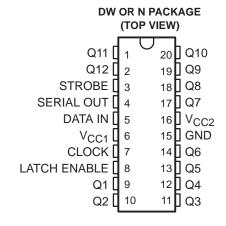
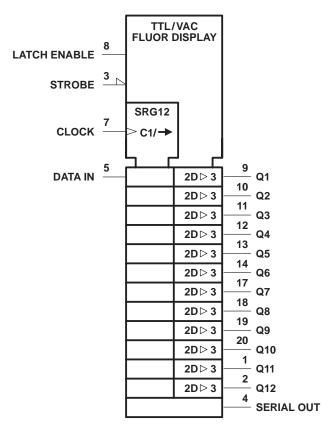
- Each Device Drives 12 Lines
- 60-V Output Voltage Swing Capability
- 25-mA Output Source Current Capability
- High-Speed Serially-Shifted Data Input
- TTL-Compatible Inputs
- Latches on All Driver Outputs


description

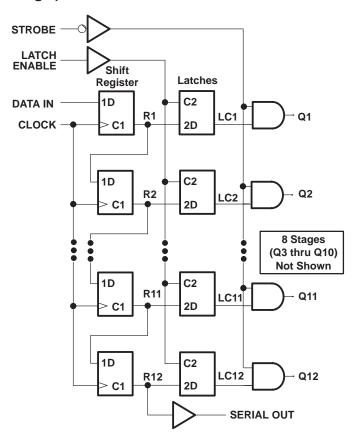
The SN65512B and SN75512B are monolithic BIDFET[†] integrated circuits designed to drive a dot matrix or segmented vacuum fluorescent display.


All device inputs are diode-clamped pnp inputs and assume a high logic level when open circuited. The nominal input threshold voltage is 1.5 V. Outputs are totem-pole structures formed by an npn emitter-follower and double-diffused MOS (DMOS) transistors.

The device consists of a 12-bit shift register, 12 latches, and 12 output AND gates. Serial data is entered into the shift register on the low-to-high transition of CLOCK. When high, LATCH ENABLE transfers the shift register contents to the outputs of the 12 latches. The active-low STROBE input enables all Q outputs. Serial data output from the shift register can be used to cascade shift registers. This output is not affected by LATCH ENABLE or STROBE.

The SN65512B is characterized for operation from -40° C to 85° C. The SN75512B is characterized for operation from 0° C to 70° C.

logic symbol‡

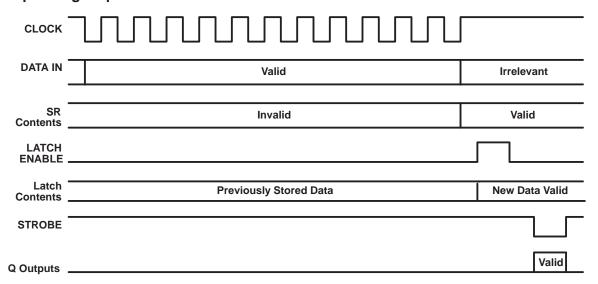


[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

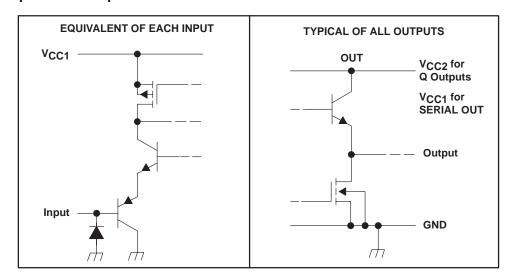
†BIDFET - Bipolar, double-diffused, N-channel and P-channel MOS transistors on same chip. This is a patented process.

logic diagram (positive logic)

FUNCTION TABLE


	CONTROL INPUTS		SHIFT REGISTER	LATCHES	OUTPUTS				
FUNCTION	СГОСК	LATCH ENABLE	STROBE	R1 THRU R12	LC1 THRU LC12	SERIAL	Q1 THRU Q12		
Load	↑ No ↑	Х	Х	Load and shift [†] No change	Determined by LATCH ENABLE‡	R12	Determined by STROBE		
Latch	Х	L H	Х	As determined above	Stored data New data	R12	Determined by STROBE		
Strobe	Х	Х	H L	As determined above	Determined by LATCH ENABLE‡	R12	All LC LC1 thru LC12, respectively		

H = high level, L = low level, X = irrelevant, ↑ = low-to-high-level transition


[†]R12 takes on the state of R11, R11 takes on the state of R10, . . . R2 takes on the state of R1, and R1 takes on the state of the data input.

