

BGB707L7ESD

SiGe:C Wideband MMIC LNA with Integrated ESD Protection

RF & Protection Devices

Edition 2009-08-14

**Published by Infineon Technologies AG,
85579 Neubiberg, Germany**

**© Infineon Technologies AG 2009.
All Rights Reserved.**

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGB707L7ESD, SiGe:C Wideband MMIC LNA with Integrated ESD Protection**Revision History: 2009-08-14, Rev. 3.1**

Prevision History: Target Datasheets Rev. 1.0 - 1.3, Preliminary Datasheet Rev. 2.0, Final Data Sheet Rev. 3.0

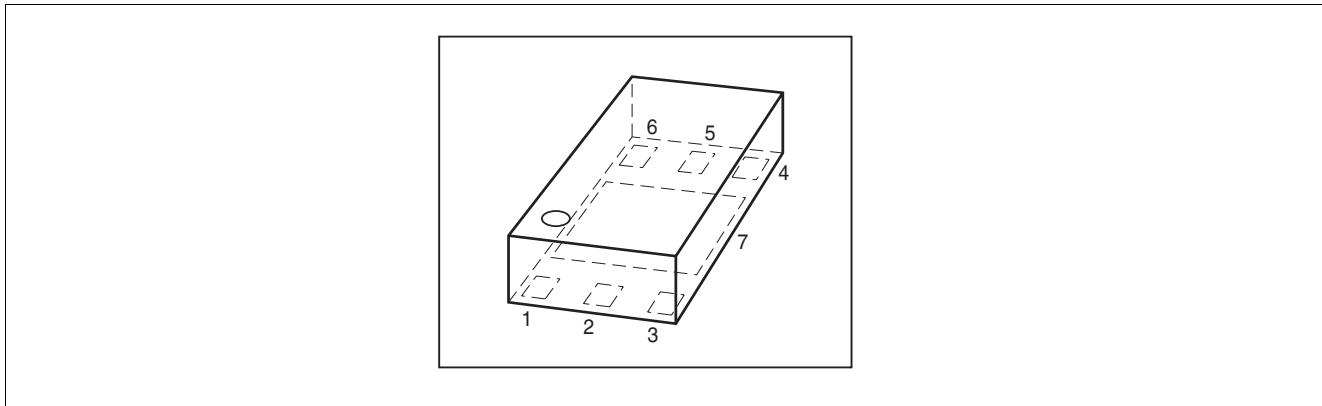
Rev. 3.1	typical electrical performance added for the SDMB application in chapter 6.2.2

1 SiGe:C Wideband MMIC LNA with Integrated ESD Protection

Features

- High performance general purpose wideband MMIC LNA
- 150 GHz fT-Silicon Germanium Carbon technology
- ESD protection integrated for all pins (3 kV for RF input vs. GND, 2 kV for all other pin combinations, HBM)
- Very high gain at low current consumption
- High input compression point
- Excellent noise figure from latest SiGe:C technology
- Integrated active biasing circuit enables stable operation point against temperature- and processing-variations
- Operation voltage: 1.8 V to 4.0 V
- Adjustable operation current 2.1 mA to 25 mA by external resistor
- Power-off function
- Very small and leadless package TSLP-7-1, 2.0 x 1.3 x 0.4 mm
- Pb-free (RoHS compliant) and halogen-free (WEEE compliant) package

Applications


- FM Radio, Mobile TV, RKE, AMR, Cellular, ZigBee, GPS, WiMAX, SDARs, Satellite Radio, Bluetooth, WiFi, Cordless phone, UMTS, WLAN, UWB, LNB

2 Product Brief

The BGB707L7ESD is a Silicon Germanium Carbon (SiGe:C) low noise amplifier MMIC with integrated ESD protection and active biasing. The device is as flexible as a discrete transistor and features high gain, reduced power consumption and very low distortion for a very wide range of applications.

