

MSP430G2211-Q1, MSP430G2201-Q1, MSP430G2001-Q1

SLAS775E - AUGUST 2011 - REVISED MARCH 2014

MSP430G2x11 and MSP430G2x01 Automotive Mixed-Signal Microcontrollers

Features

Qualified for Automotive Applications

Low Supply-Voltage Range: 1.8 V to 3.6 V

Ultra-Low-Power Consumption

Active Mode: 220 µA at 1 MHz, 2.2 V

Standby Mode: 0.5 µA

Off Mode (RAM Retention): 0.1 µA

Five Power-Saving Modes

Ultra-Fast Wakeup From Standby Mode in Less Than 1 µs

16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time

Basic Clock Module Configurations

Internal Frequencies up to 16 MHz With One Calibrated Frequency

 Internal Very-Low-Power Low-Frequency (LF) Oscillator

32-kHz Crystal

External Digital Clock Source

16-Bit Timer A With Two Capture/Compare Registers

Brownout Detector

On-Chip Comparator for Analog Signal Compare Function or Slope Analog-to-Digital Conversion (See Table 1)

Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse

On-Chip Emulation Logic With Spy-Bi-Wire

For Family Members Details, See Table 1

Available Packages

 14-Pin Plastic Small-Outline Thin Package (TSSOP) (PW)

16-Pin QFN (RSA)

For Complete Module Descriptions, See the MSP430x2xx Family User's Guide (SLAU144)

2 Applications

Low-Cost Sensor Systems

3 Description

The Texas Instruments MSP430™ family of ultra-lowpower microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in less than 1 µs.

The MSP430G2x01 and MSP430G2x11 devices include ultra-low-power mixed-signal microcontrollers with a built-in 16-bit timer and 10 I/O pins. The MSP430G2x11 family members have a versatile analog comparator.

Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system.

Device Information⁽¹⁾

ORDER NUMBER	PACKAGE	BODY SIZE		
MSP430G2211IRSARQ1	RSA (16)	4 mm x 4 mm		
MSP430G2211IPW4RQ1	PW (14)	5 mm x 4.4 mm		

(1) For the most current part, package, and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

4 Functional Block Diagrams

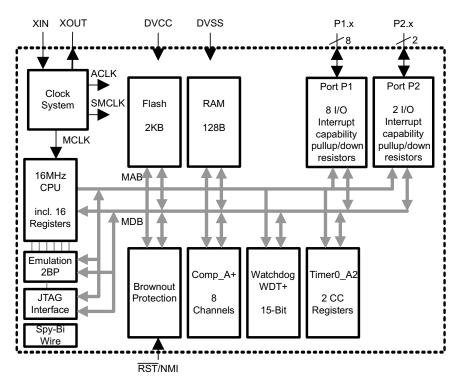


Figure 1. Functional Block Diagram, MSP430G2x11

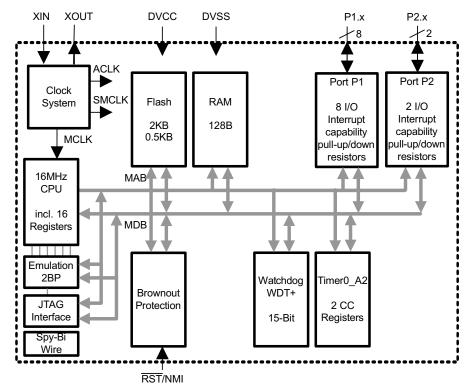


Figure 2. Functional Block Diagram, MSP430G2x01

Table of Contents

1	Fea	tures 1		9.								
2	1-1											
3		scription 1		9.								
4		ectional Block Diagrams2										
5		rision History4		9.								
6			9.									
7		rice Characteristics 5 minal Configuration and Functions 6		9.								
•	7.1	14-Pin PW Package (Top View), MSP430G2x11 6		٥.								
	7.2	16-Pin RSA Package (Top View), MSP430G2x11 6		9.								
	7.3	14-Pin PW Package (Top View), MSP430G2x01 6		9.								
	7.4	16-Pin RSA Package (Top View), MSP430G2x01 7		9.								
	7.5	Terminal Functions8		9.								
8	Deta	ailed Description9		9.								
	8.1	CPU9		9.								
	8.2	Instruction Set9		9.								
	8.3	Operating Modes	10	1/0								
	8.4	Interrupt Vector Addresses 11		10								
	8.5	Special Function Registers (SFRs) 12										
	8.6	Memory Organization 13		10								
	8.7	Flash Memory 13		10								
	8.8	Peripherals14		- 1								
9	Spe	ecifications 17		10								
	9.1	Absolute Maximum Ratings 17										
	9.2	Handling Ratings 17		10								
	9.3	Recommended Operating Conditions 17										
	9.4	Active Mode Supply Current Into V _{CC} Excluding		10								
		External Current		10								
	9.5	Typical Characteristics - Active Mode Supply Current (Into V _{CC})										
	9.6	Low-Power Mode Supply Currents (Into V _{CC})	11	D								
	5.0	Excluding External Current		11								
	9.7	Typical Characteristics, Low-Power Mode Supply		11								
		Currents		11								
	9.8	Schmitt-Trigger Inputs - Ports Px20		11								
	9.9	Leakage Current - Ports Px20		11								
	9.10			11								
	9.11			1′								
	9.12	21	12	M								
	9.13	•		ln								
	0.1/	1 Main DCO Characteristics 24										

	9.15	DCO Frequency24
	9.16	Calibrated DCO Frequencies - Tolerance 25
	9.17 I	Wakeup From Lower-Power Modes (LPM3 or LPM4) Electrical Characteristics
	9.18	Typical Characteristics - DCO Clock Wakeup Time From LPM3 or LPM4
	9.19	Crystal Oscillator, XT1, Low-Frequency Mode 26
	9.20	Internal Very-Low-Power Low-Frequency Oscillator
	((VLO)26
	9.21	Timer_A 26
	9.22	Comparator_A+ (MSP430G2x11 only)27
	9.23	Typical Characteristics - Comparator_A+28
	9.24	Flash Memory
	9.25	RAM
	9.26	JTAG and Spy-Bi-Wire Interface30
	9.27	JTAG Fuse
10	I/O P	Port Schematics31
	10.1 \	Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger - MSP430G2x01
	10.2 \	Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger - MSP430G2x01
		Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger - MSP430G2x11
	10.4 \	Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger - MSP430G2x11
	10.5	Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger - MSP430G2x01 and MSP430G2x11
		Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger - MSP430G2x01 and MSP430G2x11
11		ce and Documentation Support39
• •	11.1	Device Support
	11.2	Documentation Support
	11.3	Related Links
	11.4	Community Resources
	11.5	Trademarks
	11.6	Electrostatic Discharge Caution
	11.7	Glossary
12		hanical, Packaging, and Orderable
		mation

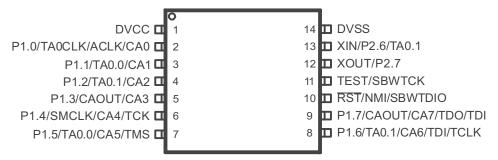
5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

REVISION	DESCRIPTION
SLAS775	Product Preview release
SLAS775A	Production Data release
SLAS775B	Changed port schematics (added buffer after PxOUT.y mux) in I/O Port Schematics
SLAS775C	Removed all information related to operation at T temperature (-40°C to 105°C). Table 2, Added pin 13 to NC list for RSA-16 package Recommended Operating Conditions, Added test conditions for typical values. POR, BOR, Added note (2).
SLAS775D	Added Development Tools Support and Device and Development Tool Nomenclature.
SLAS775E	Formatting and document organization changes throughout, including addition of section numbering. Added Device Characteristics, Device and Documentation Support, and Mechanical, Packaging, and Orderable Information. Removed MSP430G2111 and MSP430G2101 and all related information.

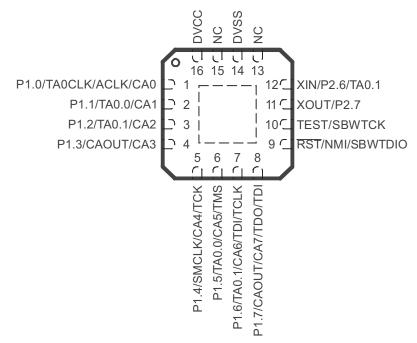
6 Device Characteristics

Table 1 shows the features of the MSP430G2x01 and MSP430G2x11 devices.

