

October 2008

FDS4559_F085

60V Complementary PowerTrench®MOSFET

General Description

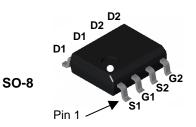
This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Applications

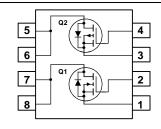
- DC/DC converter
- · Power management
- LCD backlight inverter

Features

Q1: N-Channel


4.5 A, 60 V
$$R_{DS(on)} = 55 \ m\Omega \ @ \ V_{GS} = 10V$$

$$R_{DS(on)} = 75 \ m\Omega \ @ \ V_{GS} = 4.5V$$


Q2: P-Channel

$$-3.5 \text{ A}, -60 \text{ V} \text{ R}_{DS(on)} = 105 \text{ m}\Omega \text{ @ V}_{GS} = -10 \text{V}$$

$$R_{DS(on)} = 135 \text{ m}\Omega @ V_{GS} = -4.5V$$

- Qualified to AEC Q101
- RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		60	-60	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	4.5	-3.5	Α
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation		2	W	
	Power Dissipation for Single Operation (Note 1a)		1.0		
		(Note 1b)	1.2	2	
		(Note 1c)	2)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

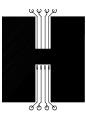
Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking Device		Reel Size	Tape width	Quantity	
FDS4559	FDS4559_ F085	13"	12mm	2500 units	