The Device is based upon Infineon Technologies cost effective SiGe:C technology and comes in a low profile TSLP-7-1 leadless green package

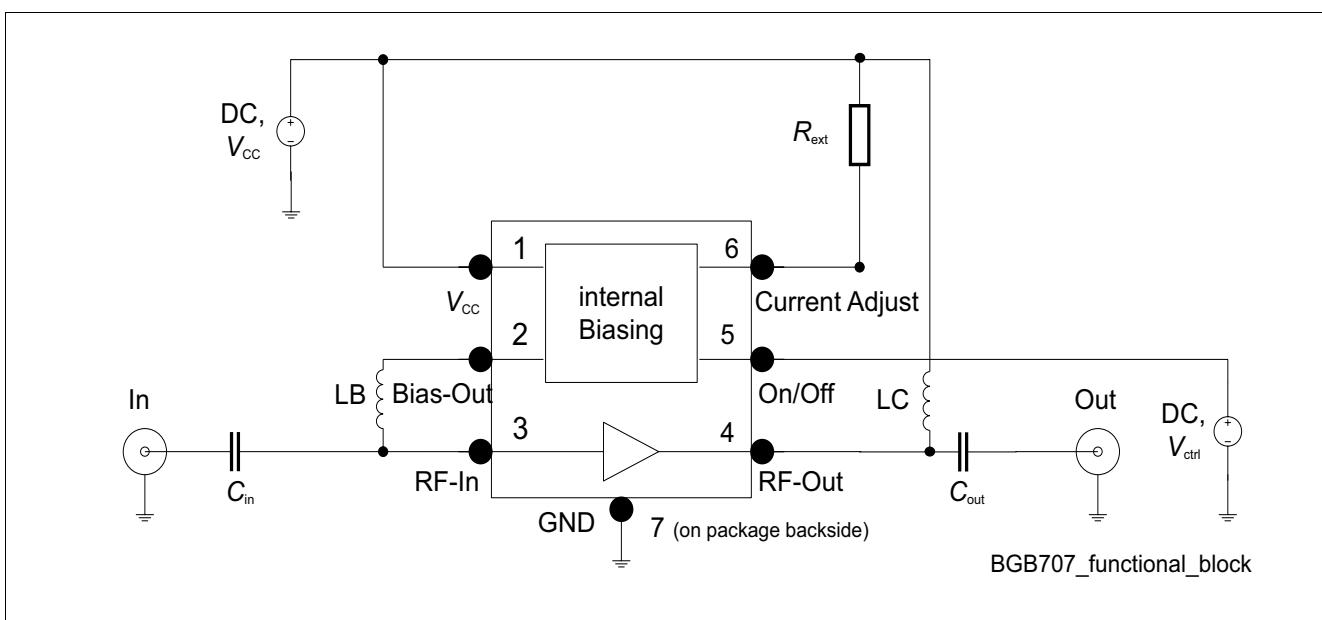

Type	Package	Marking
BGB707L7ESD	TSLP-7-1	AZ

Figure 1 Pinning PG-TSLP-7-1

Table 1 Pinning table

Pin	Function
1	V_{CC}
2	Bias Out
3	RF In
4	RF Out
5	Control On/Off
6	Current Adjust
7	GND

The following diagram shows the principal schematic how the BGB707L7ESD is used in a circuit. The Power On/Off function is controlled by applying V_{ctrl} . By using an external resistor R_{ext} the pre-set current of 2.1 mA (which is adjusted by the integrated biasing when R_{ext} is omitted) can be increased. Base- and collector voltages are applied to the respective pins RF In and RF Out by external inductors.

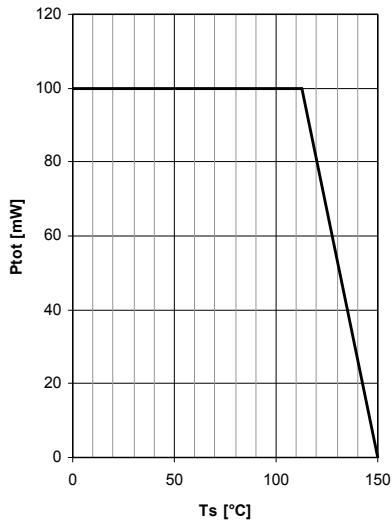
Figure 2 Functional block

3 Maximum Ratings

Table 2 Maximum ratings at $T_A = 25^\circ\text{C}$ (unless otherwise specified)

Parameter	Symbol	Value	Unit
Supply Voltage $T_A = -55^\circ\text{C}$	V_{CC}	4.0 3.5	V
Supply Current at V_{CC} pin	I_{CC}	25	mA
DC Current at RF In pin	I_B	2	mA
Voltage at Ctrl On/Off pin	V_{ctrl}	4.0	V
Total Power Dissipation $T_S < 112^\circ\text{C}^1$	P_{tot}	100	mW
Operation Junction Temperature	T_{JOp}	-55...150	°C
Storage Temperature	T_{Stg}	-55...150	°C

1) T_S is the soldering point temperature. T_S is measured at the GND pin (7) at the soldering point to the pcb


Note: Exceeding only one of the above maximum rating limits even for a short moment may cause permanent damage to the device. Even if the device continues to operate, its lifetime may be considerably shortened. Maximum ratings are stress ratings only and do not mean unaffected functional operation and lifetime at others than standard operation conditions.