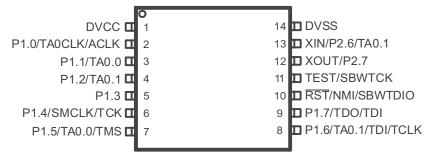

Table 1. Family Members⁽¹⁾

Device	BSL	EEM	Flash (KB)	RAM (B)	Timer_A	Comp_A+ Channel	Clock	I/O	Package Type
MSP430G2211	-	1	2	128	1x TA2	8	LF, DCO, VLO	10	16-QFN 14-TSSOP
MSP430G2201	-	1	2	128	1x TA2	-	LF, DCO, VLO	10	16-QFN 14-TSSOP
MSP430G2001	-	1	0.5	128	1x TA2	-	LF, DCO, VLO	10	16-QFN 14-TSSOP

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

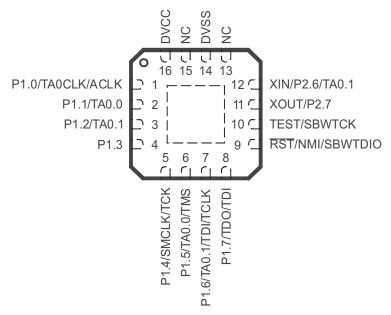

7 Terminal Configuration and Functions

7.1 14-Pin PW Package (Top View), MSP430G2x11


NOTE: See port schematics in I/O Port Schematics for detailed I/O information.

7.2 16-Pin RSA Package (Top View), MSP430G2x11

NOTE: See port schematics in I/O Port Schematics for detailed I/O information.


7.3 14-Pin PW Package (Top View), MSP430G2x01

NOTE: See port schematics in I/O Port Schematics for detailed I/O information.

7.4 16-Pin RSA Package (Top View), MSP430G2x01

NOTE: See port schematics in I/O Port Schematics for detailed I/O information.

7.5 Terminal Functions

Table 2. Terminal Functions

TERMINAL								
	N	0.	I/O	DESCRIPTION				
NAME	14 PW	16 RSA		DESCRIPTION				
P1.0/				General-purpose digital I/O pin				
TA0CLK/	2 1		I/O	Timer0_A, clock signal TACLK input				
ACLK/	2	'	1/0	ACLK signal output				
CA0				Comparator_A+, CA0 input ⁽¹⁾				
P1.1/				General-purpose digital I/O pin				
TA0.0/	3	2	I/O	Timer0_A, capture: CCl0A input, compare: Out0 output				
CA1				Comparator_A+, CA1 input ⁽¹⁾				
P1.2/				General-purpose digital I/O pin				
TA0.1/	4	3	I/O	Timer0_A, capture: CCl1A input, compare: Out1 output				
CA2				Comparator_A+, CA2 input ⁽¹⁾				
P1.3/				General-purpose digital I/O pin				
CA3/	5	4	I/O	Comparator_A+, CA3 input ⁽¹⁾				
CAOUT				Comparator_A+, output ⁽¹⁾				
P1.4/				General-purpose digital I/O pin				
SMCLK/	6	5	I/O	SMCLK signal output				
CA4/			., 0	Comparator_A+, CA4 input ⁽¹⁾				
TCK				JTAG test clock, input terminal for device programming and test				
P1.5/				General-purpose digital I/O pin				
TA0.0/	7 6		I/O	Timer0_A, compare: Out0 output				
CA5/				Comparator_A+, CA5 input ⁽¹⁾				
TMS				JTAG test mode select, input terminal for device programming and test				
P1.6/				General-purpose digital I/O pin				
TA0.1/	8	7	I/O	Timer0_A, compare: Out1 output				
CA6/			., 0	Comparator_A+, CA6 input ⁽¹⁾				
TDI/TCLK				JTAG test data input or test clock input during programming and test				
P1.7/				General-purpose digital I/O pin				
CA7/	9	8	I/O	CA7 input ⁽¹⁾				
CAOUT/				Comparator_A+, output ⁽¹⁾				
TDO/TDI ⁽²⁾				JTAG test data output terminal or test data input during programming and test				
XIN/				Input terminal of crystal oscillator				
P2.6/	13	12	I/O	General-purpose digital I/O pin				
TA0.1				Timer0_A, compare: Out1 output				
XOUT/	12	11	I/O	Output terminal of crystal oscillator ⁽³⁾				
P2.7				General-purpose digital I/O pin				
RST/		_		Reset				
NMI/	10 9		I	Nonmaskable interrupt input				
SBWTDIO				Spy-Bi-Wire test data input/output during programming and test				
TEST/	11 10		ı	Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.				
SBWTCK				Spy-Bi-Wire test clock input during programming and test				
DVCC	1	16	NA	Supply voltage				
DVSS	14	14	NA	Ground reference				
NC	-	13, 15	NA	Not connected				
QFN Pad	-	Pad	NA	QFN package pad connection to V _{SS} is recommended.				

⁽¹⁾ MSP430G2x11 only

⁽²⁾ TDO or TDI is selected via JTAG instruction.

⁽³⁾ If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset.

8 Detailed Description

8.1 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

8.2 Instruction Set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes.

Instruction Set (continued)

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 3. Instruction Word Formats

INSTRUCTION FORMAT	EXAMPLE	OPERATION	
Dual operands, source-destination	ADD R4,R5	R4 + R5> R5	
Single operands, destination only	CALL R8	PC ->(TOS), R8-> PC	
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0	

Table 4. Address Mode Descriptions⁽¹⁾

ADDRESS MODE	S D SYNTAX		SYNTAX	EXAMPLE	OPERATION
Register	✓	✓	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	✓	✓	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	✓	✓	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	✓	✓	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	1		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	1		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate			MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

(1) S = source, D = destination

8.3 Operating Modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - DCO's dc generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped

8.4 Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed) the CPU goes into LPM4 immediately after power-up.

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range (1)	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
			0FFFAh	29
			0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾⁽⁵⁾		0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer_A2	TACCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer_A2	TACCR1 CCIFG, TAIFG (2)(4)	maskable	0FFF0h	24
			0FFEEh	23
			0FFECh	22
			0FFEAh	21
			0FFE8h	20
I/O Port P2 (two flags)	P2IFG.6 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (6)			0FFDEh to 0FFC0h	15 to 0, lowest

⁽¹⁾ A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

⁽²⁾ Multiple source flags

^{(3) (}non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

⁽⁴⁾ Interrupt flags are located in the module.

⁽⁵⁾ Devices with Comparator_A+ only

⁽⁶⁾ The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Address

Λ

8.5 Special Function Registers (SFRs)

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is reset or set by PUC.rw-(0,1): Bit can be read and written. It is reset or set by POR.

5

SFR bit is not present in device.

6

Table 6. Interrupt Enable Register 1 and 2

3

Addicoo	•	O	J	-	0	_	•	U	
00h			ACCVIE	NMIIE			OFIE	WDTIE	
			rw-0	rw-0			rw-0	rw-0	
WDTIE		g Timer interrup mer mode.	t enable. Inactiv	e if watchdog m	ode is selected.	. Active if Watch	dog Timer is co	nfigured in	
OFIE	Oscillator	fault interrupt e	enable						
NMIIE	(Non)mas	kable interrupt	enable						
ACCVIE	Flash access violation interrupt enable								
Address	7	6	5	4	3	2	1	0	
01h									

Table 7. Interrupt Flag Register 1 and 2

Address	7	6	5	4	3	2	1	0
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG
·				rw-∩	rw-(0)	rw-(1)	rw-1	rw-(0)

WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation.

Reset on V_{CC} power-on or a reset condition at the RST/NMI pin in reset mode.

OFIFG Flag set on oscillator fault.

PORIFG Power-on reset interrupt flag. Set on V_{CC} power-up.

RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V_{CC} power-up.

NMIIFG Set via RST/NMI pin

Address	7	6	5	4	3	2	1	0	
03h									Ī

8.6 Memory Organization

Table 8. Memory Organization

		MSP430G2001 MSP430G2011	MSP430G2201 MSP430G2211
Memory	Size	512B	2kB
Main: interrupt vector	Flash	0xFFFF to 0xFFC0	0xFFFF to 0xFFC0
Main: code memory	Flash	0xFFFF to 0xFE00	0xFFFF to 0xF800
Information memory	Size	256 Byte	256 Byte
	Flash	010FFh to 01000h	010FFh to 01000h
RAM	Size	128B	128B
		027Fh to 0200h	027Fh to 0200h
Peripherals	16-bit	01FFh to 0100h	01FFh to 0100h
	8-bit	0FFh to 010h	0FFh to 010h
	8-bit SFR	0Fh to 00h	0Fh to 00h

8.7 Flash Memory

The flash memory can be programmed via the Spy-Bi-Wire or JTAG port or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also called *information memory*.
- Segment A contains calibration data. After reset segment A is protected against programming and erasing. It
 can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is
 required.

Copyright © 2011–2014, Texas Instruments Incorporated

8.8 Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).

8.8.1 Oscillator and System Clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

Table 9. DCO Calibration Data (Provided From Factory In Flash Information Memory Segment A)

DCO FREQUENCY	CALIBRATION REGISTER	SIZE	ADDRESS
1 MHz	CALBC1_1MHZ	byte	010FFh
I IVITZ	CALDCO_1MHZ	byte	010FEh

8.8.2 Brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

8.8.3 Digital I/O

There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt condition is possible.
- Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2.
- Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pullup/pulldown resistor.

8.8.4 Watchdog Timer (WDT+)

The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals.

8.8.5 Timer A2

Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 10. Timer_A2 Signal Connections - Devices With No Analog

INPUT PIN	NUMBER	DEVICE INPUT	MODULE	MODULE	MODULE	OUTPUT PI	N NUMBER		
PW	RSA	SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PW	RSA		
2 - P1.0	1 - P1.0	TACLK	TACLK						
		ACLK	ACLK	 .	NIA				
		SMCLK	SMCLK	Timer	NA				
2 - P1.0	1 - P1.0	TACLK	INCLK						
3 - P1.1	2 - P1.1	TA0	CCI0A			3 - P1.1	2 - P1.1		
		ACLK (internal)	CCI0B	0000	CCBO	0000	TAG	7 - P1.5	6 - P1.5
		V _{SS}	GND	CCR0	TA0				
		V _{CC}	V _{CC}						
4 - P1.2	3 - P1.2	TA1	CCI1A			4 - P1.2	3 - P1.2		
		TA1	CCI1B	CCD4	TA4	8 - P1.6	7 - P1.6		
		V _{SS}	GND	CCR1 TA1	1A1	13 - P2.6	12 - P2.6		
		V _{CC}	V _{CC}						

Table 11. Timer_A2 Signal Connections - Devices With Comparator_A+

INPUT PIN	NUMBER	DEVICE INPUT	MODULE	MODULE	MODULE	OUTPUT P	IN NUMBER
PW	RSA	SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PW	RSA
2 - P1.0	1 - P1.0	TACLK	TACLK		NA -		
		ACLK	ACLK	Times			
		SMCLK	SMCLK	Timer			
2 - P1.0	1 - P1.0	TACLK	INCLK				
3 - P1.1	2 - P1.1	TA0	CCI0A			3 - P1.1	2 - P1.1
		ACLK (internal)	CCI0B	CCDO	TA0	7 - P1.5	6 - P1.5
		V _{SS}	GND	CCR0	TA0		
		V _{cc}	V _{CC}				
4 - P1.2	3 - P1.2	TA1	CCI1A			4 - P1.2	3 - P1.2
		CAOUT (internal)	CCI1B	CCR1	TA1	8 - P1.6	7 - P1.6
		V _{SS}	GND			13 - P2.6	12 - P2.6
		V _{CC}	V _{CC}				

8.8.6 Comparator_A+ (MSP430G2x11 Only)

The primary function of the comparator_A+module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

8.8.7 Peripheral File Map

Table 12. Peripherals With Word Access

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
Timer_A	Capture/compare register	TACCR1	0174h
	Capture/compare register	TACCR0	0172h
	Timer_A register	TAR	0170h
	Capture/compare control	TACCTL1	0164h
	Capture/compare control	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
Flash Memory	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
Watchdog Timer+	Watchdog/timer control	WDTCTL	0120h

Table 13. Peripherals With Byte Access

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
Comparator_A+	Comparator_A+ port disable	CAPD	05Bh
(MSP430G2x11 only)	Comparator_A+ control 2	CACTL2	05Ah
	Comparator_A+ control 1	CACTL1	059h
Basic Clock System+	Basic clock system control 3	BCSCTL3	053h
	Basic clock system control 2	BCSCTL2	058h
	Basic clock system control 1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P2	Port P2 resistor enable	P2REN	02Fh
	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 resistor enable	P1REN	027h
	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Function	SFR interrupt flag 2	IFG2	003h
	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

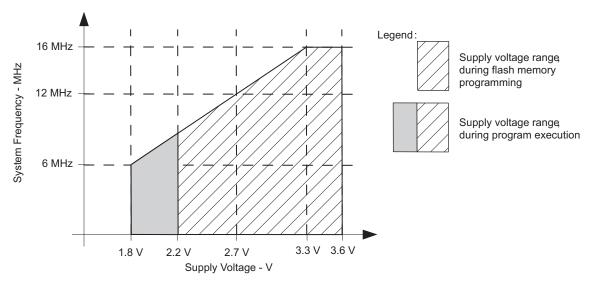
9 Specifications

9.1 Absolute Maximum Ratings⁽¹⁾

Voltage applied at V _{CC} to V _{SS}	-0.3 V to 4.1 V
Voltage applied to any pin ⁽²⁾	-0.3 V to V _{CC} + 0.3 V
Diode current at any device pin	±2 mA

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.

9.2 Handling Ratings


			MIN	MAX	UNIT
_	Ctorogo tomporatura	Unprogrammed device	-55	150	°C
I stg	Storage temperature	Programmed device	-55	150	

9.3 Recommended Operating Conditions

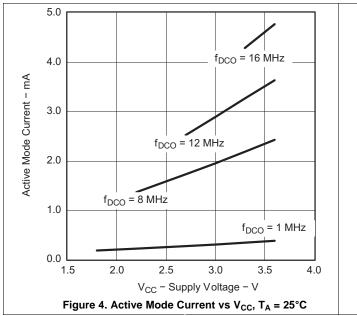
Typical values are specified at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted)

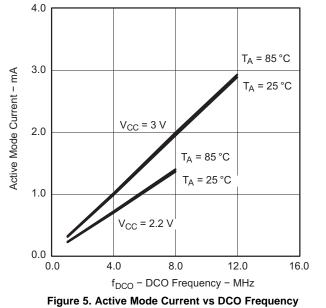
			MIN	NOM	MAX	UNIT
V _{CC}	Supply veltage	During program execution	1.8		3.6	V
	Supply voltage	During flash program or erase	2.2		3.6	V
V_{SS}	Supply voltage					V
T _A	Operating free-air temperature				85	°C
		$V_{CC} = 1.8 \text{ V},$ Duty cycle = 50% ± 10%	dc		6	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (1)(2)	$V_{CC} = 2.7 \text{ V},$ Duty cycle = 50% ± 10%	dc		12	MHz
		$V_{CC} \ge 3.3 \text{ V},$ Duty cycle = 50% ± 10%	dc		16	

- (1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.
- (2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.

Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.2 V.

Figure 3. Safe Operating Area


9.4 Active Mode Supply Current Into V_{CC} Excluding External Current


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)(2)

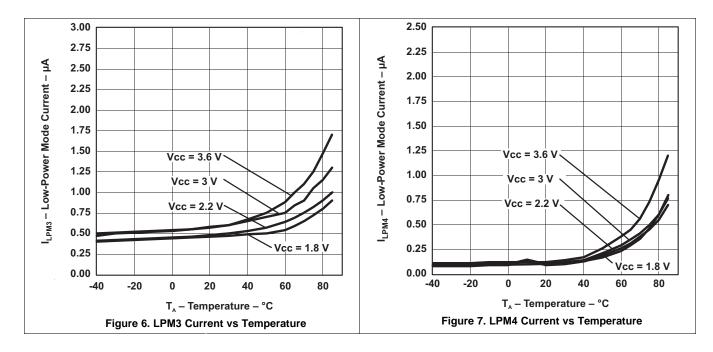
	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$f_{DCO} = f_{MCLK} = f_{SMCLK} = 1 \text{ MHz},$	2.2 V		220		
I _{AM,1MHz}	Active mode (AM) current (1 MHz)	f _{ACLK} = 32768 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	3 V		300	370	μΑ

All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

9.5 Typical Characteristics - Active Mode Supply Current (Into V_{cc})

The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

9.6 Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

P	ARAMETER	TEST CONDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
I _{LPM0,1MHz}	Low-power mode 0 (LPM0) current ⁽³⁾	$ \begin{aligned} &f_{\text{MCLK}} = 0 \text{ MHz}, \\ &f_{\text{SMCLK}} = f_{\text{DCO}} = 1 \text{ MHz}, \\ &f_{\text{ACLK}} = 32768 \text{ Hz}, \\ &\text{BCSCTL1} = \text{CALBC1_1MHZ}, \\ &\text{DCOCTL} = \text{CALDCO_1MHZ}, \\ &\text{CPUOFF} = 1, \text{SCG0} = 0, \text{SCG1} = 0, \\ &\text{OSCOFF} = 0 \end{aligned} $	25°C	2.2 V		65		μΑ
I _{LPM2}	Low-power mode 2 (LPM2) current (4)	$\begin{split} f_{MCLK} &= f_{SMCLK} = 0 \text{ MHz}, \\ f_{DCO} &= 1 \text{ MHz}, \\ f_{ACLK} &= 32768 \text{ Hz}, \\ BCSCTL1 &= CALBC1_1MHZ, \\ DCOCTL &= CALDCO_1MHZ, \\ CPUOFF &= 1, SCG0 = 0, SCG1 = 1, \\ OSCOFF &= 0 \end{split}$	25°C	2.2 V		22		μΑ
I _{LPM3,LFXT1}	Low-power mode 3 (LPM3) current ⁽⁴⁾	$ \begin{aligned} f_{DCO} &= f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}, \\ f_{ACLK} &= 32768 \text{ Hz}, \\ CPUOFF &= 1, SCG0 = 1, SCG1 = 1, \\ OSCOFF &= 0 \end{aligned} $	25°C	2.2 V		0.7	1.5	μΑ
I _{LPM3,VLO}	Low-power mode 3 current, (LPM3) ⁽⁴⁾	$ \begin{aligned} f_{DCO} &= f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}, \\ f_{ACLK} &\text{from internal LF oscillator (VLO),} \\ CPUOFF &= 1, SCG0 = 1, SCG1 = 1, \\ OSCOFF &= 0 \end{aligned} $	25°C	2.2 V		0.5	0.7	μΑ
		$f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz},$	25°C			0.1	0.5	
I _{LPM4}	Low-power mode 4 (LPM4) current ⁽⁵⁾	f _{ACLK} = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	85°C	2.2 V		0.8	1.5	μΑ

- All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.
- (3) Current for brownout and WDT clocked by SMCLK included.
- (4) Current for brownout and WDT clocked by ACLK included.
- (5) Current for brownout included.

9.7 Typical Characteristics, Low-Power Mode Supply Currents

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

9.8 Schmitt-Trigger Inputs - Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive-going input threshold voltage			0.45 V _{CC}		0.75 V _{CC}	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.35		2.25	V
\/	Negative gains input threshold valtage			0.25 V _{CC}		0.55 V _{CC}	V
V _{IT} -	V _{IT} . Negative-going input threshold voltage		3 V	0.75		1.65	V
V_{hys}	Input voltage hysteresis (V _{IT+} - V _{IT-})		3 V	0.3		1	٧
R _{Pull}	Pullup/pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$	3 V	20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		рF

9.9 Leakage Current - Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	(1) (2)	3 V	±50	nΑ

- (1) The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.
- (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

9.10 Outputs - Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

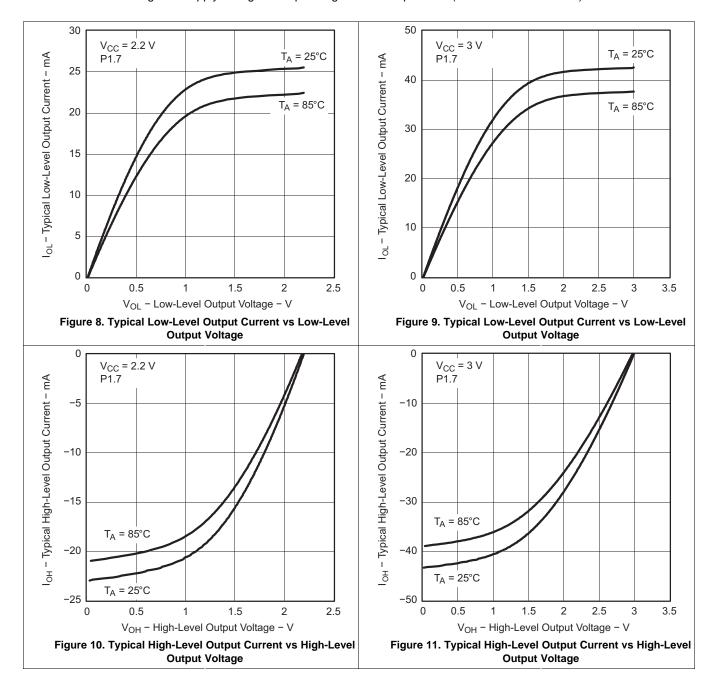
	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{(OHmax)} = -6 \text{ mA}^{(1)}$	3 V	\	_{CC} - 0.3		V
V_{OL}	Low-level output voltage	$I_{(OLmax)} = 6 \text{ mA}^{(1)}$	3 V	V	SS + 0.3		V

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

9.11 Output Frequency - Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{Px.y}	Port output frequency (with load)	Px.y, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega^{(1)}$ (2)	3 V		12		MHz
f _{Port_CLK}	Clock output frequency	$Px.y, C_L = 20 pF^{(2)}$	3 V		16		MHz


- (1) A resistive divider with 2 × 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.
- (2) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

20

9.12 Typical Characteristics - Outputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

9.13 POR, BOR⁽¹⁾⁽²⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
V _{CC(start)}	See Figure 12	dV _{CC} /dt ≤ 3 V/s		0.7 x V _(B_IT-)		V
V _(B_IT-)	See Figure 12 through Figure 14	dV _{CC} /dt ≤ 3 V/s		1.35		V
V _{hys(B_IT-)}	See Figure 12	dV _{CC} /dt ≤ 3 V/s		130		mV
t _{d(BOR)}	See Figure 12				2000	μs
t _(reset)	Pulse duration needed at RST/NMI pin to accepted reset internally		2.2 V, 3 V	2		μs

- (1) The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level V_(B_IT-) + V_{hys(B_IT-)}is ≤ 1.8 V.
- (2) During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default DCO settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency.

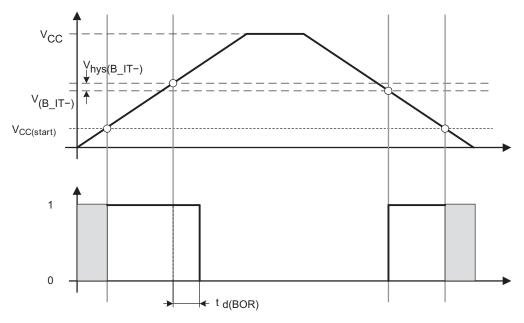


Figure 12. POR and BOR vs Supply Voltage

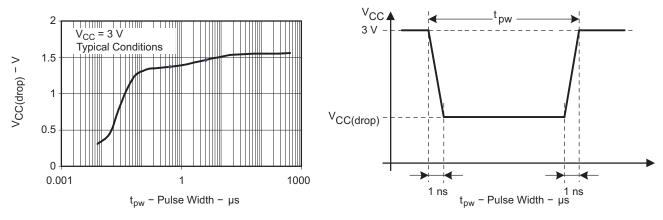


Figure 13. V_{CC(drop)} Level With a Square Voltage Drop to Generate a POR or BOR Signal

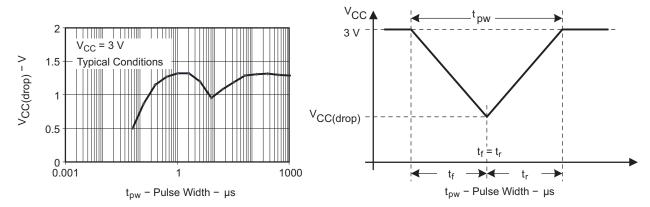


Figure 14. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR or BOR Signal

9.14 Main DCO Characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S_{DCO}.
- Modulation control bits MODx select how often $f_{DCO(RSEL,DCO+1)}$ is used within the period of 32 DCOCLK cycles. The frequency $f_{DCO(RSEL,DCO)}$ is used for the remaining cycles. The frequency is an average equal to: $\frac{32 \times f_{DCO(RSEL,DCO)} \times f_{DCO(RSEL,DCO+1)}}{f_{DCO(RSEL,DCO)} \times f_{DCO(RSEL,DCO+1)}}$

$$f_{average} = \frac{\frac{32 \text{ MDCO(RSEL,DCO)} \text{ MDCO(RSEL,DCO+1)}}{\text{MOD} \times f_{DCO(RSEL,DCO)} + (32 - \text{MOD)} \times f_{DCO(RSEL,DCO+1)}}$$

9.15 DCO Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

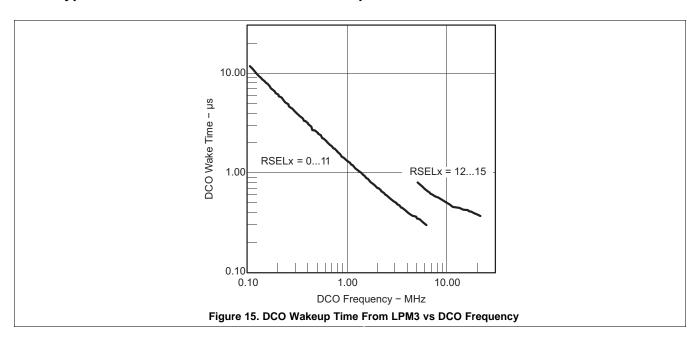
	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		RSELx < 14		1.8		3.6	V
V_{CC}	Supply voltage	RSELx = 14		2.2		3.6	V
		RSELx = 15		3		3.6	V
f _{DCO(0,0)}	DCO frequency (0, 0)	RSELx = 0, $DCOx = 0$, $MODx = 0$	3 V	0.06		0.14	MHz
f _{DCO(0,3)}	DCO frequency (0, 3)	RSELx = 0, $DCOx = 3$, $MODx = 0$	3 V		0.12		MHz
f _{DCO(1,3)}	DCO frequency (1, 3)	RSELx = 1, DCOx = 3, MODx = 0	3 V		0.15		MHz
f _{DCO(2,3)}	DCO frequency (2, 3)	RSELx = 2, $DCOx = 3$, $MODx = 0$	3 V		0.21		MHz
f _{DCO(3,3)}	DCO frequency (3, 3)	RSELx = 3, $DCOx = 3$, $MODx = 0$	3 V		0.3		MHz
f _{DCO(4,3)}	DCO frequency (4, 3)	RSELx = 4, DCOx = 3, MODx = 0	3 V		0.41		MHz
f _{DCO(5,3)}	DCO frequency (5, 3)	RSELx = 5, DCOx = 3, MODx = 0	3 V		0.58		MHz
f _{DCO(6,3)}	DCO frequency (6, 3)	RSELx = 6, DCOx = 3, MODx = 0	3 V		0.8		MHz
f _{DCO(7,3)}	DCO frequency (7, 3)	RSELx = 7, DCOx = 3, MODx = 0	3 V	0.8		1.5	MHz
f _{DCO(8,3)}	DCO frequency (8, 3)	RSELx = 8, DCOx = 3, MODx = 0	3 V		1.6		MHz
f _{DCO(9,3)}	DCO frequency (9, 3)	RSELx = 9, DCOx = 3, MODx = 0	3 V		2.3		MHz
f _{DCO(10,3)}	DCO frequency (10, 3)	RSELx = 10, DCOx = 3, MODx = 0	3 V		3.4		MHz
f _{DCO(11,3)}	DCO frequency (11, 3)	RSELx = 11, DCOx = 3, MODx = 0	3 V		4.25		MHz
f _{DCO(12,3)}	DCO frequency (12, 3)	RSELx = 12, DCOx = 3, MODx = 0	3 V	4.3		7.3	MHz
f _{DCO(13,3)}	DCO frequency (13, 3)	RSELx = 13, DCOx = 3, MODx = 0	3 V		7.8		MHz
f _{DCO(14,3)}	DCO frequency (14, 3)	RSELx = 14, DCOx = 3, MODx = 0	3 V	8.6		13.9	MHz
f _{DCO(15,3)}	DCO frequency (15, 3)	RSELx = 15, DCOx = 3, MODx = 0	3 V		15.25		MHz
f _{DCO(15,7)}	DCO frequency (15, 7)	RSELx = 15, DCOx = 7, MODx = 0	3 V		21		MHz
S _{RSEL}	Frequency step between range RSEL and RSEL+1	$S_{RSEL} = f_{DCO(RSEL+1,DCO)}/f_{DCO(RSEL,DCO)}$	3 V		1.35		ratio
S _{DCO}	Frequency step between tap DCO and DCO+1	$S_{DCO} = f_{DCO(RSEL,DCO+1)}/f_{DCO(RSEL,DCO)}$	3 V		1.08		ratio
	Duty cycle	Measured at SMCLK output	3 V		50		%

9.16 Calibrated DCO Frequencies - Tolerance

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
1-MHz tolerance over temperature ⁽¹⁾	BCSCTL1= CALBC1_1MHz, DCOCTL = CALDCO_1MHz, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
1-MHz tolerance over V _{CC}	BCSCTL1= CALBC1_1MHz, DCOCTL = CALDCO_1MHz, calibrated at 30°C and 3 V	30°C	1.8 V to 3.6 V	-3	±2	+3	%
1-MHz tolerance overall	BCSCTL1= CALBC1_1MHz, DCOCTL = CALDCO_1MHz, calibrated at 30°C and 3 V	-40°C to 85°C	1.8 V to 3.6 V	-6	±3	+6	%

⁽¹⁾ This is the frequency change from the measured frequency at 30°C over temperature.


9.17 Wakeup From Lower-Power Modes (LPM3 or LPM4) Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{DCO,LPM3/4}	DCO clock wake-up time from LPM3 or LPM4 (1)	BCSCTL1= CALBC1_1MHz, DCOCTL = CALDCO_1MHz	3 V		1.5		μs
t _{CPU,LPM3/4}	CPU wake-up time from LPM3 or LPM4 ⁽²⁾				1/f _{MCLK} + Clock,LPM3/4		

⁽¹⁾ The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

9.18 Typical Characteristics - DCO Clock Wakeup Time From LPM3 or LPM4

⁽²⁾ Parameter applicable only if DCOCLK is used for MCLK.

9.19 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{LFXT1,LF}	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V to 3.6 V		32768		Hz
f _{LFXT1,LF,logic}	LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, XCAPx = 0, LFXT1Sx = 3	1.8 V to 3.6 V	10000	32768	50000	Hz
04	Oscillation allowance for	$XTS = 0$, $LFXT1Sx = 0$, $f_{LFXT1,LF} = 32768$ Hz, $C_{L,eff} = 6$ pF			500		kΩ
OA _{LF}	LF crystals	$XTS = 0$, $LFXT1Sx = 0$, $f_{LFXT1,LF} = 32768$ Hz, $C_{L,eff} = 12$ pF			200		K12
		XTS = 0, $XCAPx = 0$			1		
	Integrated effective load	XTS = 0, XCAPx = 1			5.5		~F
$C_{L,eff}$	capacitance, LF mode (2)	XTS = 0, XCAPx = 2			8.5		pF
		XTS = 0, XCAPx = 3			11		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, f _{LFXT1,LF} = 32768 Hz	2.2 V	30	50	70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽³⁾	XTS = 0, XCAPx = 0, LFXT1Sx = 3 ⁽⁴⁾	2.2 V	10		10000	Hz

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - (a) Keep the trace between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
 - (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- (2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (4) Measured with logic-level input frequency but also applies to operation with crystals.

9.20 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

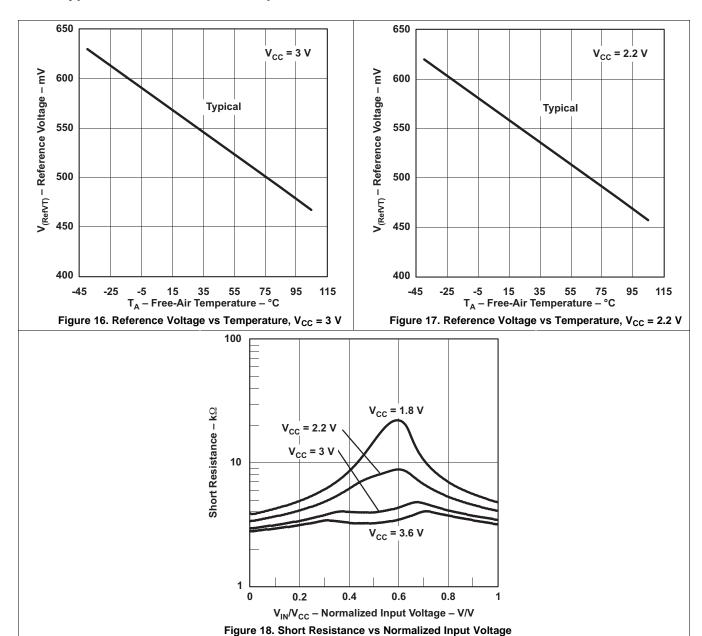
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	T _A	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	-40°C to 85°C	3 V	4	12	20	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	-40°C to 85°C	3 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	25°C	1.8 V to 3.6 V		4		%/V

9.21 Timer A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP MA	X UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK or ACLK, External: TACLK or INCLK, Duty cycle = 50% ± 10%		f _{SYSTEM}	MHz
t _{TA,cap}	Timer_A capture timing	TA0, TA1	3 V	20	ns


9.22 Comparator_A+ (MSP430G2x11 only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
I _(DD)		CAON = 1, CARSEL = 0, CAREF = 0	3 V		45		μA
I _{(Refladder/R}	efDiode)	CAON = 1, CARSEL = 0, CAREF = 1, 2, or 3, No load at CA0 and CA1	3 V		45		μΑ
V _(IC)	Common-mode input voltage	CAON = 1	3 V	0		V _{CC} -1	V
V _(Ref025)	Voltage @ 0.25 V _{CC} node	PCA0 = 1, CARSEL = 1, CAREF = 1, No load at CA0 and CA1	3 V		0.24		
V _(Ref050)	Voltage @ 0.5 V _{CC} node	PCA0 = 1, CARSEL = 1, CAREF = 2, No load at CA0 and CA1	3 V		0.48		
V _(RefVT)	See Figure 16 and Figure 17	PCA0 = 1, CARSEL = 1, CAREF = 3, No load at CA0 and CA1, TA = 85°C	3 V		490		mV
V _(offset)	Offset voltage (1)		3 V		±10		mV
V _{hys}	Input hysteresis	CAON = 1	3 V		0.7		mV
	Response time (low-high and high-low)	T _A = 25°C, Overdrive 10 mV, Without filter: CAF = 0			120		ns
t(response)		T _A = 25°C, Overdrive 10 mV, With filter: CAF = 1	3 V		1.5		μs

⁽¹⁾ The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together.

9.23 Typical Characteristics - Comparator_A+

9.24 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC(PGM/ERASE)}	Program and erase supply voltage			2.2		3.6	V
f _{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from V _{CC} during program		2.2 V, 3.6 V		1	5	mA
I _{ERASE}	Supply current from V _{CC} during erase		2.2 V, 3.6 V		1	7	mA
t _{CPT}	Cumulative program time ⁽¹⁾		2.2 V, 3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time		2.2 V, 3.6 V	20			ms
	Program and erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C		15			years
t _{Word}	Word or byte program time ⁽²⁾				30		t _{FTG}
t _{Block, 0}	Block program time for first byte or word (2)				25		t _{FTG}
t _{Block, 1-63}	Block program time for each additional byte or word ⁽²⁾				18		t _{FTG}
t _{Block, End}	Block program end-sequence wait time ⁽²⁾				6		t _{FTG}
t _{Mass Erase}	Mass erase time ⁽²⁾				10593		t _{FTG}
t _{Seg Erase}	Segment erase time ⁽²⁾				4819		t _{FTG}

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word write, byte write, and block write modes.

9.25 RAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{(RAMh)}$	RAM retention supply voltage (1)	CPU halted	1.6	٧

⁽¹⁾ This parameter defines the minimum supply voltage V_{CC} when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition.

⁽²⁾ These values are hardwired into the flash controller's state machine ($t_{FTG} = 1/f_{FTG}$).

9.26 JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW,En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge (1))	2.2 V, 3 V			1	μs
t _{SBW,Ret}	Spy-Bi-Wire return to normal operation time	2.2 V, 3 V	15		100	μs
f _{TCK}	TCK input frequency ⁽²⁾	2.2 V	0		5	MHz
	TCK Input frequency (=/	3 V	0		10	MHz
R _{Internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	25	60	90	kΩ

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

9.27 JTAG Fuse⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C	2.5		V
V_{FB}	Voltage level on TEST for fuse blow		6	7	V
I _{FB}	Supply current into TEST during fuse blow			100	mA
t _{FB}	Time to blow fuse			1	ms

(1) After the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, or emulation feature is possible, and JTAG is switched to bypass mode.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

10 I/O Port Schematics

10.1 Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger - MSP430G2x01

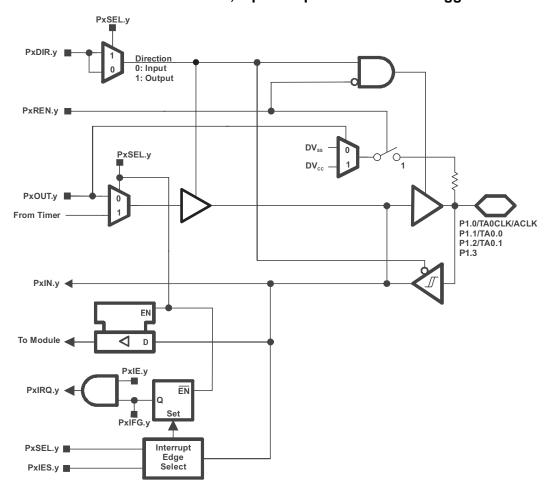
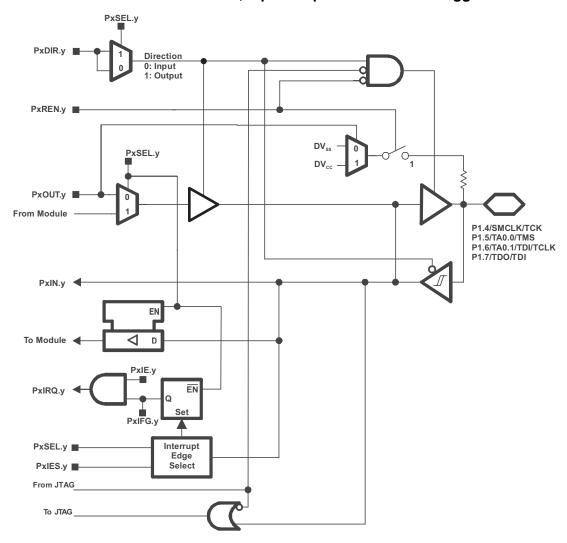
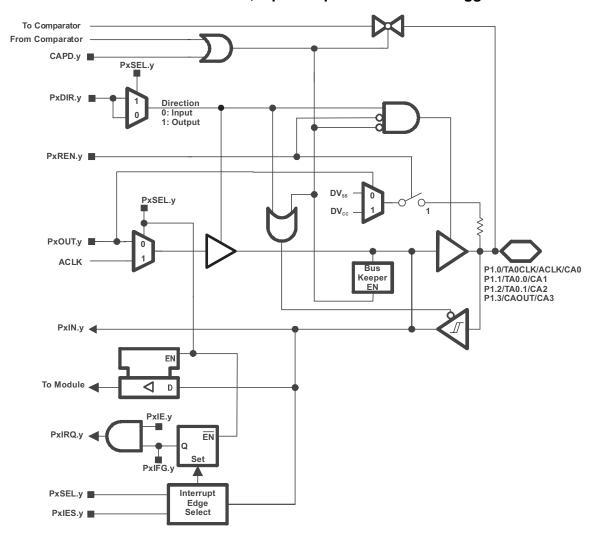


Table 14. Port P1 (P1.0 to P1.3) Pin Functions - MSP430G2x01

PIN NAME (P1.x)		FUNCTION	CONTROL BITS/SIGNALS		
	X		P1DIR.x	P1SEL.x	
P1.0/		P1.x (I/O)	I: 0; O: 1	0	
TA0CLK/	0	TAOCLK	0	1	
ACLK		ACLK	1	1	
P1.1/		P1.x (I/O)	I: 0; O: 1	0	
TA0.0	1	TA0.CCI0A	0	1	
		TA0.0	1	1	
P1.2/		P1.x (I/O)	I: 0; O: 1	0	
TA0.1	2	TA0.CCI1A	0	1	
		TA0.1	1	1	
P1.3	3	P1.x (I/O)	I: 0; O: 1	0	

10.2 Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger - MSP430G2x01



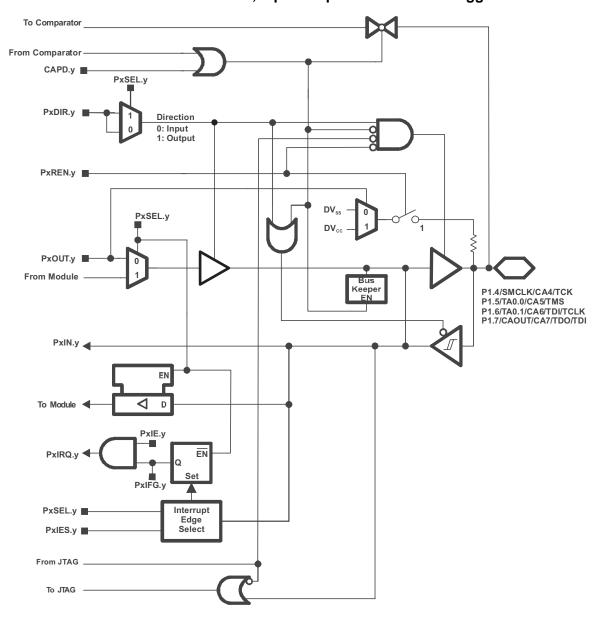

Table 15. Port P1 (P1.4 to P1.7) Pin Functions - MSP430G2x01

DIN NAME (D4 v)	x	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾			
PIN NAME (P1.x)		FUNCTION	P1DIR.x	P1SEL.x	JTAG Mode	
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	
SMCLK/	4	SMCLK	1	1	0	
TCK		TCK	X	X	1	
P1.5/		P1.x (I/O)	I: 0; O: 1	0	0	
TA0.0/	5	TA0.0	1	1	0	
TMS		TMS	X	X	1	
P1.6/		P1.x (I/O)	I: 0; O: 1	0	0	
TA0.1/	6	TA0.1	1	1	0	
TDI/TCLK		TDI/TCLK	X	X	1	
P1.7/	7	P1.x (I/O)	I: 0; O: 1	0	0	
TDO/TDI	,	TDO/TDI	X	X	1	

(1) X = Don't care

10.3 Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger - MSP430G2x11

Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger - MSP430G2x11 (continued)