©2008 Fairchild Semiconductor Corporation


Off Characteristics BV _{DSS} Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = −250 μA Q1 60 −40 −49 −60 −49 −49 −49 −60 −49	Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Woss Single Pulse Drain-Source Avalanche Energy Avalanche Energy Maximum Drain-Source Avalanche Current Q1 Q1 Q1 Q1 Q1 Q1 Q2 Q2	Orain-So	ource Avalanche Ratin	GS (Note 1)					
Off Characteristics BV _{DSS} Drain-Source Breakdown Voltage V _{CS} = 0 V, I _D = -250 μA Q1 60 -60		Single Pulse Drain-Source		Q1			90	mJ
BVDSS Drain-Source Breakdown Voltage Vos = 0 V, I _D = 250 μA Q1 60 Q2 -60 ABVOSS ATJ Breakdown Voltage I _D = 250 μA, Referenced to 25°C Q2 -60 I _D = 250 μA, Referenced to 25°C Q2 -49 I _{DSS} Zero Gate Voltage Drain Vos = 48 V, Vos = 0 V Q1 Vos = 48 V, Vos = 0 V Q1 Vos = 48 V, Vos = 0 V Q1 Vos = 48 V, Vos = 0 V Q2 Vos = ±20 V, V _{DS} = 0 V Q2 Vos = ±20 V, V _{DS} = 0 V Q2 Vos = ±20 V, V _{DS} = 0 V Q2 Vos = ±20 V, V _{DS} = 0 V Q2 Vos = ±20 V, V _{DS} = 0 V Q2 Vos = Vos I _D = 250 μA Referenced to 25°C Q2 -1 -1.6 Vos = Vos I _D = 250 μA Q2 -1 -1.6 Vos = Vos I _D = 250 μA Referenced to 25°C Q2 -1 -1.6 Vos = Vos I _D = 250 μA Referenced to 25°C Q2 -1 -1.6 Vos = Vos I _D = 250 μA Referenced to 25°C Q2 -1 -1.6 Vos = Vos I _D = 250 μA Referenced to 25°C Q2 -1 -1.6 Vos = 10 V, I _D = 4.5 A V _D = 125°C Vos = 10 V, I _D = 3.5 A V _D = 10 V, I _D = 3.5 A Q1 42 Vos = -10 V, I _D = -3.5 A Vos = -10 V, I _D = -3.5 A Vos = -10 V, I _D = -3.5 A Q1 42 Vos = -10 V, I _D = -3.5 A Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D = -3.5 A Q1 105 Vos = -10 V, I _D =	AR			Q1			4.5	Α
Voltage	Off Cha	racteristics						
	SV _{DSS}							V
	R\/pss	ŭ		_	-60	58		mV/°C
$ \begin{array}{ c c c } l_{DSS} & Zero Gate Voltage Drain \\ Current & V_{DS} = -48 \ V, V_{GS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -48 \ V, V_{QS} = 0 \ V \\ V_{QS} = -250 \ \mu A \\ V_{QS} = -10 \ V, V_{DS} = -50 \ V \\ V_{QS} = -10 \ V, V_{QS} = -50 \ V \\ V_{QS} = -10 \ V, V_{QS} = -50 \ V \\ V_{QS} = -30 \ V, V_{QS} = 0 \ V, \\ V_{QS} = -30 \ V, V_{QS} = 0 \ V, \\ V_{QS} = -30 \ V$								IIIV/ C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	Zero Gate Voltage Drain	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$				1 –1	μΑ
$ \begin{array}{ c c c c } \hline \textbf{On Characteristics} & \textbf{(Note 2)} \\ \hline \textbf{V}_{GS(th)} & \textbf{Gate Threshold Voltage} & \textbf{V}_{DS} = \textbf{V}_{GS, D} = 250 \ \mu\text{A} & \textbf{Q1} & 1 & 2.2 \\ \textbf{V}_{DS} = \textbf{V}_{GS, D} & \textbf{Q2} & -1 & -1.6 \\ \textbf{A}_{VGS(th)} & \textbf{Gate Threshold Voltage} & \textbf{I}_{D} = 250 \ \mu\text{A} & \textbf{Q2} & -1 & -1.6 \\ \textbf{A}_{VGS(th)} & \textbf{Gate Threshold Voltage} & \textbf{I}_{D} = 250 \ \mu\text{A}, & \textbf{Referenced to } 25^{\circ}\text{C} & \textbf{Q1} & -5.5 \\ \textbf{Q2} & \textbf{A}_{DS(on)} & \textbf{Static Drain-Source} & \textbf{V}_{GS} = 10 \ \textbf{V}, \ \textbf{I}_{D} = 4.5 \ \textbf{A} & \textbf{V}_{QS} = 10 \ \textbf{V}, \ \textbf{I}_{D} = 4.5 \ \textbf{A} \\ \textbf{V}_{GS} = 10 \ \textbf{V}, \ \textbf{I}_{D} = 4.5 \ \textbf{A} & \textbf{V}_{QS} = 10 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -10 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -10 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -4.5 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -4.5 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -4.5 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -4.5 \ \textbf{V}, \ \textbf{I}_{D} = -3.5 \ \textbf{A} \\ \textbf{V}_{GS} = -10 \ \textbf{V}, \ \textbf{V}_{DS} = 5 \ \textbf{V} \\ \textbf{Q2} & \textbf{Q2} \\ \textbf{Q2} & \textbf{Q3} \\ \textbf{Q3} \\ \textbf{Q4} & \textbf{Q4} \\ \textbf{Q2} & \textbf{Q1} & \textbf{Q3} \\ \textbf{Q2} & \textbf{Q1} \\ \textbf{Q3} & \textbf{Q4} \\ \textbf{Q4} & \textbf{Q4} & \textbf{Q4} \\ \textbf{Q2} & \textbf{Q1} & \textbf{Q3} \\ \textbf{Q4} & \textbf{Q4} \\ \textbf{Q5} & \textbf{Q4} & \textbf{Q4} \\ \textbf{Q5} & \textbf{Q5} \\ \textbf{Q5} & \textbf{Q5} \\ \textbf{Q6} & \textbf{Q5} & \textbf{Q5} \\ \textbf{Q6} & \textbf{Q7} \\ \textbf{Q6} & \textbf{Q7} \\ \textbf{Q6} & \textbf{Q7} \\ \textbf{Q6} & \textbf{Q7} & \textbf{Q7} \\ \textbf{Q7} & \textbf{Q7} & \textbf{Q7} \\ \textbf{Q7} & \textbf{Q7} \\ \textbf{Q7} & \textbf{Q7} & \textbf{Q7} \\ \textbf{Q7} & \textbf{Q7} & \textbf{Q7} \\ \textbf{Q7} & \textbf{Q7} \\ $	SSS		$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				<u>+</u> 100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Q2			<u>+</u> 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On Cha	racteristics (Note 2)						