4 Thermal Characteristics

Table 3 Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - Soldering Point ¹⁾	R_{thJS}	375	K/W

1) For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Figure 3 Total Power Dissipation $P_{tot} = f(T_s)$

5 Operation Conditions

Table 4 Operation Conditions

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply Voltage	V_{CC}	1.8	3.0	4.0	V	
Voltage Ctrl On/Off pin in On mode	$V_{ctrl-on}$	1.2		4.0	V	
Voltage Ctrl On/Off pin in Off mode	$V_{ctrl-off}$	-0.3		0.3	V	

6 Electrical Characteristics

6.1 DC Characteristics

Table 5 DC Characteristics at $T_A = 25^\circ\text{C}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply Current	I_{CC}	1.6	2.1	2.6	mA	$V_{CC} = 3\text{ V}, V_{Ctrl} = 3\text{ V}$ $R_{ext} = \text{open}$ $R_{ext} = 12\text{ k}\Omega$ $R_{ext} = 4.7\text{ k}\Omega$ $R_{ext} = 2.4\text{ k}\Omega$ $R_{ext} = 1\text{ k}\Omega$
Collector Current in Off mode	I_{CC-off}			6	μA	$V_{CC} = 4\text{ V}, V_{Ctrl} = 0\text{ V}$
Current into Ctrl On/Off pin in On mode	$I_{Ctrl-on}$		14	20	μA	$V_{CC} = 3\text{ V}, V_{Ctrl} = 3\text{ V}$
Current into Ctrl On/Off pin in Off mode	$I_{Ctrl-off}$			0.1	μA	$V_{CC} = 4\text{ V}, V_{Ctrl} = 0\text{ V}$

6.2 AC Characteristics

AC characteristics are described in two sub-chapters, first for 100MHz FM Radio applications, then for higher frequencies in a 50Ω environment.

6.2.1 AC Characteristics in FM Radio Applications

Two BGB707L7ESD FM radio application notes are available on our website www.infineon.com/BGB707. Depending on the impedance of the used antenna, please consult AN177 for high-ohmic antennas and AN181 for 50Ω antennas. In this chapter you find a summary of the electrical performance as described in these application notes in table form.

6.2.1.1 High-ohmic FM Radio Antenna

Table 6 AC Characteristics in the FM Radio application as described in AN177
 $T_A = 25^\circ\text{C}$, $V_{CC} = 3.0 \text{ V}$, $I_{CC} = 3.0 \text{ mA}$, $V_{ctrl} = 3.0 \text{ V}$, $f = 100 \text{ MHz}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Transducer Gain	$ S_{21} ^2$		12		dB	
Input Return Loss	RL_{IN}		0.5 ¹⁾		dB	
Output Return Loss	RL_{OUT}		16		dB	
Noise Figure ($Z_s = 50 \Omega$)	NF		1.0		dB	
Input 1 dB Gain Compression Point ²⁾	IP_{1dB}		-5.5		dBm	
Input 3 rd Order Intercept Point ³⁾	IIP_3		-12.5		dBm	

1) LNA presents a high input impedance match over the 76-108 MHz FM radio band.

2) I_{CC} increases as RF input power level approaches IP1dB.

3) IIP_3 value depends on termination of all intermodulation frequency components. Termination used for the measurement is 50Ω from 0.1 to 6 GHz.

6.2.1.2 50Ω FM Radio Antenna

Table 7 AC Characteristics in the FM Radio application as described in AN181
 $T_A = 25^\circ\text{C}$, $V_{CC} = 2.8 \text{ V}$, $I_{CC} = 4.2 \text{ mA}$, $V_{ctrl} = 2.8 \text{ V}$, $f = 100 \text{ MHz}$

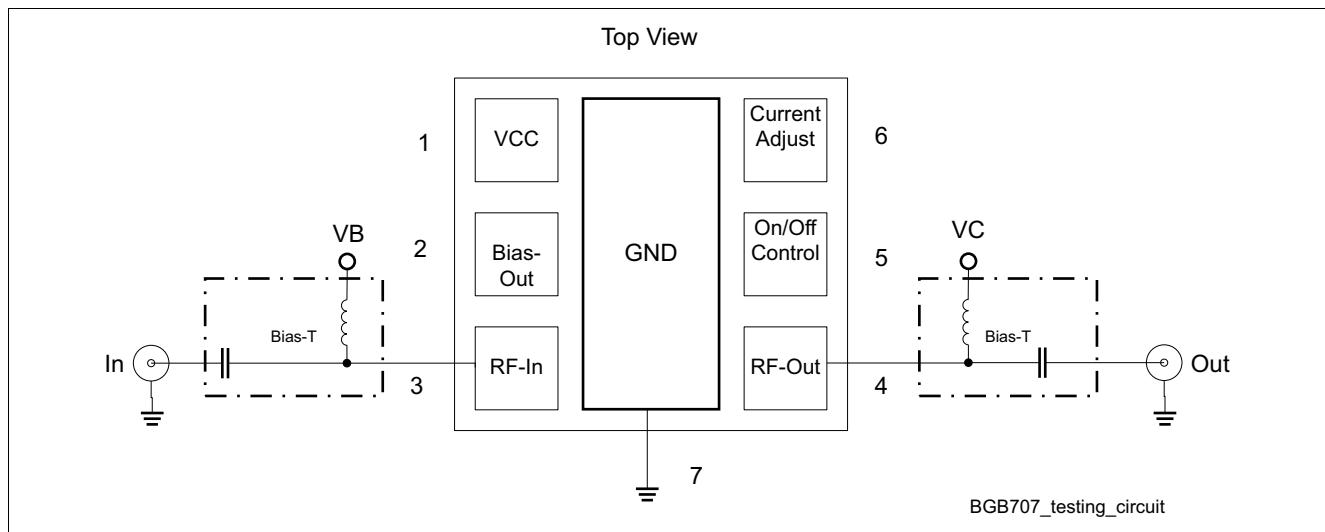
Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Transducer Gain	$ S_{21} ^2$	13.5	15	16.5	dB	
Input Return Loss	RL_{IN}		7.5		dB	
Output Return Loss	RL_{OUT}		14.5		dB	
Noise figure ($Z_s = 50 \Omega$)	NF		1.35	1.9	dB	
Input 1 dB Gain Compression Point ^{1) 3)}	IP_{1dB}		-10		dBm	
Input 3 rd Order Intercept Point ^{2) 3)}	IIP_3	-7.5	-6		dBm	

1) I_{CC} increases as RF input power level approaches IP1dB.

2) IIP_3 value depends on termination of all intermodulation frequency components. Termination used for the measurement is 50Ω from 0.1 to 6 GHz.

3) Verified by random sampling

6.2.2 AC Characteristics in the SDMB Application


A technical report TR122 for LNA applications in the frequency range 2.3 GHz to 2.7 GHz is available on our website www.infineon.com/BGB707. In this chapter you find a summary of the electrical performance for the SDMB application as described in technical report TR122 in table form.

**Table 8 AC Characteristics in the SDMB application as described in TR122<
 $T_A = 25^\circ\text{C}$**

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Frequency Range	F_{req}		2.6		GHz	
Supply Voltage	V_{cc}		2.8		V	
Bias Current	I_{cc}	4.4	5.6	6.8	mA	
Transducer Gain	$ S_{21} ^2$	13	15	17	dB	Power @ port1 = -30 dBm
Transducer Gain (off mode)	$ S_{21} _{off}^2$		-18		dB	
Noise Figure ($Z_s = 50 \Omega$)	NF		1.15	1.5	dB	Including SMA connectors / PCB losses of 0.1 dB
Input Return Loss	RL_{IN}		13.2		dB	
Output Return Loss	RL_{OUT}		12		dB	
Reverse Isolation	I_{REV}		27.8		dB	Power @ port2 = -10 dBm
Input P1dB	$IP_{1\text{dB}}$		-9.6		dBm	
Output P1dB	$OP_{1\text{dB}}$		4.4		dBm	
Input IP3	IIP_3		-1.4		dBm	Input power = -30 dBm
Output IP3	OIP_3		13.6		dBm	
On Switching Time	T_{on}		1.5		μs	Measured with $C_2 = 1\text{nF}$
Off Switching Time	T_{off}		4.2		μs	
Stability	k		>1			Stability measured up to 10 GHz

6.2.3 AC Characteristics in Test Fixture

For frequencies from 150 MHz to 10 GHz the measurement setup is a test fixture with Bias-T's in a 50 Ω system at $T_A = 25^\circ\text{C}$.

Figure 4 Testing circuit for frequencies from 150 MHz to 10 GHz

Table 9 AC Characteristics $V_C = 3\text{ V}$, $f = 150\text{ MHz}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{\min}		0.4 0.4 0.5 0.55		dB	$Z_S = Z_{\text{Sopt}}$ $I_C = 2.1\text{ mA}$ $I_C = 3\text{ mA}$ $I_C = 6\text{ mA}$ $I_C = 10\text{ mA}$
Transducer Gain	$ S_{21} ^2$		17 19 24 27		dB	$Z_S = Z_L = 50\text{ }\Omega$ $I_C = 2.1\text{ mA}$ $I_C = 3\text{ mA}$ $I_C = 6\text{ mA}$ $I_C = 10\text{ mA}$
Maximum Power Gain	G_{ms}		31.5 33 35 37		dB	$Z_L = Z_{\text{Lopt}}$, $Z_S = Z_{\text{Sopt}}$ $I_C = 2.1\text{ mA}$ $I_C = 3\text{ mA}$ $I_C = 6\text{ mA}$ $I_C = 10\text{ mA}$
Input 1 dB Gain Compression Point ¹⁾	$IP_{1\text{dB},m}$		-12.5 -14 -19 -24		dBm	$I_{Cq} = 2.1\text{ mA}$ ²⁾ $I_{Cq} = 3\text{ mA}$ $I_{Cq} = 6\text{ mA}$ $I_{Cq} = 10\text{ mA}$
Input 3 rd Order Intercept Point ³⁾	$IIP_{3,m}$		-26.5		dBm	$I_C = 2.1\text{ mA}$

Electrical Characteristics
Table 9 AC Characteristics $V_C = 3$ V, $f = 150$ MHz (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
		-25	-25			$I_C = 3$ mA
		-18	-18			$I_C = 6$ mA
		-8.5	-8.5			$I_C = 10$ mA

- 1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10$ dB. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.
- 2) I_{Cq} is the quiescent current, that is at small RF input power level. I_C increases as RF input power level approaches P1dB.
- 3) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10$ dB.

Table 10 AC Characteristics $V_C = 3$ V, $f = 450$ MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{min}		0.45		dB	$Z_S = Z_{Sopt}$
			0.45			$I_C = 2.1$ mA
			0.5			$I_C = 3$ mA
			0.6			$I_C = 6$ mA
						$I_C = 10$ mA
Transducer Gain	$ S_{21} ^2$		17		dB	$Z_S = Z_L = 50 \Omega$
			19			$I_C = 2.1$ mA
			24			$I_C = 3$ mA
			27			$I_C = 6$ mA
						$I_C = 10$ mA
Maximum Power Gain	G_{ms}		27		dB	$Z_L = Z_{Lopt}$, $Z_S = Z_{Sopt}$
			28			$I_C = 2.1$ mA
			30.5			$I_C = 3$ mA
			32			$I_C = 6$ mA
						$I_C = 10$ mA
Input 1 dB Gain Compression Point ¹⁾	$IP_{1dB,m}$		-12		dBm	$I_{Cq} = 2.1$ mA ²⁾
			-13.5			$I_{Cq} = 3$ mA
			-19.5			$I_{Cq} = 6$ mA
			-23.5			$I_{Cq} = 10$ mA
Input 3 rd Order Intercept Point ³⁾	$IIP_{3,m}$		-25.5		dBm	$I_C = 2.1$ mA
			-24			$I_C = 3$ mA
			-17.5			$I_C = 6$ mA
			-13			$I_C = 10$ mA

- 1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10$ dB. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.
- 2) I_{Cq} is the quiescent current, that is at small RF input power level. I_C increases as RF input power level approaches P1dB.
- 3) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10$ dB.