[‡] New data enter the latches while LATCH ENABLE is high. These data are stored while LATCH ENABLE is low.

typical operating sequence

schematics of inputs and outputs

SN65512B, SN75512B VACUUM FLUORESCENT DISPLAY DRIVERS

SLDS016A - DECEMBER 1985 - REVISED OCTOBER 1989

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC1} (see Note 1)	15 V
Supply voltage, V _{CC2}	70 V
Input voltage, V _I	
Continuous total power dissipation	
Operating free-air temperature range, T _A : SN65512B	40°C to 85°C
SN75512B	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 secon	ds 260°C

NOTES: 1. Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

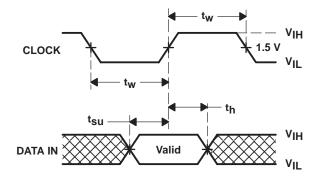
PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING		
DW	1125 mW	9.0 mW/°C	720 mW	585 mW		
N	1150 mW	9.2 mW/°C	736 mW	589 mW		

recommended operating conditions

			SN65512B		SN75512B		UNIT				
			MIN	MAX	MIN	UNII					
Supply voltage, V _{CC1}			5	15	5	15	15 V				
Supply voltage, V _{CC2}			0	60	0	60	V				
High-level input voltage, VIH			2		2		V				
Low-level input voltage, V _{IL}				0.8		0.8	V				
High-level output current, IOH				-25		-25	mA				
Low-level output current, IOL	V _{CC1} = 10 V			5		5	mA				
Clock frequency, f _{clock}	$V_{CC1} = 15 \text{ V},$	T _A = 25°C	0	4	0	4	MHz				
Clock frequency, fclock	$V_{CC1} = 5 V$,	$T_A = 25^{\circ}C$	0	1	0	1					
Pulse duration, CLOCK high or low, t _w	$V_{CC1} = 15 \text{ V},$	$T_A = 25^{\circ}C$	100		100		ns				
uise duration, CLOCK high or low, tw	$V_{CC1} = 5 V$,	$T_A = 25^{\circ}C$	500		500						
Setup time, DATA IN valid before CLOCK ↑, t _{SU} (see Figure 1)	$V_{CC1} = 15 \text{ V},$	$T_A = 25^{\circ}C$	100		100		ns				
Setup time, DATA IN Valid before CLOCK 1, t _{SU} (see Figure 1)	$V_{CC1} = 5 V$,	T _A = 25°C	250		250						
Hold time DATA IN volid offer CLOCK 1 (con Figure 1)	$V_{CC1} = 15 \text{ V},$	T _A = 25°C	50		50		ns				
Hold time, DATA IN valid after CLOCK ↑, th (see Figure 1)	$V_{CC1} = 5 V$,	T _A = 25°C	250		250		115				
Operating free-air temperature, TA			-40	85	0	70	°C				

SLDS016A - DECEMBER 1985 - REVISED OCTOBER 1989

electrical characteristics over recommended operating free-air temperature range, V_{CC2} = 60 V (unless otherwise noted)


PARAMETER			TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
VIK	K Input clamp voltage		I _I = -12 mA				-1.5	V	
Va High lavel output valtage		Q outputs	$I_{OH} = -25 \text{ mA},$	V _{CC1} = 10 V	57.5	58		V	
VOH	High-level output voltage	SERIAL OUT	$I_{OH} = -200 \mu A$,	V _{CC1} = 10 V	9	9.5		V	
V _{OL} Low-level output voltage	Q outputs	$I_{OL} = 5 \text{ mA},$	V _{CC1} = 10 V		2.6	5	V		
	Low-level output voltage	SERIAL OUT	$I_{OL} = 200 \mu A$,	V _{CC1} = 10 V		0.05	0.2	·	
I _{IH} High-level input current			$V_{CC1} = 15 \text{ V},$	V _I = 5 V		0.01	1	μΑ	
I _{IL} Low-level input current			V _{CC1} = 15 V,	V _I = 0.8 V		-25	-150	μΑ	
La a		V15 V	V _I = 5 V		80	500	μΑ		
ICC1	Supply current from V _{CC1}		V _{CC1} = 15 V	V _I = 0.8 V		2	6	mA	
lage	I _{CC2} Supply current from V _{CC2}		Vaa. – 15.V	All outputs high		10	100	μΑ	
ICC2			V _{CC1} = 15 V	STROBE at 2 V		0.8	3	mA	

[†] All typical values are at $V_{CC1} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics, V_{CC1} = 10 V, V_{CC2} = 60 V, T_A = 25°C

	PARAMETER	TEST CON	MIN	MAX	UNIT	
tPHL	Propagation delay time, high-to-low level output				300	ns
tPLH	Propagation delay time, low-to-high level output	$C_1 = 30 pF$,	Soo Figure 2		300	ns
tTHL	Transition time, high-to-low level output	CL = 30 pr,	F, See Figure 2		500	ns
tTLH	Transition time, low-to-high level output	1			500	ns

PARAMETER MEASUREMENT INFORMATION

Figure 1. Input Timing Voltage Waveforms

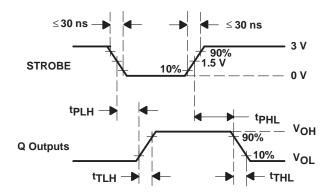


Figure 2. Switching Time Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated