filter

 $fc=1/2\pi(R2)C$  (Hz)

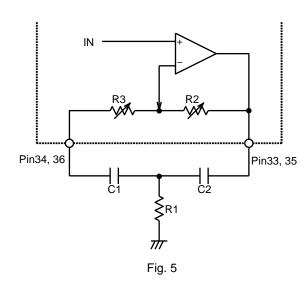
G=20log(R1+R2+Zc)/(R2+Zc) (dB)

 $Zc=1/j\omega C$  ( $\Omega$ )




G

3dB ∜


## Standard Values of R1, R2 (Reference)

| Treble Boost Amount Cut Amount | Resistance (kΩ)<br>*Typ. |      |
|--------------------------------|--------------------------|------|
|                                | R1                       | R2   |
| 0dB                            | 0                        | 20   |
| ±2dB                           | 4.1                      | 15.9 |
| ±4dB                           | 7.3                      | 12.7 |
| ±6dB                           | 10.3                     | 9.7  |
| ±8dB                           | 12.3                     | 7.7  |
| ±10dB                          | 14.0                     | 6.0  |
| ±12dB                          | 15.4                     | 4.6  |
| ±14dB                          | 16.5                     | 3.5  |



<sup>\*</sup>The actual boost/cut amounts may deviate from the standard values to some degree.

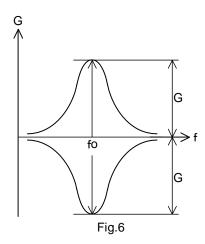
## 2) Bass Filter



$$f_0 = \frac{1}{2\pi \sqrt{R1(R2 + R3)C1C2}}$$
 (Hz)

$$Q = \frac{1}{C1+C2} \sqrt{\frac{C1C2R2}{R1}}$$

when C1=C2


$$G = 20log - \frac{\frac{R2+R3}{R1} + 2}{\frac{R3}{R1} + 2}$$
 (dB)

Standard values of R2, R3 (Reference)

 $(R1=4.7k\Omega, C1=C2=0.1\mu F)$ 

| $(K_1 = 4.7 \text{ K} 2, C_1 = C = 0.1 \mu\text{ F})$ | $(R 1=4.7 R2, C 1=C2=0.1 \mu F)$ |      |  |  |  |
|-------------------------------------------------------|----------------------------------|------|--|--|--|
| Boost Amount                                          | Resistance (kΩ)<br>Typ.*         |      |  |  |  |
| Cut Amount                                            | R2                               | R3   |  |  |  |
| 0dB                                                   | 0                                | 41.0 |  |  |  |
| ±2dB                                                  | 10.8                             | 30.2 |  |  |  |
| ±4dB                                                  | 19.3                             | 21.7 |  |  |  |
| ±6dB                                                  | 26.0                             | 15.0 |  |  |  |
| ±8dB                                                  | 31.2                             | 9.8  |  |  |  |
| ±10dB                                                 | 35.4                             | 5.6  |  |  |  |
| ±12dB                                                 | 38.4                             | 2.6  |  |  |  |
| ±14dB                                                 | 41.0                             | 0    |  |  |  |

<sup>\*</sup>The actual boost/cut amounts may deviate from the standard values in some degree.



\* Bass Filter Feature

To set the f0 and Q values of the Bass characteristics, refer to the external components of the Bass Filter shown in the upper-left figure.

#### ● Reference Data

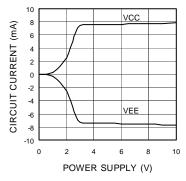



Fig.7 Circuit Current - Power Supply

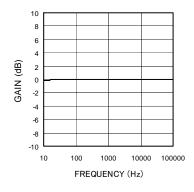



Fig.8 Voltage Gain - Frequency

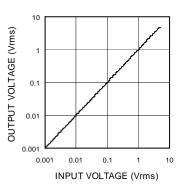



Fig.9 Output Voltage - Input Voltage

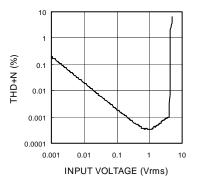



Fig.10 THD+N -Input Voltage

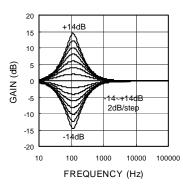



Fig.11 Bass Gain - Frequency

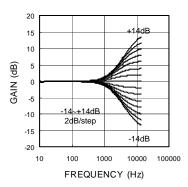



Fig.12 Treble Gain - Frequency

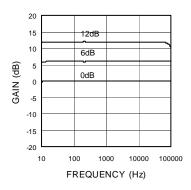



Fig.13 Input Gain - Frequency (BD3813KS)

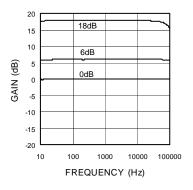



Fig.14 Input Gain - Frequency (BD3815KS)

