
PRL-420ND DUAL CHANNEL TTL TO NECL LOGIC LEVEL TRANSLATOR PRL-420PD DUAL CHANNEL TTL TO PECL LOGIC LEVEL TRANSLATOR

APPLICATIONS

- Converting TTL/CMOS signals to Differential NECL/PECL Signals
- High Speed Digital Communications system testing
- High Speed SONET Clock Level Translation
- Converting TTL/CMOS Clocks to NECL/PECL Clocks for connection to Transient Recorders

FEATURES

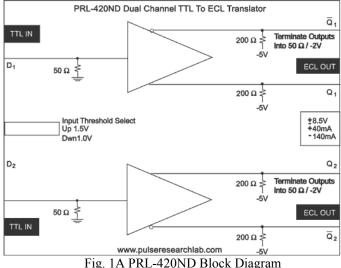
- $f_{max} > 300 \text{ MHz}$
- 750 ps/1100 ps t_r for PRL-420ND/420PD
- 50 Ω TTL/CMOS Input
- 1.5V or 1V Selectable Input Threshold
- Complementary NECL/PECL Outputs
- BNC Input/SMA Output Connectors
- DC Coupled I/O's
- Self-contained 1.3 x 2.9 x 3.9-in. units including AC/DC Adapters

DESCRIPTION

The PRL-420ND and PRL-420PD are, respectively, dual channel TTL/CMOS to NECL and TTL/CMOS to PECL Logic Level Translators. Each unit has a switch-selectable 1.5V or 1V input threshold voltage. The PRL-420ND has a pair of complementary NECL outputs suitable for driving 50 Ω loads terminated to -2V. The complementary PECL outputs from the PRL-420PD are suitable for driving 50 Ω loads terminated to +3V. The outputs of both units can also drive AC coupled or floating 50 Ω .

These Logic Level Translators are designed specifically for use in testing and interfacing of high speed digital communications circuits, where conversions from TTL/CMOS level signals to NECL and PECL level signals are often required. They are ideal building blocks that complement other PRL Logic Level Translators, such as the PRL-450ND, PRL-450PD, PRL-460NPD and PRL-460PND, etc. in systems integration applications where interconnections of mixed logic signals are often necessary.

They are ready-to-use functional modules housed in $1.3 \times 2.9 \times 3.9$ -in. extruded aluminum enclosures and are supplied with $\pm 8.5 \text{V}$ AC/DC Adaptors. Both units have BNC input connectors and SMA output connectors. Block diagrams of these Logic Level Translators are shown in Fig. 1A and Fig. 1B.


If mounting is desired, a pair of 35001420 mounting brackets can accommodate two PRL modules of the same length. A number of PRL modules can also share a single ± 8.5 V AC/DC adaptor using the PRL-730 or PRL-736 voltage distribution module. Please see the Accessories Section for more detail.

*SPECIFICATIONS ($0^{\circ} \text{ C} \le \text{Ta} \le 35^{\circ} \text{C}$)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into $50\Omega/V_{TT}$.

SYMBOL	PARAMETER	PRL-420ND			PRL-420PD			UNIT
		Min	Тур	Max	Min	Тур	Max	
R _{in}	Input Resistance	49.5	50	50.5	49.5	50	50.5	Ω
R _{out}	Output Resistance	NPN emitter			49.5	50	50.5	Ω
V_{TosH}	Input Threshold Voltage (High)	1.4	1.5	1.6	1.4	1.5	1.6	V
V _{TosL}	Input Threshold Voltage (Low)	0.9	1.0	1.1	0.9	1.0	1.1	V
Vol	Output Low Level	-1.85	-1.7	-1.55	3.2	3.4	3.5	V
Vон	Output High Level	-1.0	-0.8	-0.7	3.9	4.1	4.3	V
I_{DC}	DC Input Current		35	45		180	200	mA
	-		-132	-145		-315	335	
V_{DC}	DC Input Voltage	±7.5	±8.5	±12	±7.5	±8.5	±12	V
V_{AC}	AC/DC Adapter Input Voltage	103	115	127	103	115	127	V
t _{PLH}	Propagation Delay to output ↑		1.5			2		ns
tpHI	Propagation Delay to output ↓		1.5			2		ns
$t_r/t_f^{(1)}$	Rise/Fall Times (20%-80%)		750	850		1100	1250	ps
t _{SKEW}	Skew: Vo↑↔ Vo↓		200	500		200	500	ps
t _{SKEW}	Skew: Vo1↑↔ Vo2↑		200	500		200	500	ps
$f_{\mbox{max}^{(2)}} \ V_{\mbox{TosH}}$	Max Clock Frequency Input Threshold Voltage (High)	200	300		200	300		MHz
$egin{array}{c} f_{max}^{}^{(2)} \ V_{TosL}^{} \end{array}$	Max Clock Frequency Input Threshold Voltage (Low)	300	400		300	400		MHz
	Size	1.3x2.9x3.9			1.3x2.9x3.9			in.
	Shipping Weight, incl. AC adapter		3			3		lb.

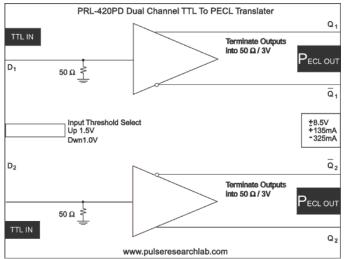


Fig. 1B PRL-420PD Block Diagram

Notes:

- (1). The output rise and fall times are measured with both the Q and Q outputs terminated into 50 Ω/V_{TT}, using the PRL-550NQ4X/PRL-550PQ4X, four channel NECL/PECL Terminators, connected to a 50 Ω input sampling oscilloscope. V_{TT} =-2V for NECL and +3V for PECL. If either output is left unterminated, both the rise and fall times will increase by approximately 15%, due to slight degradation of the pulse corners.
- (2). f_{MAX} for the PRL-420ND is measured by connecting its inputs to the PRL-450ND, NECL to TTL Logic Level Translator, and its outputs to the +2 differential inputs of the PRL-255N NECL frequency divider. The outputs of the PRL-255N are then measured using the PRL-550NQ4X, four channel NECL Terminators, connected to a 50 Ω input sampling 'scope. Similarly, f_{MAX} for the PRL-420PD is measured using the PRL-450PD as the input driver, and its outputs are connected to the differential inputs of the PRL-255P PECL frequency divider. The outputs of the PRL-255P are then measured using the PRL-550PQ4X, four channel PECL Terminators, connected to a 50 Ω input sampling 'scope.