Table 16. Port P1 (P1.0 to P1.3) Pin Functions - MSP430G2x11

DIN NAME (D4)	x	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾			
PIN NAME (P1.x)		FUNCTION	P1DIR.x	P1SEL.x	CAPD.y	
P1.0/		P1.x (I/O)	I: 0; O: 1	0	0	
TA0CLK/	0	TA0.TACLK	0	1	0	
ACLK/	U	ACLK	1	1	0	
CA0		CA0	X	X	1 (y = 0)	
P1.1/		P1.x (I/O)	I: 0; O: 1	0	0	
TA0.0/	4	TA0.0	1	1	0	
	1	TA0.CCI0A	0	1	0	
CA1		CA1	X	X	1 (y = 1)	
P1.2/		P1.x (I/O)	I: 0; O: 1	0	0	
TA0.1/	2	TA0.1	1	1	0	
		TA0.CCI1A	0	1	0	
CA2		CA2	X	X	1 (y = 2)	
P1.3/		P1.x (I/O)	I: 0; O: 1	0	0	
CAOUT/	3	CAOUT	1	1	0	
CA3		CA3	X	Χ	1 (y = 3)	

⁽¹⁾ X = Don't care

10.4 Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger - MSP430G2x11

Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger - MSP430G2x11 (continued)

Table 17. Port P1 (P1.4 to P1.7) Pin Functions - MSP430G2x11

DINI NAME (D4)	x	FUNCTION	CONTROL BITS / SIGNALS (1)					
PIN NAME (P1.x)		FUNCTION	P1DIR.x	P1SEL.x	JTAG Mode	CAPD.y		
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	0		
SMCLK/	,	SMCLK	1	1	0	0		
CA4/	4	CA4	Х	Х	0	1 (y = 4)		
TCK		тск	Х	Х	1	0		
P1.5/		P1.x (I/O)	I: 0; O: 1	0	0	0		
TA0.0/	_	TA0.0	1	1	0	0		
CA5/	5	CA5	Х	Х	0	1 (y = 5)		
TMS		TMS	Х	Х	1	0		
P1.6/		P1.x (I/O)	I: 0; O: 1	0	0	0		
TA0.1/	6	TA0.1	1	1	0	0		
CA6/	0	CA6	X	X	0	1 (y = 6)		
TDI/TCLK		TDI/TCLK	Х	Х	1	0		
P1.7/		P1.x (I/O)	I: 0; O: 1	0	0	0		
CAOUT/	7	CAOUT	1	1	0	0		
CA7/	'	CA7	Х	Х	0	1 (y = 7)		
TDO/TDI		TDO/TDI	Х	Х	1	0		

⁽¹⁾ X = Don't care

10.5 Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger - MSP430G2x01 and MSP430G2x11

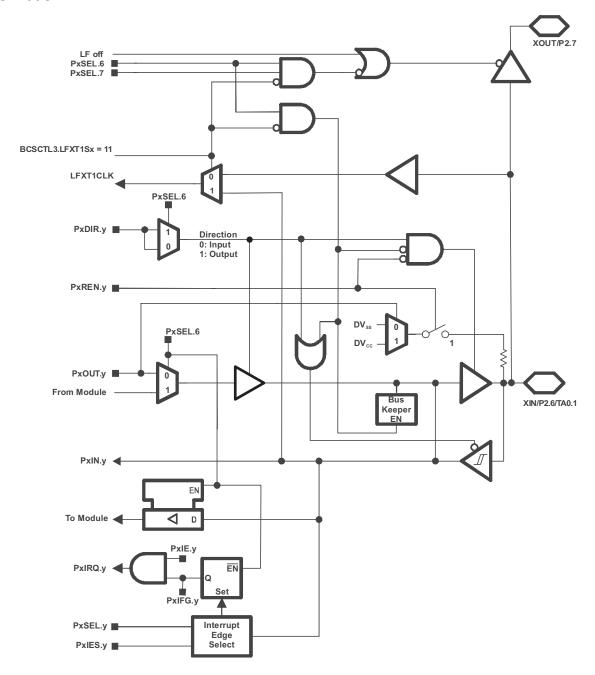


Table 18. Port P2 (P2.6) Pin Functions - MSP430G2x01 and MSP430G2x11

DIN NAME (D2 v)	v	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾					
PIN NAME (P2.x)	Х	FUNCTION	P2DIR.x	P2SEL.6	P2SEL.7			
XIN		XIN	0	1	1			
P2.6	6	P2.x (I/O)	l: 0; O: 1	0	Χ			
TA0.1		Timer0_A2.TA1	1	1	Х			

(1) X = Don't care

10.6 Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger - MSP430G2x01 and MSP430G2x11

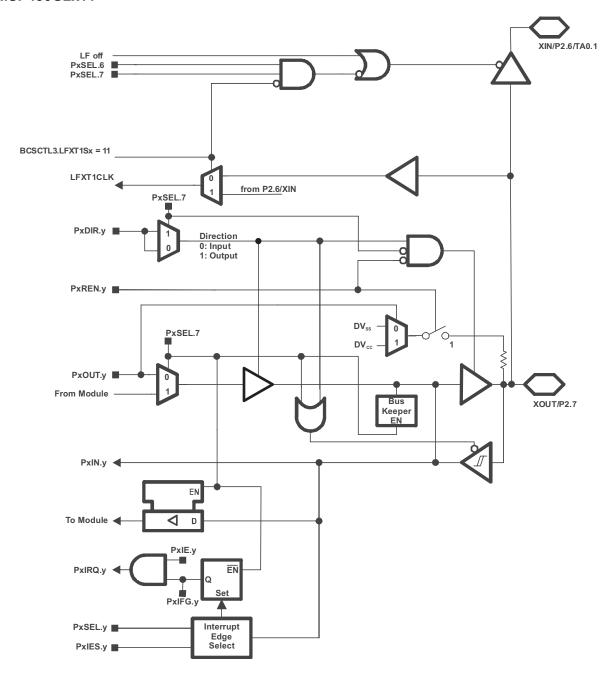


Table 19. Port P2 (P2.7) Pin Functions - MSP430G2x01 and MSP430G2x11

DIN NAME (D2 v)		FUNCTION	CONTROL BITS / SIGNALS						
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL.6	P2SEL.7				
XOUT	7	XOUT	1	1	1				
P2.7	′	P2.x (I/O)	I: 0; O: 1	0	0				

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

11.1.1.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support
MSP430	Yes	Yes	2	No	Yes	No	No	No

11.1.1.2 Recommended Hardware Options

11.1.1.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only		
14 pin TSSOD (DW)	MSP-FET430U14	MSP-TS430PW14		
14-pin TSSOP (PW)	MSP-FET430U28A	MSP-TS430PW28A		

11.1.1.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

11.1.1.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

11.1.1.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

11.1.1.3 Recommended Software Options

11.1.1.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available. This device is supported by Code Composer Studio™ IDE (CCS).

11.1.1.3.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. MSP430Ware is available as a component of CCS or as a standalone package.

11.1.1.3.3 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE.

11.1.2 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430™ MCU devices and support tools. Each MSP430™ MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP – Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 19 provides a legend for reading the complete device name for any family member.

40

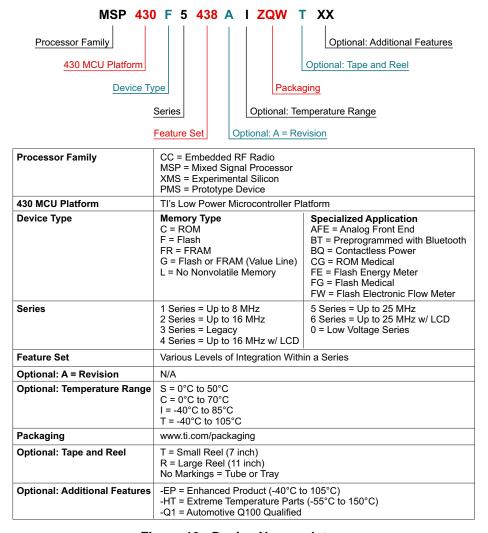


Figure 19. Device Nomenclature

11.2 Documentation Support

11.2.1 Related Documents

The following documents describe the MSP430G2x11 and MSP430G2x01 devices. Copies of these documents are available on the Internet at www.ti.com.

- **SLAU144** *MSP430x2xx Family User's Guide.* Detailed information on the modules and peripherals available in this device family.
- **SLAZ413** *MSP430G2211 Device Erratasheet.* Describes the known exceptions to the functional specifications for the MSP430G2211 device.
- **SLAZ410** *MSP430G2201 Device Erratasheet.* Describes the known exceptions to the functional specifications for the MSP430G2201 device.
- **SLAZ399** *MSP430G2001 Device Erratasheet.* Describes the known exceptions to the functional specifications for the MSP430G2001 device.

