



## KA78L05AI

# 3-Terminal 0.1 A 5 V Positive Voltage Regulator

### Features

- Maximum Output Current of 100 mA
- Output Voltage of 5 V
- Thermal Overload Protection
- Short-Circuit Current Limiting
- Output Voltage Offered in  $\pm 5\%$  Tolerance

### Description

The KA78L05AI of fixed-voltage monolithic integrated circuit voltage regulators are suitable for applications that required supply current up to 100 mA.

**SOT-89**



1. Output 2. GND 3. Input

**8-SOIC**



1. Output 2. GND 3. GND 4. NC  
5. NC 6. GND 7. GND 8. Input

### Ordering Information

| Product Number | Package | Packing Method | Output Voltage Tolerance | Operating Temperature |
|----------------|---------|----------------|--------------------------|-----------------------|
| KA78L05AIDTF   | 8-SOIC  | Tape and Reel  | $\pm 5\%$                | -40 to +125°C         |
| KA78L05AIMTF   | SOT-89  | Tape and Reel  |                          |                       |

## Block Diagram

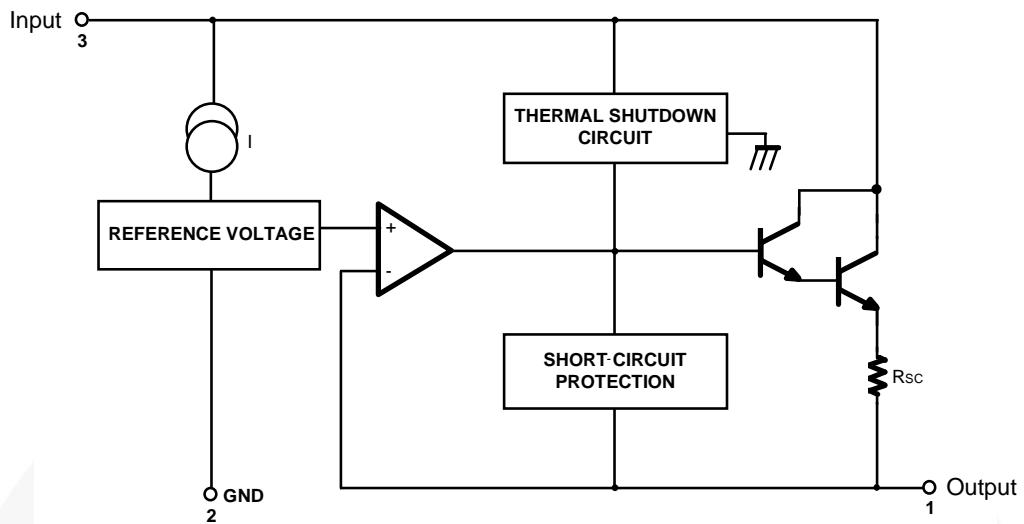



Figure 1. Block Diagram

## Absolute Maximum Ratings<sup>(1)</sup>

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at  $T_A = 25^\circ\text{C}$  unless otherwise noted.

| Symbol          | Parameter                              | Value       | Unit |
|-----------------|----------------------------------------|-------------|------|
| $V_I$           | Input Voltage                          | 30          | V    |
| $T_J$           | Maximum Operating Junction Temperature | 150         | °C   |
| $T_{OPR}$       | Operating Temperature Range            | -40 to +125 | °C   |
| $T_{STG}$       | Storage Temperature Range              | -65 to +150 | °C   |
| $R_{\theta JA}$ | Thermal Resistance Junction-Air        | 225         | °C/W |
|                 |                                        | 160         | °C/W |

### Note:

1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

## Electrical Characteristics

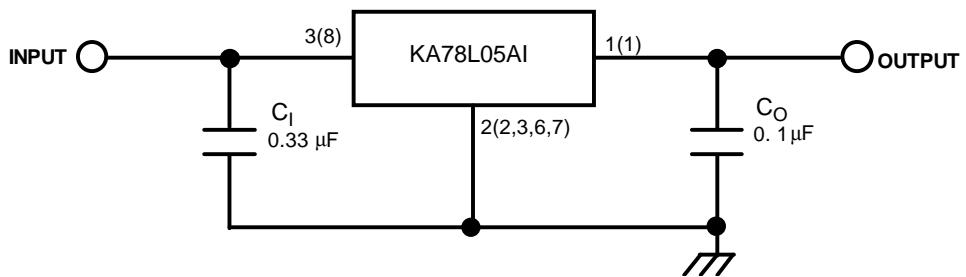
$V_I = 10 \text{ V}$ ,  $I_O = 40 \text{ mA}$ ,  $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$ ,  $C_I = 0.33 \mu\text{F}$ ,  $C_O = 0.1 \mu\text{F}$ , unless otherwise specified.