$ \frac{\Delta V_{GSL(fh)}}{\Delta T_J} \begin{array}{c} \text{Gate Threshold Voltage} \\ \text{Temperature Coefficient} \\ \end{array}{} \begin{array}{c} I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ O2 \\ \end{array}{} \begin{array}{c} \text{Q1} \\ 4 \\ \end{array}{} \begin{array}{c} -5.5 \\ 4 \\ \end{array}{} \end{array}{} \\ \begin{array}{c} \text{R}_{DS(cn)} \\ \text{R}_{DS(cn)} \\ \end{array}{} \begin{array}{c} \text{Static Drain-Source} \\ \text{On-Resistance} \\ \end{array}{} \begin{array}{c} V_{GS} = 10 \ V, \ I_D = 4.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = 4.5 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \text{Resistance} \\ \end{array}{} \begin{array}{c} \text{Resistance} \\ \end{array}{} \begin{array}{c} I_{D(cn)} \\ I_{D(cn)} \\ \end{array}{} \begin{array}{c} \text{On-State Drain Current} \\ \end{array}{} \begin{array}{c} V_{GS} = 10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Resistance} \\ \end{array}{} \begin{array}{c} I_{D(cn)} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{On-State Drain Current} \\ \end{array}{} \begin{array}{c} V_{GS} = 10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ V, \ I_D = -3.5 \ A, \ T_J = 125^{\circ}\text{C} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q4} \\ \end{array}{} \begin{array}{c} \text{Q5} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q6} \\ \end{array}{} \begin{array}{c} \text{Q6} \\ \end{array}{} \begin{array}{c} \text{Q6} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q6} \\ \end{array}{} \begin{array}{c} \text{Q7} \\ \end{array}{} \begin{array}{c} \text{Q1} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \begin{array}{c} \text{Q4} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \begin{array}{c} \text{Q4} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \begin{array}{c} \text{Q4} \\ \end{array}{} \begin{array}{c} \text{Q2} \\ \end{array}{} \begin{array}{c} \text{Q3} \\ \end{array}{} \begin{array}{c} \text{Q4} \\ \end{array}{} \begin{array}{c} \text$	GS(th)	Gate Threshold Voltage		Q1		2.2	3	V
$ \begin{array}{ c c c c } \hline \Delta T_J & Temperature Coefficient & I_D = -250~\mu\text{A}, Referenced to 25°C & Q2 & 4 \\ \hline R_{DS(en)} & Static Drain-Source & V_{GS} = 10~V, I_D = 4.5~A & Q1 & 42 \\ \hline On-Resistance & V_{GS} = 10~V, I_D = 4.5~A, T_J = 125°C & 72 \\ \hline V_{GS} = 4.5~V, I_D = 4.5~A, T_J = 125°C & 55 \\ \hline V_{GS} = -10~V, I_D = -3.5~A & Q2 & 82 \\ \hline V_{GS} = -10~V, I_D = -3.5~A, T_J = 125°C & 130 \\ \hline V_{GS} = -4.5~V, I_D = -3.1~A & 105 \\ \hline I_{D(en)} & On-State Drain Current & V_{GS} = 10~V, V_{DS} = 5~V & Q1 & 20 \\ \hline V_{GS} = -10~V, V_{DS} = -5~V & Q2 & -20 \\ \hline g_{FS} & Forward Transconductance & V_{DS} = 10~V, I_D = 4.5~A & Q1 & 14 \\ \hline V_{DS} = -5~V, I_D = -3.5~A & Q2 & 9 \\ \hline \\ \hline \textbf{Dynamic Characteristics} & \\ \hline C_{iss} & Input Capacitance & Q1 & V_{DS} = 5~V, V_{GS} = 0~V, & Q2 & 759 \\ \hline C_{ess} & Output Capacitance & f = 1.0~MHz & Q1 & 80 \\ \hline C_{rss} & Reverse Transfer & V_{DS} = -30~V, V_{GS} = 0~V, & Q1 & 35 \\ \hline C_{rss} & Reverse Transfer & V_{DS} = -30~V, V_{GS} = 0~V, & Q1 & 35 \\ \hline C_{rss} & Capacitance & Q1 & Q2 & 90 \\ \hline \textbf{Switching Characteristics} & (Note 2) \\ \hline \textbf{Switching Characteristics} & (Note 2) \\ \hline \textbf{Switching Characteristics} & (Note 2) \\ \hline \textbf{Switching Characteristics} & Q2 & Q1 & 90 \\ \hline \textbf{Switching Characteristics} & (Note 2) \\ \hline \textbf{Suitching Turn-On Delay Time} & Q2 & Q1 & 90 \\ \hline \textbf{V}_{DD} = -30~V, I_D = -1~A, & Q2 & 71 \\ \hline \textbf{V}_{DD} = -30~V, I_D = -1~A, & Q2 & 10 \\ \hline \textbf{V}_{DD} = -30~V, I_D = -1~A, & Q2 & 19 \\ \hline \textbf{V}_{DD} = -30~V, I_D = -1~A, & Q2 & 19 \\ \hline \textbf{V}_{DD} = -30~V, I_D = -1~A, & Q2 & 19 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 19 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline \textbf{V}_{DD} = -10~V, R_{GEN} = 6~\Omega & Q1 & 90 \\ \hline $		0 . 7			-1		-3	ļ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								mV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, i					55	mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DS(0H)			α.			94	11122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						55	75	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Q2		82	105	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							190 135	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D(on)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		_	100	100	Α
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Compared Transpoon division on	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$		-20	1.1		S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FS	Forward Transconductance						3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dynami	c Characteristics						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	riss	Input Capacitance						pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Output Canacitanas						nE
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	oss	Output Capacitance						pF
	rss	Reverse Transfer				+		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Capacitance	f = 1.0 MHz	Q2		39		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	witchin	q Characteristics (Note 2	2)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>		Q1		11	20	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Turn-On Rise Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	1			18 20	ns
Turn-Off Fall Time $V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$ Q1 6	off)	Turn-Off Delay Time		Q1		19	35 34	ns
Q2 12	-	Turn-Off Fall Time		Q1		6	15	ns
Q _q Total Gate Charge Q1 Q1 12.5		Total Gate Charge	01				22 18	nC
$V_{DS} = 30 \text{ V}, I_{D} = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$ Q2		. Star Sate Sharge		1			21	
Q _{gs} Gate-Source Charge Q1 2.4	s	Gate-Source Charge						nC
Q2 Q2 2.5								
Q_{gd} Gate-Drain Charge $V_{DS} = -30 \text{ V}, I_{D} = -3.5 \text{ A}, V_{GS} = -10 \text{V}$ $Q1$ $Q2$ $Q2$ $Q2$ $Q3.0$	d	Gate-Drain Charge	$V_{DS} = -30 \text{ V}, I_{D} = -3.5 \text{ A}, V_{GS} = -10 \text{V}$					nC

Electrical Characteristics (continued) T_A = 25°C unless otherwise noted

Symbol	Parameter	lest Conditions	Type	IVIIN	тур	wax	Units
Drain-So	ource Diode Characteri	stics and Maximum Ratings					
Is	Maximum Continuous Drain-Source Diode Forward Current		Q1			1.3	Α
			Q2			-1.3	
V _{SD}	Drain-Source Diode Forward	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} \text{ (Note 2)}$	Q1		0.8	1.2	V
	Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A}$ (Note 2)	Q2		-0.8	-1.2	

Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°C/W when mounted on a .02 in² pad of 2 oz copper

c) 135°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

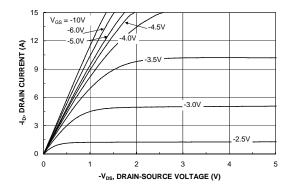


Figure 1. On-Region Characteristics.

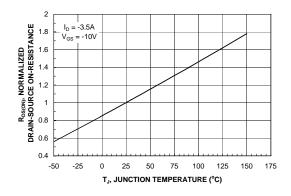


Figure 3. On-Resistance Variation with Temperature.

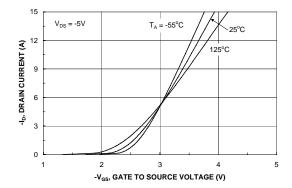


Figure 5. Transfer Characteristics.

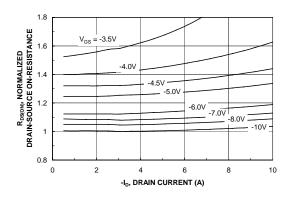


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

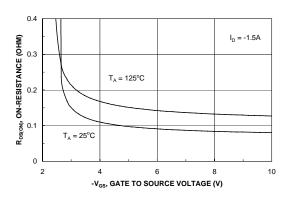


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

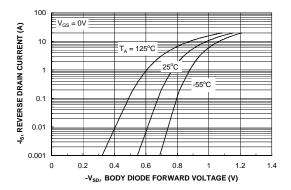


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

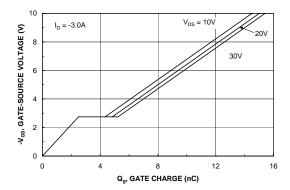


Figure 7. Gate Charge Characteristics.

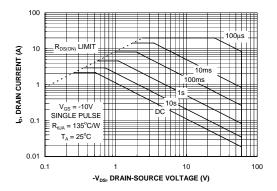


Figure 9. Maximum Safe Operating Area.

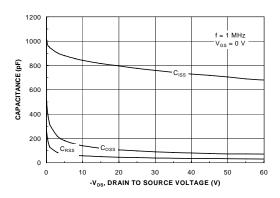


Figure 8. Capacitance Characteristics.

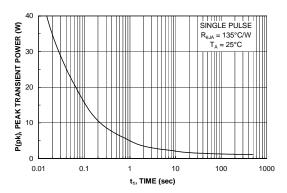


Figure 10. Single Pulse Maximum Power Dissipation.

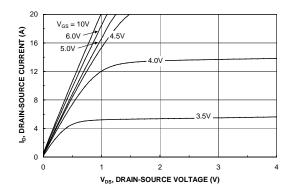


Figure 11. On-Region Characteristics.

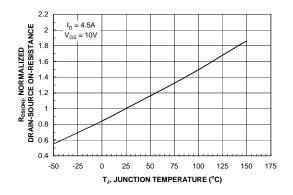


Figure 13. On-Resistance Variation with Temperature.

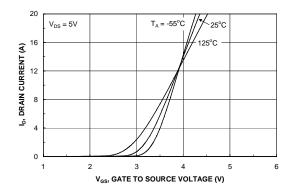


Figure 15. Transfer Characteristics.

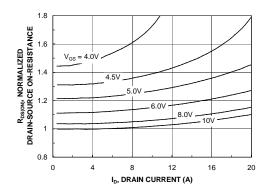


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

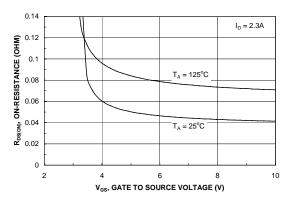


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

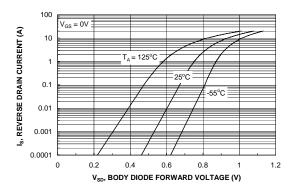
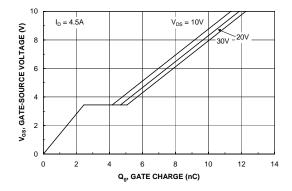



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

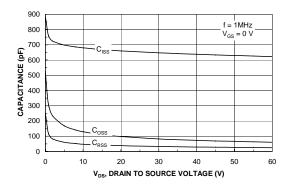
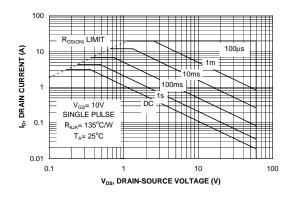



Figure 17. Gate Charge Characteristics.

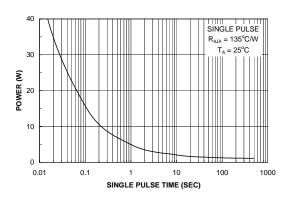


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

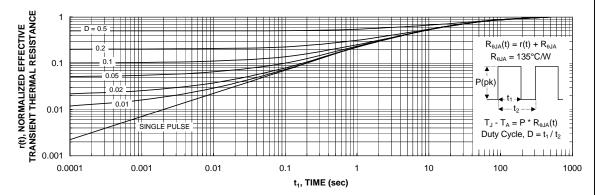


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{TM}$ $\mathsf{CTL}^{\mathsf{TM}}$

Current Transfer Logic™ EcoSPARK®

EfficentMax™ EZSWITCH™ *

airchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FlashWriter® * F-PFS™

FRFET® Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™

Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

 $\mathsf{PDP}\;\mathsf{SPM^{\mathsf{TM}}}$ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFĔT® QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM[®] STEALTH™

SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ® SGENERAL The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyLogic[®]
TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC® Ultra FRFET™ UniFET™ VCXTM VisualMax™ XS™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		