Electrical Characteristics
Table 11 AC Characteristics $V_C = 3$ V, $f = 900$ MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{min}		0.55 0.55 0.6 0.7		dB	$Z_S = Z_{Sopt}$ $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Transducer Gain	$ S_{21} ^2$		17 19 23.5 26		dB	$Z_S = Z_L = 50$ Ω $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Maximum Power Gain	G_{ms}		24 25 27.5 29		dB	$Z_L = Z_{Lopt}$, $Z_S = Z_{Sopt}$ $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Input 1 dB Gain Compression Point ¹⁾	$IP_{1dB,m}$		-10 -12 -18 -22.5		dBm	$I_{Cq} = 2.1$ mA ²⁾ $I_{Cq} = 3$ mA $I_{Cq} = 6$ mA $I_{Cq} = 10$ mA
Input 3 rd Order Intercept Point ³⁾	$IIP_{3,m}$		-23 -21 -14.5 -11.5		dBm	$I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA

1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10$ dB. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.

2) I_{Cq} is the quiescent current, that is at small RF input power level. I_C increases as RF input power level approaches P1dB.

3) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10$ dB.

Table 12 AC Characteristics $V_C = 3$ V, $f = 1.9$ GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{min}		0.6 0.6 0.6 0.7		dB	$Z_S = Z_{Sopt}$ $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Transducer Gain	$ S_{21} ^2$		16 18 21.5		dB	$Z_S = Z_L = 50$ Ω $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA

Electrical Characteristics
Table 12 AC Characteristics $V_C = 3$ V, $f = 1.9$ GHz (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition $I_C = 10$ mA
		Min.	Typ.	Max.		
Maximum Power Gain	G_{ms}	23			dB	$Z_L = Z_{Lopt}$, $Z_S = Z_{Sopt}$
			21			$I_C = 2.1$ mA
			22			$I_C = 3$ mA
			24			$I_C = 6$ mA
			26			$I_C = 10$ mA
Input 1 dB Gain Compression Point ¹⁾	$IP_{1dB,m}$	-5 -7 -12.5 -16.5			dBm	$I_{Cq} = 2.1$ mA ²⁾
						$I_{Cq} = 3$ mA
						$I_{Cq} = 6$ mA
						$I_{Cq} = 10$ mA
Input 3 rd Order Intercept Point ³⁾	$IIP_{3,m}$	-16.5 -15 -10 -8.5			dBm	$I_C = 2.1$ mA
						$I_C = 3$ mA
						$I_C = 6$ mA
						$I_C = 10$ mA

1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10$ dB. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.

2) I_{Cq} is the quiescent current, that is at small RF input power level. I_C increases as RF input power level approaches P1dB.

3) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10$ dB.

Table 13 AC Characteristics $V_C = 3$ V, $f = 2.4$ GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{min}	0.65 0.6 0.6 0.7			dB	$Z_S = Z_{Sopt}$
						$I_C = 2.1$ mA
						$I_C = 3$ mA
						$I_C = 6$ mA
						$I_C = 10$ mA
Transducer Gain	$ S_{21} ^2$	15.5 17 20 21.5			dB	$Z_S = Z_L = 50$ Ω
						$I_C = 2.1$ mA
						$I_C = 3$ mA
						$I_C = 6$ mA
						$I_C = 10$ mA
Maximum Power Gain	G_{ms}	20 21 23 25			dB	$Z_L = Z_{Lopt}$, $Z_S = Z_{Sopt}$
						$I_C = 2.1$ mA
						$I_C = 3$ mA
						$I_C = 6$ mA
						$I_C = 10$ mA
Input 1 dB Gain Compression Point ¹⁾	$IP_{1dB,m}$	-3 -4.5 -9.5			dBm	$I_{Cq} = 2.1$ mA ²⁾
						$I_{Cq} = 3$ mA
						$I_{Cq} = 6$ mA

Electrical Characteristics

Table 13 AC Characteristics $V_C = 3 \text{ V}$, $f = 2.4 \text{ GHz}$ (cont'd)