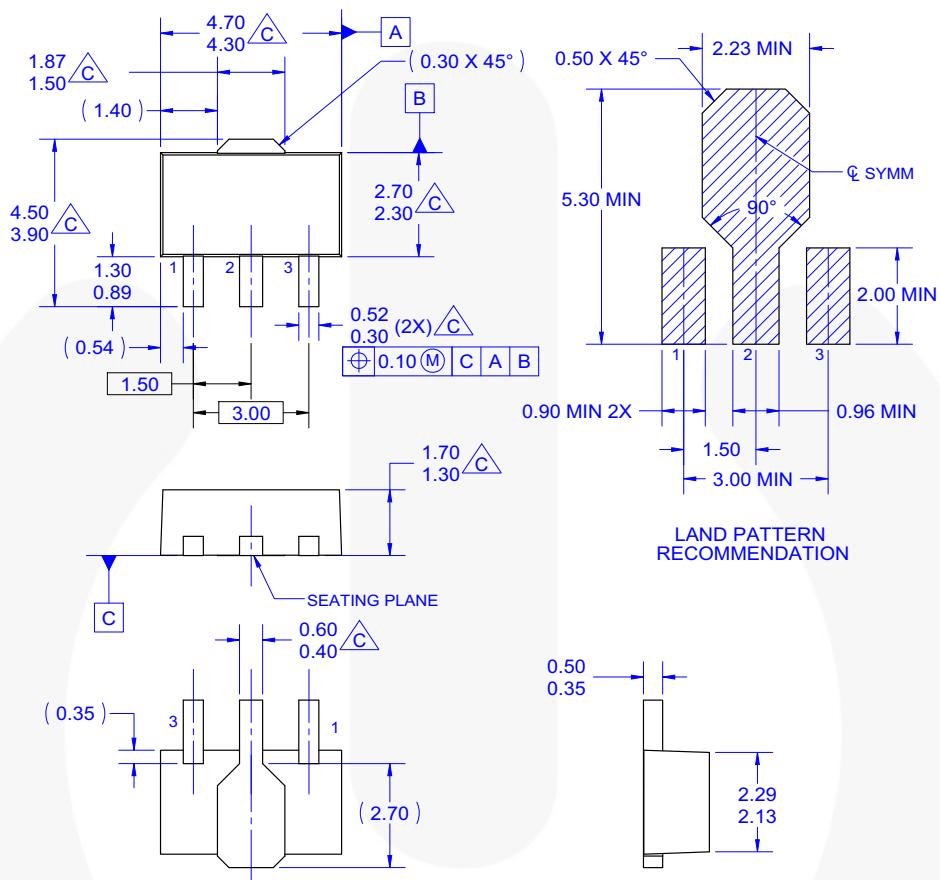
| Symbol                | Parameter                              | Conditions                                                                                 |                                                  | Min. | Typ.  | Max. | Unit                       |
|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|------|-------|------|----------------------------|
| $V_O$                 | Output Voltage                         | $T_J = 25^\circ\text{C}$                                                                   |                                                  | 4.8  | 5.0   | 5.2  | V                          |
| $\Delta V_O$          | Line Regulation <sup>(2)</sup>         | $T_J = 25^\circ\text{C}$                                                                   | $7 \text{ V} \leq V_I \leq 20 \text{ V}$         |      | 8     | 150  | mV                         |
|                       |                                        |                                                                                            | $8 \text{ V} \leq V_I \leq 20 \text{ V}$         |      | 6     | 100  | mV                         |
| $\Delta V_O$          | Load Regulation <sup>(2)</sup>         | $T_J = 25^\circ\text{C}$                                                                   | $1 \text{ mA} \leq I_O \leq 100 \text{ mA}$      |      | 11    | 60   | mV                         |
|                       |                                        |                                                                                            | $1 \text{ mA} \leq I_O \leq 40 \text{ mA}$       |      | 5.0   | 30.0 | mV                         |
| $V_O$                 | Output Voltage                         | $7 \text{ V} \leq V_I \leq 20 \text{ V}$                                                   | $1 \text{ mA} \leq I_O \leq 40 \text{ mA}$       | 4.75 |       | 5.25 | V                          |
|                       |                                        | $7 \text{ V} \leq V_I \leq V_{MAX}^{(3)}$                                                  | $1 \text{ mA} \leq I_O \leq 70 \text{ mA}$       | 4.75 |       | 5.25 | V                          |
| $I_Q$                 | Quiescent Current                      | $T_J = 25^\circ\text{C}$                                                                   |                                                  |      | 2.0   | 5.5  | mA                         |
| $\Delta I_Q$          | Quiescent Current                      | With Line                                                                                  | $8 \text{ V} \leq V_I \leq 20 \text{ V}$         |      |       | 1.5  | mA                         |
| $\Delta I_Q$          | Change                                 | With Load                                                                                  | $1 \text{ mA} \leq I_O \leq 40 \text{ mA}^{(4)}$ |      |       | 0.5  | mA                         |
| $V_N$                 | Output Noise Voltage <sup>(4)</sup>    | $T_A = 25^\circ\text{C}$ , $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$                     |                                                  |      | 40    |      | $\mu\text{V}/\text{Vo}$    |
| $\Delta V_O/\Delta T$ | Temperature Coefficient of $V_O^{(4)}$ | $I_O = 5 \text{ mA}$                                                                       |                                                  |      | -0.65 |      | $\text{mV}/^\circ\text{C}$ |
| RR                    | Ripple Rejection <sup>(4), (5)</sup>   | $f = 120 \text{ Hz}$ , $8 \text{ V} \leq V_I \leq 18 \text{ V}$ , $T_J = 25^\circ\text{C}$ |                                                  | 41   | 80    |      | dB                         |
| $V_D$                 | Dropout Voltage                        | $T_J = 25^\circ\text{C}$                                                                   |                                                  |      | 1.7   |      | V                          |