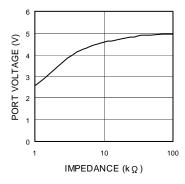



Fig.15 Port H Voltage – Load Resistance

#### Notes for use

- (1) The numbers and data shown above are representative design values and are not guaranteed.
- (2) Although the sample application circuits are guaranteed, further verification of the electrical characteristics are recommended. When modifying external components before use, ensure that sufficient margins are in place by taking into account variations in the external components themselves as well as the LSI regarding both static and transient characteristics.
- (3) Absolute maximum ratings

Operating or testing the IC over the maximum ratings may damage the part itself as well as peripheral components. Therefore, please ensure that the specifications are never exceeded. In addition, implementation of fuses or other physical safety measures is recommended.

(4) V<sub>EE</sub> potential

Ensure that the  $V_{EE}$  pin voltage is at the lowest potential and that no other pin is at a lower voltage, including transient phenomena.

(5) Thermal design

Implement thermal designs that take into account the power dissipation under actual operating conditions.

(6) Shorts between pins and erroneous installation

Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the pins, a pin and the power supply, or a pin and GND may result in destruction.

(7) Operation in a strong magnetic field

Operation in a strong magnetic field may cause malfunction.

(8) Serial control

The wiring pattern of the CL and DA terminals should be routed so as not to cause interference with the analog signal related lines.

- (9) Power ON/OFF
  - (a) During power ON/OFF a shock sound will be generated. Therefore, use the MUTE function.
  - (b) When turning ON the power supplies, V<sub>EE</sub> and V<sub>CC</sub> should either be powered on simultaneously, or V<sub>EE</sub> first, followed by V<sub>CC</sub>, since if V<sub>CC</sub> is started up first, an excessive current may pass V<sub>CC</sub> through to V<sub>EE</sub>.
- (10) Function switching

For functions except the Master Volume, Treble and Bass controls, use of the MUTE function is recommended.

(11) Port power supply

The port power supply should be turned ON following  $V_{CC}$  and  $V_{EE}$ . If the port is not used, the port power supply must be connected to  $V_{EE}$ .

## ●Thermal Derating Curve

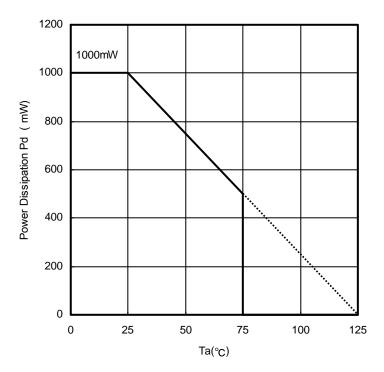
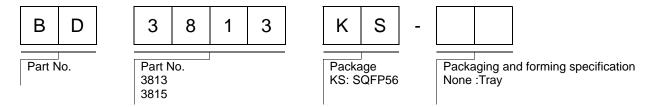
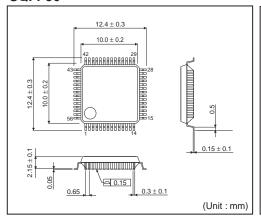
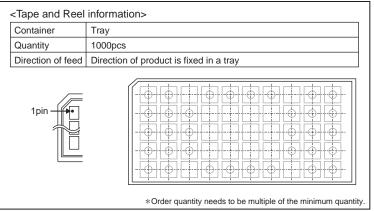




Fig. 16


BD3813KS, BD3815KS


Board size: 70mm x 70mm x 1.6mm Raw material: FR4 glass epoxy board (copper area less than 3%)

## Ordering part number



## SQFP56





## **Notice**

#### **Precaution on using ROHM Products**

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

| JAPAN   | USA    | EU         | CHINA    |
|---------|--------|------------|----------|
| CLASSⅢ  | CLASSⅢ | CLASS II b | CLASSIII |
| CLASSIV |        | CLASSⅢ     |          |

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
  - [a] Installation of protection circuits or other protective devices to improve system safety
  - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
  - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
  - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
  - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, and NO<sub>2</sub>
  - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
  - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
  - [f] Sealing or coating our Products with resin or other coating materials
  - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
  - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

#### Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

## **Precautions Regarding Application Examples and External Circuits**

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

#### **Precaution for Electrostatic**

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

### **Precaution for Storage / Transportation**

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
  - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
  - [b] the temperature or humidity exceeds those recommended by ROHM
  - the Products are exposed to direct sunshine or condensation
  - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

#### **Precaution for Product Label**

QR code printed on ROHM Products label is for ROHM's internal use only.

#### **Precaution for Disposition**

When disposing Products please dispose them properly using an authorized industry waste company.

#### **Precaution for Foreign Exchange and Foreign Trade act**

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

#### **Precaution Regarding Intellectual Property Rights**

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

## **Other Precaution**

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002

#### **General Precaution**

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Rev.001