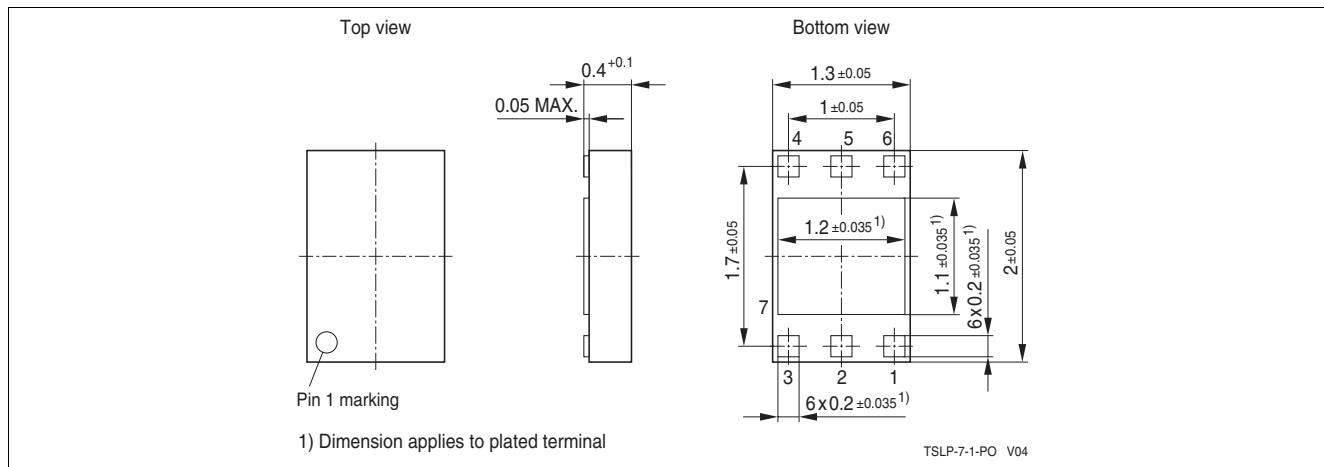
Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
			-12.5			$I_{Cq} = 10 \text{ mA}$
Input 3 rd Order Intercept Point ³⁾	$IIP_{3,m}$		-13 -11.5 -6 -5.5		dBm	$I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$

1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10 \text{ dB}$. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.
2) I_{Cq} is the quiescent current, that is at small RF input power level. I_C increases as RF input power level approaches P1dB.
3) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10 \text{ dB}$.

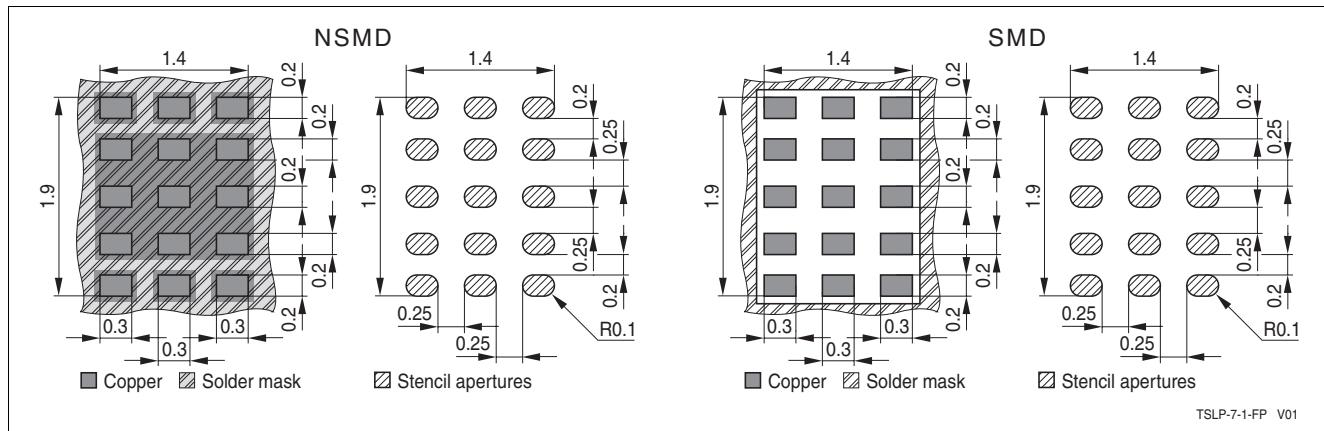
Table 14 AC Characteristics $V_C = 3 \text{ V}$, $f = 5.5 \text{ GHz}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{min}		1.05 1 0.9 0.95		dB	$Z_S = Z_{Sopt}$ $I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$
Transducer Gain	$ S_{21} ^2$		11.5 13 15 15.5		dB	$Z_S = Z_L = 50 \Omega$ $I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$
Maximum Power Gain	G_{ms}		17.5 18.5 20 19		dB	$Z_L = Z_{Lopt}$, $Z_S = Z_{Sopt}$ $I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$
Input 1 dB Gain Compression Point ¹⁾	$IP_{1dB,m}$		-1 -3 -7 -9.5		dBm	$I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$
Input 3 rd Order Intercept Point ²⁾	$IIP_{3,m}$		-4 -2.5 2 2.5		dBm	$I_C = 2.1 \text{ mA}$ $I_C = 3 \text{ mA}$ $I_C = 6 \text{ mA}$ $I_C = 10 \text{ mA}$