11.3 Related Links

Table 20 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 20. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430G2211-Q1	Click here	Click here	Click here	Click here	Click here
MSP430G2201-Q1	Click here	Click here	Click here	Click here	Click here
MSP430G2001-Q1	Click here	Click here	Click here	Click here	Click here

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

11.5 Trademarks

MSP430, Code Composer Studio are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12 Submit Documentation Feedback

30-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430G2001IPW4RQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	G2001Q1	Samples
MSP430G2001IRSARQ1	ACTIVE	QFN	RSA	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	M430G 2001Q1	Samples
MSP430G2201IRSARQ1	ACTIVE	QFN	RSA	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	M430G 2201Q1	Samples
MSP430G2211IPW4RQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	G2211Q1	Samples
MSP430G2211IRSARQ1	ACTIVE	QFN	RSA	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	M430G 2211Q1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

30-Apr-2015

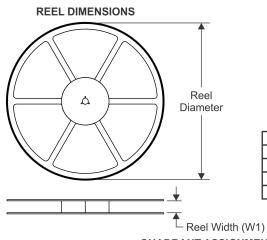
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

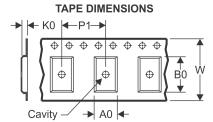
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSP430G2001-Q1, MSP430G2201-Q1, MSP430G2211-Q1:

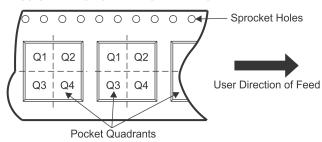
Catalog: MSP430G2001, MSP430G2201, MSP430G2211


NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

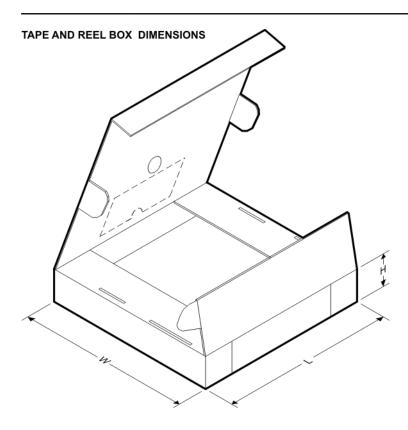
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2018


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

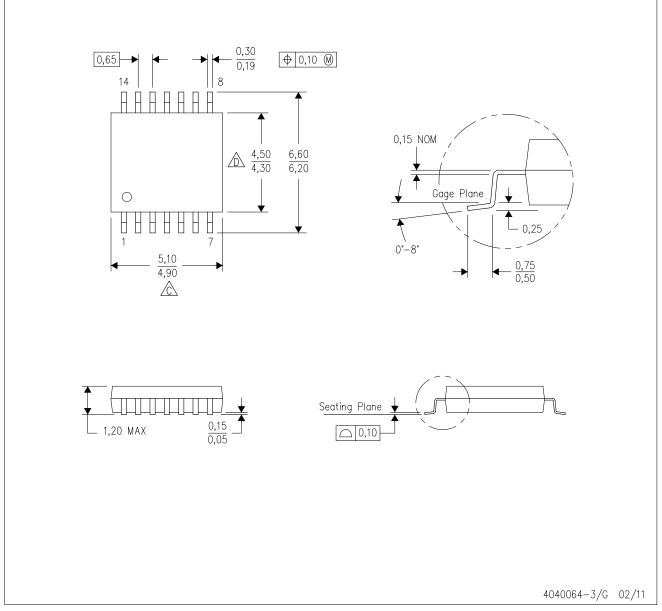


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430G2201IRSARQ1	QFN	RSA	16	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2018

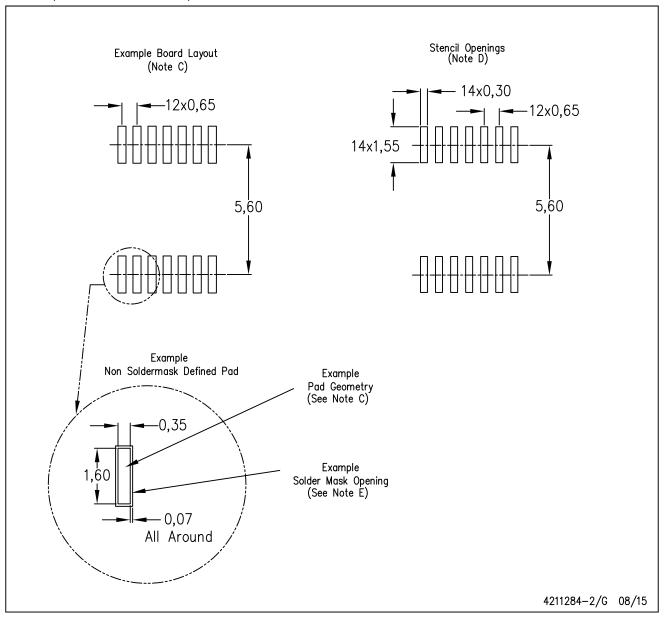


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
MSP430G2201IRSARQ1	QFN	RSA	16	3000	367.0	367.0	35.0	

PW (R-PDSO-G14)

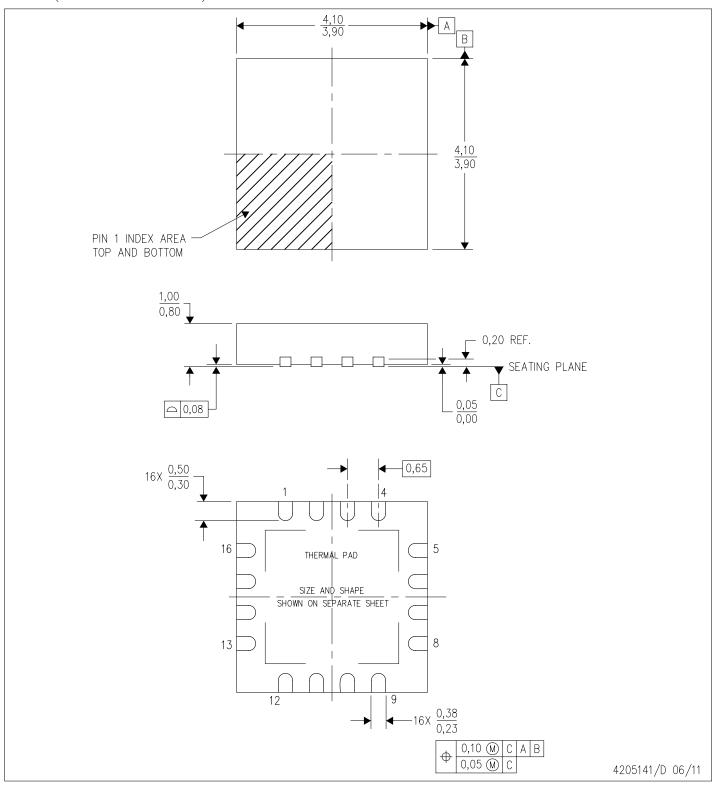
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

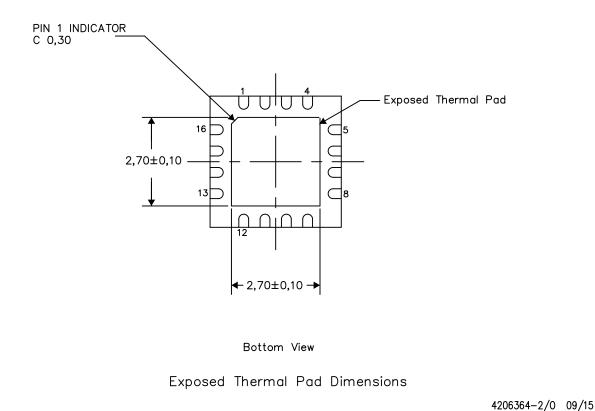
RSA (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RSA (S-PVQFN-N16)

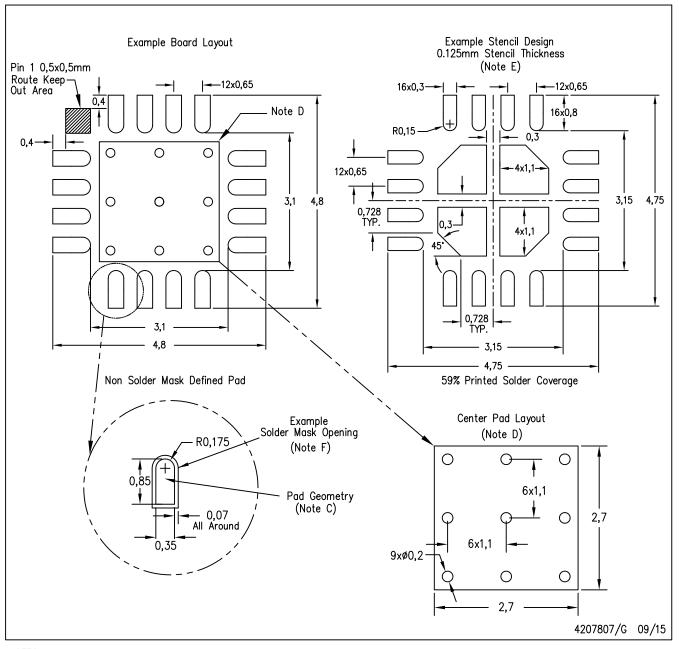

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


NOTES:

A. All linear dimensions are in millimeters

RSA (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.