### Notes:

2. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
3. Power dissipation  $P_D \leq 0.75 \text{ W}$ .
4. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.
5. Recommend minimum load capacitance of  $0.01 \mu\text{F}$  to limit high-frequency noise.

## Typical Application<sup>(6)</sup>





Figure 2. Typical Application

**Note:**

6.  $C_I$  is required if the regulator is located an appreciable distance from the power supply filter. Though  $C_O$  is not needed for stability, it improves transient response. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.

## Physical Dimensions

SOT-89

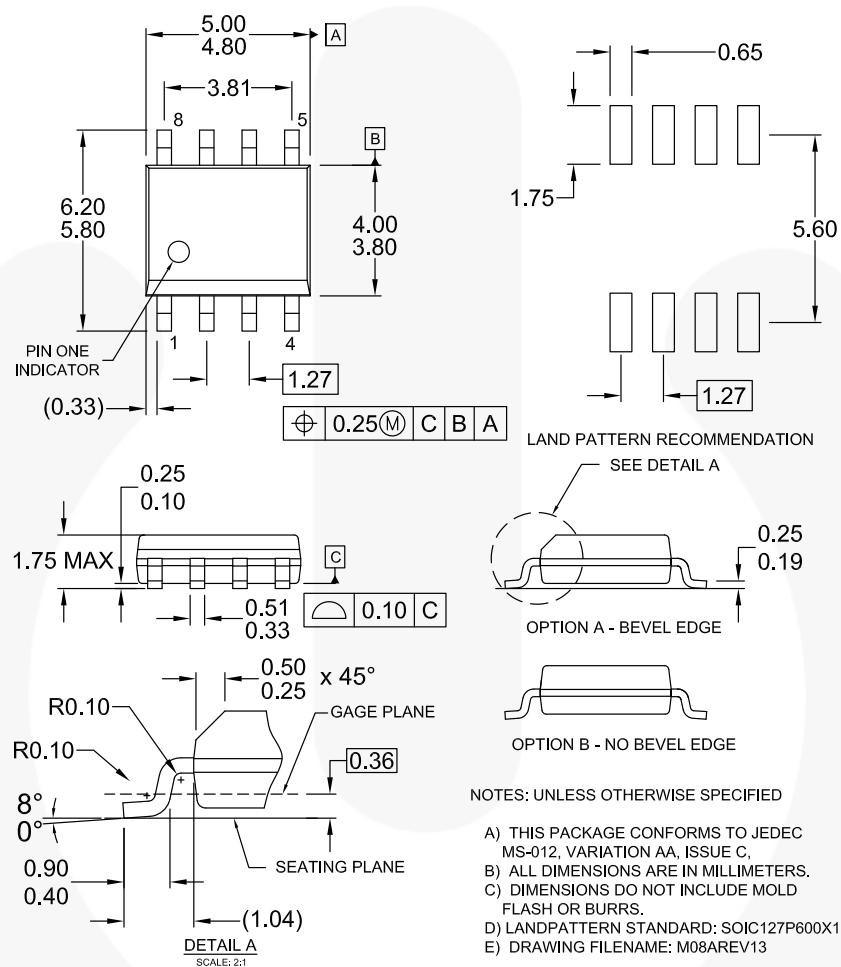


**NOTES: UNLESS OTHERWISE SPECIFIED.**

A. REFERENCE TO JEDEC TO-243 VARIATION AA.  
B. ALL DIMENSIONS ARE IN MILLIMETERS.

 **D. DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH AND TIE BAR PROTRUSION.  
E. DIMENSION AND TOLERANCE AS PER ASME  
Y14.5-1994.  
F. DRAWING FILE NAME: MA03CREV2**

**Figure 3. 3-Lead, SOT-89, JEDEC TO-243, Option AA**


*Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.*

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:  
<http://www.fairchildsemi.com/packaging/>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area:  
[http://www.fairchildsemi.com/packaging/tr/sot89\\_tr.pdf](http://www.fairchildsemi.com/packaging/tr/sot89_tr.pdf).

**Physical Dimensions (Continued)**

**8-SOIC**



**Figure 4. 8LD, SOIC, JEDEC MS-012, 0.150" NARROW BODY**

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:  
<http://www.fairchildsemi.com/packaging/>