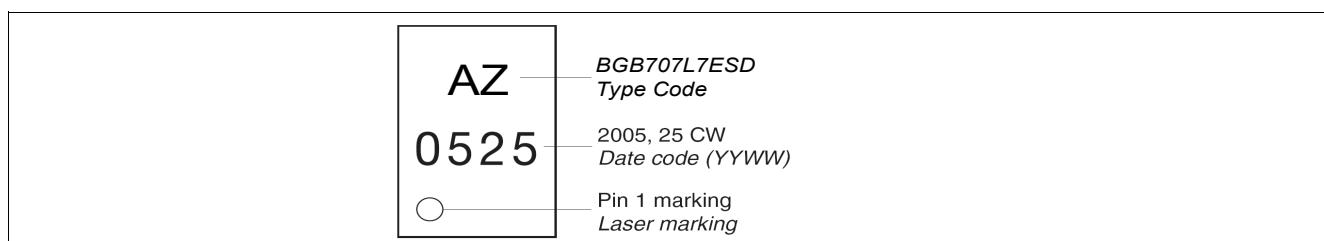
1) $IP_{1dB,m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10 \text{ dB}$. Therefore the $IP_{1dB,m}$ value is a good indicator for the linearity achievable in the application.
2) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10 \text{ dB}$.


Table 15 AC Characteristics $V_C = 3$ V, $f = 10$ GHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Minimum Noise Figure	NF_{\min}		2 1.8 1.5 1.5		dB	$Z_S = Z_{S\text{opt}}$ $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Transducer Gain	$ S_{21} ^2$		5.5 7 9 10		dB	$Z_S = Z_L = 50$ Ω $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Maximum Power Gain	G_{ms}		14.5 15 15.5 15.5		dB	$Z_L = Z_{L\text{opt}}$, $Z_S = Z_{S\text{opt}}$ $I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Input 1 dB Gain Compression Point ¹⁾	$IP_{1\text{dB},m}$		1.5 0.5 -2.5 -4		dBm	$I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA
Input 3 rd Order Intercept Point ²⁾	$IIP_{3,m}$		-1 -0.5 1.5 5		dBm	$I_C = 2.1$ mA $I_C = 3$ mA $I_C = 6$ mA $I_C = 10$ mA


1) $IP_{1\text{dB},m}$ is the input compression point achieved when the device is matched at the input with $S_{11} = -10$ dB. Therefore the $IP_{1\text{dB},m}$ value is a good indicator for the linearity achievable in the application.

2) $IIP_{3,m}$ is the input 3rd order intercept point achieved when the device is matched at the input with $S_{11} = -10$ dB.


7 Package Information

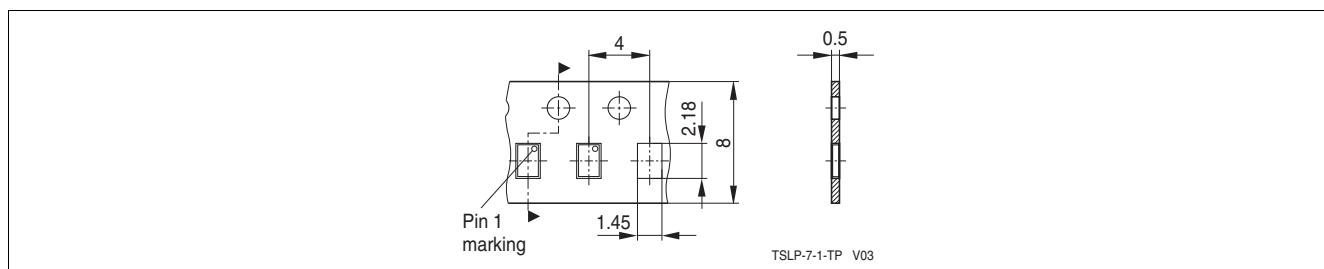

Figure 5 Package Outline TSLP-7-1

Figure 6 Footprint

Figure 7 Marking Layout (top view)

Figure 8 Tape Dimensions