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area:  
[http://www.fairchildsemi.com/packaging/tr/soic8\\_tr.pdf](http://www.fairchildsemi.com/packaging/tr/soic8_tr.pdf)



## TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™  
AccuPower™  
AX-CAP®  
BitSiC™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Current Transfer Logic™  
DEUXPEED®  
Dual Cool™  
EcoSPARK®  
EfficientMax™  
ESBC™  
  
Fairchild®  
Fairchild Semiconductor®  
FACT Quiet Series™  
FACT®  
FAST®  
FastvCore™  
FETBench™

FPS™  
F-PFS™  
FRFET®  
Global Power Resource™  
GreenBridge™  
Green FPS™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
Making Small Speakers Sound Louder and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MicroPak2™  
MillerDrive™  
MotionMax™  
mWSaver™  
OptoHiT™  
OPTOLOGIC®  
OPTOPLANAR®

PowerTrench®  
PowerXS™  
Programmable Active Droop™  
QFET®  
QST™  
Quiet Series™  
RapidConfigure™  
  
Saving our world, 1mW/W/kW at a time™  
SignalWise™  
SmartMax™  
SMART START™  
Solutions for Your Success™  
SPM®  
STEALTH™  
SuperFET®  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SupreMOS®  
SyncFET™

Sync-Lock™  
  
TinyBoost™  
TinyBuck™  
TinyCalc™  
TinyLogic®  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
TransiC™  
TriFault Detect™  
TRUECURRENT®  
μSerDes™  
  
UHC®  
Ultra FRFET™  
UnifET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, [www.fairchildsemi.com](http://www.fairchildsemi.com), under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

## PRODUCT STATUS DEFINITIONS

### Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. I64